簡易檢索 / 詳目顯示

研究生: 洪翊凌
Hung, Yi-Ling
論文名稱: 探討消費者的網站瀏覽行為 -以台北旅遊網之點擊流數據為例
Exploring Customer Web Browsing Behavior: A Clickstream Data Analysis by Using Taipei Tourism Website
指導教授: 簡珮瑜
Chien, Pei-Yu
口試委員: 胡美智
Hu, Mei-Chih
羅顯辰
Lo, Hsien-Chen
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 科技管理研究所
Institute of Technology Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 48
中文關鍵詞: 點擊流數據潛在類別分析購物籃分析
外文關鍵詞: clickstream data, latent class analysis, market basket analysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子商務的崛起與疫情肆虐,人們越來越依賴線上消費,然而相對於傳統實體店面的購物,電子商務業者很難直接了解顧客喜好與消費的行為傾向。而根據過去研究中對點擊流數據的探討,可以看出點擊流數據對於了解消費者行為的重要性。然而,過去文獻僅針對消費者端進行分析、探討,如:瀏覽時間多寡、是否重複造訪與造訪頻率,而缺少對消費者後續行為的分析與預測。因此本研究將會納入點擊流於分析數據中,先透過潛在類別分析分類消費者集群,並透過購物籃分析深入探討各集群的消費組合,同時將理論應用到旅遊業,預期能提供業者一個景點集與跨類別的旅遊方案作為參考。


    With the rise of the e-commerce, people more frequently use online shopping. However, it’s difficult for the e-commerce owners to observe consumer behavior. According to the previous research, there is lots of evidence showing the relation between consumer behavior and clickstream data. Nevertheless, the previous literature only focuses on the analysis of market segments, but lacks the analysis and prediction of consumers' follow-up behavior. Our study would analyze the clickstream data to categorize consumer types and explore the consumption pattern of each group through market basket analysis. And applying the result to the tourism industry, it is expected to provide a set of attractions and cross-category travel solutions as a reference.

    摘要……………………………………………………………………………………i Abstract…………………………..……………………………………………………ii 致謝…………………………………………………………………………………..iii 圖次…………………………………………………………………………………vi 表次…………………………………………………………………………………vii 第壹章 前言 1 第貳章 文獻回顧 5 第一節 點擊流數據 5 第二節 點擊流數據應用在非行銷領域 6 第三節 點擊流數據應用在行銷領域 8 第參章 研究方法 18 第一節 分析工具 18 第二節 樣本描述 21 第三節 變數描述與選擇 22 第肆章 實證分析結果 25 第一節 描述性統計 25 第二節 集群分析結果 27 第三節 購物籃分析結果 32 第伍章 討論 39 第陸章 結論 40 第一節 理論貢獻 40 第二節 實務貢獻 40 第三節 研究限制與未來研究方向 41 參考資料 44

    一、 中文部分
    1. 統計處(2019)。今年電子購物業營收可望再創新猷。經濟部。統計處網址https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&menu_id=18808&bull_id=6182
    2. 藍芳華(2020)。「宅經濟」發酵,帶動網路銷售額成長。經濟部。統計處網址https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&menu_id=18808&bull_id=7590
    二、 英文部分
    1. Adamic, L. A., & Huberman, B. A. (2001). The Web's hidden order. Communications of the ACM, 44(9), 55-60.
    2. Aguinis, H., Forcum, L. E., & Joo, H. (2013). Using market basket analysis in management research. Journal of Management, 39(7), 1799-1824.
    3. Akter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: a systematic review and agenda for future research. Electronic Markets, 26(2), 173-194.
    4. Albert, B., Tullis, T., & Tedesco, D. (2009). Beyond the usability lab: Conducting large-scale online user experience studies. Morgan Kaufmann.
    5. Ansari, A., & Mela, C. F. (2003). E-customization. Journal of Marketing Research, 40(2), 131-145.
    6. Arnold, K. E., & Pistilli, M. D. (2012, April). Course signals at Purdue: Using learning analytics to increase student success. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 267-270).
    7. Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In Learning analytics (pp. 61-75). Springer, New York, NY.
    8. Beath, C., Becerra-Fernandez, I., Ross, J., & Short, J. (2012). Finding value in the information explosion. MIT Sloan Management Review, 53(4), 18.
    9. Benway, J. P. (1998, October). Banner blindness: The irony of attention grabbing on the World Wide Web. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 42, No. 5, pp. 463-467). Sage CA: Los Angeles, CA: SAGE Publications.
    10. Bettman, J. R. (1979). Memory factors in consumer choice: A review. Journal of Marketing, 43(2), 37-53.
    11. Brinton, C. G., & Chiang, M. (2015, April). MOOC performance prediction via clickstream data and social learning networks. In 2015 IEEE conference on computer communications (INFOCOM) (pp. 2299-2307). IEEE.
    12. Bronnenberg, B. J., Mahajan, V., & Vanhonacker, W. R. (2000). The emergence of market structure in new repeat-purchase categories: The interplay of market share and retailer distribution. Journal of Marketing Research, 37(1), 16-31.
    13. Bucklin, R. E., & Sismeiro, C. (2003). A model of web site browsing behavior estimated on clickstream data. Journal of Marketing Research, 40(3), 249-267.
    14. Bucklin, R. E., Lattin, J. M., Ansari, A., Gupta, S., Bell, D., Coupey, E., ... & Steckel, J. (2002). Choice and the Internet: From clickstream to research stream. Marketing Letters, 13(3), 245-258.
    15. Chatterjee, P., Hoffman, D. L., & Novak, T. P. (2003). Modeling the clickstream: Implications for web-based advertising efforts. Marketing Science, 22(4), 520-541.
    16. Chen, P. Y., & Hitt, L. M. (2002). Measuring switching costs and the determinants of customer retention in Internet-enabled businesses: A study of the online brokerage industry. Information Systems Research, 13(3), 255-274.
    17. Dhawal Shah (2021). A Decade of MOOCs: A Review of Stats and Trends for Large-Scale Online Courses in 2021. Retrieved from EdSurge, Institute for https://www.edsurge.com/news/2021-12-28-a-decade-of-moocs-a-review-of-stats-and-trends-for-large-scale-online-courses-in-2021
    18. eMarketer. (2002). Essential e-Business Numbers for Marketers, Q3. October, New York.
    19. Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD (Vol. 96, No. 34, pp. 226-231).
    20. Fisher, W. D. (1969). Clustering and aggregation in economics.
    21. Giannakos, M. N., Chorianopoulos, K., & Chrisochoides, N. (2015). Making sense of video analytics: Lessons learned from clickstream interactions, attitudes, and learning outcome in a video-assisted course. International Review of Research in Open and Distributed Learning, 16(1), 260-283.
    22. Goldfarb, A. (2006). State dependence at internet portals. Journal of Economics & Management Strategy, 15(2), 317-352.
    23. Ho, H. F. (2021). A novel approach for exploring channel dependence of consumers' latent shopping intent and the related behaviors by visualizing browsing patterns. Data Technologies and Applications, 55(5), 715-733.
    24. Janiszewski, C. (1998). The influence of display characteristics on visual exploratory search behavior. Journal of Consumer Research, 25(3), 290-301.
    25. Johnson, E. J., Bellman, S., & Lohse, G. L. (2003). Cognitive lock-in and the power law of practice. Journal of Marketing, 67(2), 62-75.
    26. Johnson, E. J., Moe, W. W., Fader, P. S., Bellman, S., & Lohse, G. L. (2004). On the depth and dynamics of online search behavior. Management Science, 50(3), 299-308.
    27. Klemperer, P. (1995). Competition when consumers have switching costs: An overview with applications to industrial organization, macroeconomics, and international trade. The Review of Economic Studies, 62(4), 515-539.
    28. Lazarsfeld, P., & Henry, N. (1968). Latent Structure Analysis Houghton Mifflin. New York.
    29. MacQueen, J. B. (1966). Western Management Science Institute University of California Los Angeles. Some methods for classification and analysis of multivariate observations.
    30. Manchanda, P., Dubé, J. P., Goh, K. Y., & Chintagunta, P. K. (2006). The effect of banner advertising on internet purchasing. Journal of Marketing Research, 43(1), 98-108.
    31. Moe, W. W. (2003). Buying, searching, or browsing: Differentiating between online shoppers using in-store navigational clickstream. Journal of Consumer Psychology, 13(1-2), 29-39.
    32. Moe, W. W. (2006). A field experiment to assess the interruption effect of pop‐up promotions. Journal of Interactive Marketing, 20(1), 34-44.
    33. Moe, W. W., & Fader, P. S. (2004 a). Capturing evolving visit behavior in clickstream data. Journal of Interactive Marketing, 18(1), 5-19.
    34. Moe, W. W., & Fader, P. S. (2004 b). Dynamic conversion behavior at e-commerce sites. Management Science, 50(3), 326-335.
    35. Montgomery, A. L. (2001). Applying quantitative marketing techniques to the internet. Interfaces, 31(2), 90-108.
    36. Mukala, P., Buijs, J. C., Leemans, M., & van der Aalst, W. M. (2015, December). Learning analytics on coursera event data: A process mining approach. In SIMPDA (pp. 18-32).
    37. Myers, J. H., & Tauber, E. (2011). Market structure analysis. Marketing Classics Press.
    38. Payne, J. W., Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge university press.
    39. Rausch, T. M., & Brand, B. M. (2022). Gotta buy'em all? Online shopping cart abandonment among new and existing customers. International Journal of Electronic Business, 17(2), 109-134.
    40. Requena, B., Cassani, G., Tagliabue, J., Greco, C., & Lacasa, L. (2020). Shopper intent prediction from clickstream e-commerce data with minimal browsing information. Scientific Reports, 10(1), 1-23.
    41. Schellong, D., Kemper, J., & Brettel, M. (2016). Clickstream data as a source to uncover con-sumer shopping types in a large-scale online setting.
    42. Schroeder, W. (1998). Testing web sites with eyetracking. Eye for Design.
    43. Shugan, S. M. (1980). The cost of thinking. Journal of Consumer Research, 7(2), 99-111.
    44. Sismeiro, C., & Bucklin, R. E. (2004). Modeling purchase behavior at an e-commerce web site: A task-completion approach. Journal of Marketing Research, 41(3), 306-323.
    45. Sohn, S., Seegebarth, B., & Moritz, M. (2017). The impact of perceived visual complexity of mobile online shops on user's satisfaction. Psychology & Marketing, 34(2), 195-214.
    46. Stephanie Chevalier (2021). Conversion rate of online shoppers worldwide as of 3rd quarter 2020. Retrieved from Statista, Institute for https://www.statista.com/statistics/439576/online-shopper-conversion-rate-worldwide/
    47. Wagner, G. (2015). Multichannel e-commerce: consumer behavior across e-channels and e-channel touchpoints.
    48. Wang, G., Zhang, X., Tang, S., Zheng, H., & Zhao, B. Y. (2016, May). Unsupervised clickstream clustering for user behavior analysis. In Proceedings of the 2016 CHI conference on human factors in computing systems (pp. 225-236).
    49. Wang, Y., Baker, R., & Paquette, L. (2017, March). Behavioral predictors of MOOC post-course development. In Proceedings of the Workshop on Integrated Learning Analytics of MOOC Post-Course Development.
    50. Wei, J., Shen, Z., Sundaresan, N., & Ma, K. L. (2012, October). Visual cluster exploration of web clickstream data. In 2012 IEEE conference on visual analytics science and technology (VAST) (pp. 3-12). IEEE.
    51. Williamson, O. E. (1975). Markets and hierarchies: analysis and antitrust implications: a study in the economics of internal organization. University of Illinois at Urbana-Champaign's Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship.
    52. Zavali, M., Lacka, E., & De Smedt, J. (2021). Shopping hard or hardly shopping: Revealing consumer segments using clickstream data. IEEE Transactions on Engineering Management.

    QR CODE