簡易檢索 / 詳目顯示

研究生: 鍾文
Chung, Wen
論文名稱: 圓形真空模組開發與動態特性分析以及其應用於微流體晶片兩段式精準傳輸
Development and Dynamic Characterizations of Circular-Type Vacuum Modules and Their Applications to On-Chip Two-Stage Precise Microfluidic Delivery
指導教授: 洪健中
Hong, Chien-Chong
口試委員: 陳治平
Chen, Chie-Pein
黃國柱
Hwang, Kuo-Chu
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 154
中文關鍵詞: 形狀記憶高分子微幫浦實驗室晶片微流體
外文關鍵詞: Shape Memory Polymer, Micropump, Lab-on-a-chip, Microfluidic
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去研究文獻發展了許多微流體驅動元件,但大多於實際應用時都有其限制以及缺點,包含體積龐大、需要額外管線連接、無法達到多段式操作、需要預先置入液體於晶片內、難以達到精準控制以及無法直接用於生醫晶片上之操控等瓶頸。在本論文研究中,以形狀記憶高分子發展之微小化真空模組,配合重新製作之圓形模具,達到體積微小化、極易脫膜、價格低廉、可大量製作以及重複製作等商業化需求,並且利用簡易方式貼合於生醫晶片上,配合已開發之PID (proportional-integral-derivative controller) 溫控加熱系統達到兩段操控、程式化之穩定加熱驅動、精準操控等等需求。本研究有效的改善前述微流體幫浦元件之限制,且利用程式化之方式達成穩定之加熱驅動,並且對於加熱時熱干擾、長時間存放、動態變形量等過去未探討之部分都已詳細探討並改善,藉此更進一步的發展更完善之微流體操控系統。
    本研究主要分為三部分,其一為對於過去發展真空模組進一步的分析改善,吸放熱測試中之變異達 3.69% 與 5.33% 。同時由過去之方型改善為圓型,藉此可減少 22.6% 之材料消耗,並且有更佳之變形容忍量,而且在更進一步的微小化圓型之真空模組,相較過去方型之面積縮小至 44.18% ,經網格分析後顯示此微小化後之圓型真空模組之變形移動量相較於同尺寸之方型真空模組減少 33.65% 。
    其二為對於真空模組之加熱變化動態型為探討,利用已開發完成之PID溫控加熱源,探討於定溫定時加熱下其厚度變化之狀況,以60°C加熱20秒開始變形回復。在長時間存放實驗中,最佳之存放條件為放置於冰箱內保存,於246 天內僅回復1%左右,相對於存放於有空調之室內約為 6.7% 。
    其三為實際應用於生醫晶片上之狀況,此處我們探討了三個不同加熱溫度下之回復狀況,得知高溫時的確會使加熱速度上升,但會影響晶片流道內之溫度,此處我們以紅外線攝影得知熱分布狀況,並且分析後得到使用兩段式加熱方式,分別為設定 100°C 加熱40秒後改為 80°C 再加熱 40秒 ,會有最佳之回復狀況,同時對於晶片內流體樣本之干擾最小,並且量測晶片內產生之動態負壓,兩段式驅動時第一段約為 -0.3 psi,而第二段約為 -0.7 psi,以及單一一個真空模組產生之負壓,約為-1.5 psi ~ -2 psi,後續利用此參數輸入至程式化加熱,以此方式探討多片晶片之流體驅動狀況,並且達成兩段式的精準微流體驅動。


    In the past research, lots of micropump devices were developed. However, most of them have its limit in actual applications, including large size, external tubing required, cannot achieve multi-stage manipulation, liquid preloading required, hard to achieve precise control, bad on-chip capability etc. In this thesis, the developed miniaturized vacuum module made of shape memory polymer, with our new mold, successfully achieve commercialized requirement like small size, easy demolding, low price, and be able to mass production. By easy-attaching process, and developed fully-integrated PID (proportional-integral-derivative) temperature control heating system, the vacuum modules also achieve two-stage, programmed heating system, and precise control. This research successfully improves the cons of previous micropump devices, and also has a deeper investigation in heat interference, long-term storage, and dynamic transformation of the developed vacuum module.
    This research could be divided into three parts. In the first part, we have a further investigation in the past vacuum module. In the exothermic and endothermic experiment the (C.V) Coefficient of Variation value between three batches of vacuum module are 3.69% and 5.33%. And by changing the shape from square to circular, the material consumption can be reduced by 22.6% and with a better transformation tolerance. And we further miniaturized the vacuum module, reducing the cross-section area to 44.18%, compared to past vacuum module. After the grid analysis, the moving point transformation ratio is 0% in circular shape and 33.65% in square shape.
    In the second part, we investigated the dynamic transformation of the developed vacuum module. With the developed PID temperature control heating system, we use laser displacement instrument to examine the thickness change in constant temperature heating. We got the conclusion that we need at least 20 second to actual trigger the transformation in thickness of vacuum module. And also in the repeating heating experiment, we need more heating interval than previous one to get further thickness change. In the long-term storage experiment, the best storage condition was in the refrigerator - only 1% change in 246 days was measured. In other hand, 6.7% change in the room with air-conditioner was still acceptable.
    In the third part, we investigate the condition in chip application. Here we test three different heating temperatures, and knowing in higher heating temperature, the transformation did speed up. However, this causes great effect in the temperature inside the chip microchannel. And by the IR photography analysis, we change our heating program to 2-Step heating, setting 100°C for the first 40 second and 80°C for the continuous 40 second, which has the best balance between transformation speed and temperature in the microchannel. Also the generated back pressure was also investigated. In single vacuum module, -1.5 psi ~ -2 psi was measured, and in the actual on-chip multi-stage experiment, -0.3 psi was measured in first stage, and -0.7 psi was measured in second stage. Furthermore, six actual chips were tested and successfully achieved two-stage precise microfluidic delivery.

    目錄 ix 圖目錄: xiii 表目錄: xxi 第一章 緒論 1 1.1 研究動機 1 1.2 近代微流體幫浦發展 3 1.2.1 傳統微流體幫浦 3 1.2.2 薄膜式微流體幫浦 8 1.2.3 可拋棄式微流體幫浦 14 1.3 近代流體精準控制發展 18 1.3.1 時間操控精準性 18 1.3.2 液體傳輸量精準性 19 1.3.3 液體傳輸位置精準性 21 1.4 微流體幫浦應用於定點照護檢驗系統與過去研究檢討 22 1.5 研究目的與方法 27 1.6 論文架構 28 第二章 真空模組應用於檢測系統之外型探討及微小化 30 2.1 真空模組應用於多功能微流體操控 30 2.1.1 形狀記憶高分子材料與結構 30 2.1.2 材料原理與作用機制 31 2.1.3 製程參數與真空模組模具 35 2.2 形狀記憶高分子材料之吸放熱曲線及熱容詳細探討 40 2.2.1 示差掃描熱分析儀(DSC)原理 40 2.2.2 示差掃描熱分析儀(DSC)量測結果 41 2.3 改良型圓柱狀真空模組驅動系統開發 44 2.3.1 圓柱狀真空模組實驗設計 44 2.3.2 圓柱狀真空模組壓印結果 46 2.4 微小化真空模組應用於生醫晶片精準流體驅動系統開發 48 2.4.1 微小化真空模組實驗設計 48 2.4.2 微小化真空模組實驗與探討 50 2.4.3 微小化真空模組熱傳模型分析 53 2.4.4 微小化真空模組大量製造製程測試 58 2.5 微小化真空模組不同形狀測試 62 2.5.1 微小化真空模組不同形狀測試規劃 62 2.5.2 微小化真空模組不同形狀測試結果 63 2.6 結論 66 第三章 真空模組之加熱變化動態行為探討 67 3.1 PID溫控加熱系統之實驗架構 67 3.1.1 PID控制器基本原理與系統架構 67 3.1.2 PID溫度控制加熱片動態溫度量測 72 3.2 真空模組變形回復位移量測及分析 74 3.2.1 動態回復位移量測 74 3.2.2 重複性開關加熱位移回復測試 78 3.2.3 長時間保存變形測試 80 3.3 PID溫控加熱系統之微流體操控系統測試 82 3.4 結論 84 第四章 微小化真空模組加熱變化探討以及其應用於生醫晶片上之行為探討 85 4.1 拋棄式生醫晶片簡介 85 4.2 微小化真空模組變形回復於不同加熱溫度之探討 91 4.3 微小化真空模組變形回復表面平整度探討 92 4.3.1 顯微鏡干涉儀(WYKO)工作原理與架構 93 4.3.2 顯微鏡干涉儀(WYKO)量測方式 95 4.3.3 顯微鏡干涉儀(WYKO)量測結果 96 4.4 微小化真空模組應用於生醫晶片上之熱分佈探討(IR) 99 4.4.1 紅外線攝影熱分佈實驗結果 100 4.4.2 以紅外線攝影熱分布結果討論加熱條件 108 4.5 微小化真空模組動態壓力量測 114 4.5.1 微小化真空模組壓力量測規劃 114 4.5.2 微小化真空模組壓力量測結果 116 4.6 微小化真空模組應用於生醫晶片之微流體精準操控 117 4.6.1 時間操控精準性探討 119 4.6.2 液體傳輸量精準性探討 126 4.6.3 液體傳輸位置精準性探討 128 4.7 結論 130 第五章 結論與未來研究建議 132 5.1 結論 132 5.2 本研究之學術貢獻點 135 5.3 未來研究建議 137 附錄 140 參考文獻 145 發表著作 150 作者簡介 152

    1. Bean, K.E., ANISOTROPIC ETCHING OF SILICON. Ieee Transactions on Electron Devices, 1978. 25(10): p. 1185-1193.
    2. Kovacs, G., Micromachine Transducers Sourcebook, ed. P. Alto. 1998: CA: WCB/McGraw-Hill.
    3. Neukermans, A. and R. Ramaswami, MEMS technology for optical networking applications. Ieee Communications Magazine, 2001. 39(1): p. 62-69.
    4. Yao, J.J., RF MEMS from a device perspective. Journal of Micromechanics and Microengineering, 2000. 10(4): p. R9-R38.
    5. Pattekar, A.V. and M.V. Kothare, A microreactor for hydrogen production in micro fuel cell applications. Journal of Microelectromechanical Systems, 2004. 13(1): p. 7-18.
    6. Liu, C., Recent developments in polymer MEMS. Advanced Materials, 2007. 19(22): p. 3783-3790.
    7. Vilkner, T., D. Janasek, and A. Manz, Micro total analysis systems. Recent developments. Analytical Chemistry, 2004. 76(12): p. 3373-3385.
    8. Ahn, C.H., et al., Disposable Smart lab on a chip for point-of-care clinical diagnostics. Proceedings of the Ieee, 2004. 92(1): p. 154-173.
    9. Auroux, P.A., et al., Micro total analysis systems. 2. Analytical standard operations and applications. Analytical Chemistry, 2002. 74(12): p. 2637-2652.
    10. Amirouche, F., Y. Zhou, and T. Johnson, Current micropump technologies and their biomedical applications. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2009. 15(5): p. 647-666.
    11. Smits, J.G., Piezo-electrical micropump, in EP Patent1985: Netherlands.
    12. Nguyen, N.T., X.Y. Huang, and T.K. Chuan, MEMS-micropumps: A review. Journal of Fluids Engineering-Transactions of the Asme, 2002. 124(2): p. 384-392.
    13. Iverson, B.D. and S.V. Garimella, Recent advances in microscale pumping technologies: a review and evaluation. Microfluidics and Nanofluidics, 2008. 5(2): p. 145-174.
    14. Smits, J.G., PIEZOELECTRIC MICROPUMP WITH 3 VALVES WORKING PERISTALTICALLY. Sensors and Actuators a-Physical, 1990. 21(1-3): p. 203-206.
    15. Tsai, J.H. and L.W. Lin, A thermal-bubble-actuated micronozzle-diffuser pump. Journal of Microelectromechanical Systems, 2002. 11(6): p. 665-671.
    16. Zeng, S.L., et al., Fabrication and characterization of electroosmotic micropumps. Sensors and Actuators B-Chemical, 2001. 79(2-3): p. 107-114.
    17. Su, R.G., et al., Capillary electrophoresis microchip coupled with on-line chemiluminescence detection. Analytica Chimica Acta, 2004. 508(1): p. 11-15.
    18. Nguyen, N.T., et al., Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps. Sensors and Actuators a-Physical, 2000. 79(2): p. 115-121.
    19. Suzuki, H. and R. Yoneyama, Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sensors and Actuators B-Chemical, 2003. 96(1-2): p. 38-45.
    20. Wei, Y., et al., A novel fabrication process to release a valveless micropump on a flexible substrate. 2013.
    21. Koch, C., V. Remcho, and J. Ingle, PDMS and tubing-based peristaltic micropumps with direct actuation. Sensors and Actuators B-Chemical, 2009. 135(2): p. 664-670.
    22. Choi, J.W., et al., An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab on a Chip, 2002. 2(1): p. 27-30.
    23. 蔡承翰, 拋棄式真空模組開發及其應用於手持式多功能微流體驅動系統. 2013.
    24. Churski, K., J. Michalski, and P. Garstecki, Droplet on demand system utilizing a computer controlled microvalve integrated into a stiff polymeric microfluidic device. Lab on a Chip, 2010. 10(4): p. 512-518.
    25. Cantwell, M.L., F. Amirouche, and J. Citerin, Low-cost high performance disposable micropump for fluidic delivery applications. Sensors and Actuators a-Physical, 2011. 168(1): p. 187-194.
    26. Zhang, W., et al., PMMA/PDMS valves and pumps for disposable microfluidics. Lab on a Chip, 2009. 9(21): p. 3088-3094.
    27. Nakahara, K., et al., A PERISTALTIC MICROPUMP USING TRAVELING WAVES OF POLYMER MEMBRANES DRIVEN BY A SINGLE ACTUATOR, in 2011 Ieee 24th International Conference on Micro Electro Mechanical Systems. 2011. p. 1083-1086.
    28. Choe, Y. and E.S. Kim, Valveless micropump driven by acoustic streaming. Journal of Micromechanics and Microengineering, 2013. 23(4): p. 045005.
    29. Ali Besharatian, K.K., Rebecca L. Peterson, Luis P. Bernal, and Khalil Najafi, A SCALABLE, MODULAR, MULTI-STAGE, PERISTALTIC, ELECTROSTATIC GAS MICRO-PUMP, in MEMS2012: Paris, FRANCE. p. 1001-1004.
    30. Shen, M., L. Dovat, and M.A.M. Gijs, Magnetic active-valve micropump actuated by a rotating magnetic assembly. Sensors and Actuators B: Chemical, 2011. 154(1): p. 52-58.
    31. Karmozdi, M., A. Salari, and M.B. Shafii, Experimental Study of a Novel Magneto Mercury Reciprocating (MMR) Micropump, Fabrication & Operation. Sensors and Actuators A: Physical, 2013.
    32. Ren, H., S. Xu, and S.-T. Wu, Liquid crystal pump. Lab on a Chip, 2013. 13(1): p. 100-105.
    33. Sassa, F., et al., Miniaturized shape memory alloy pumps for stepping microfluidic transport. Sensors and Actuators B: Chemical, 2012. 165(1): p. 157-163.
    34. Iwai, K., et al., FINGER-POWERED, PRESSURE-DRIVEN MICROFLUIDIC PUMP, in 2011 Ieee 24th International Conference on Micro Electro Mechanical Systems. 2011. p. 1131-1134.
    35. Zimmermann, M., et al., Capillary pumps for autonomous capillary systems. Lab on a Chip, 2007. 7(1): p. 119-125.
    36. Martinez, A.W., et al., FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab on a Chip, 2008. 8(12): p. 2146-2150.
    37. Li, J.-m., et al., A bio-inspired micropump based on stomatal transpiration in plants. Lab on a Chip, 2011. 11(16): p. 2785-2789.
    38. Al Halhouli, A., et al., Development and testing of a synchronous micropump based on electroplated coils and microfabricated polymer magnets. Journal of Micromechanics and Microengineering, 2012. 22(6): p. 065027.
    39. Kojima, K., M. Yokokawa, and H. Suzuki, AUTONOMOUS MICROFLUIDIC CONTROL BY MIXED POTENTIALS GENERATED ON COMPOSITE METAL ELECTRODES.
    40. Ramsay, J., X. Wang, and R. Flanagan, A functional data analysis of the pinch force of human fingers. Applied Statistics, 1995: p. 17-30.
    41. Elvira, K.S., R. Leatherbarrow, and J. Edel, Droplet dispensing in digital microfluidic devices: Assessment of long-term reproducibility. Biomicrofluidics, 2012. 6: p. 022003.
    42. Kost, G.J., Principles & practice of point-of-care testing. Vol. 2. 2002: Lippincott Williams & Wilkins.
    43. Esquivel, J.P., et al., Fuel cell-powered microfluidic platform for lab-on-a-chip applications. Lab on a Chip, 2012. 12(1): p. 74-79.
    44. Hong, C.-C. and J.-C. Chen, Pre-programmable polymer transformers as on-chip microfluidic vacuum generators. Microfluidics and Nanofluidics, 2011. 11(4): p. 385-393.
    45. 陳睿鈞, 智慧型高分子晶片結構開發及其應用於微流體動力模組系統. 2010.
    46. Leng, J., et al., Shape-memory polymers and their composites: Stimulus methods and applications. Progress in Materials Science, 2011. 56(7): p. 1077-1135.
    47. Gunes, I.S. and S.C. Jana, Shape memory polymers and their nanocomposites: A review of science and technology of new multifunctional materials. Journal of Nanoscience and Nanotechnology, 2008. 8(4): p. 1616-1637.
    48. Ratna, D. and J. Karger-Kocsis, Recent advances in shape memory polymers and composites: a review. Journal of Materials Science, 2008. 43(1): p. 254-269.
    49. Ji, F., et al., Smart polymer fibers with shape memory effect. Smart Materials & Structures, 2006. 15(6): p. 1547-1554.
    50. Schmidt, A.M., Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromolecular Rapid Communications, 2006. 27(14): p. 1168-1172.
    51. Cho, J.W., et al., Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromolecular Rapid Communications, 2005. 26(5): p. 412-416.
    52. Lendlein, A., et al., Light-induced shape-memory polymers. Nature, 2005. 434(7035): p. 879-882.
    53. Yang, B., et al., Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer, 2006. 47(4): p. 1348-1356.
    54. Lendlein, A. and R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 2002. 296(5573): p. 1673-1676.
    55. Hampikian, J.M., et al., Mechanical and radiographic properties of a shape memory polymer composite for intracranial aneurysm coils. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2006. 26(8): p. 1373-1379.
    56. Wache, H.M., et al., Development of a polymer stent with shape memory effect as a drug delivery system. Journal of Materials Science-Materials in Medicine, 2003. 14(2): p. 109-112.
    57. Small, W., et al., Laser-activated shape memory polymer intravascular thrombectomy device. Optics Express, 2005. 13(20): p. 8204-8213.
    58. Yakacki, C.M., et al., Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials, 2007. 28(14): p. 2255.
    59. Karp, J.M. and R. Langer, Development and therapeutic applications of advanced biomaterials. Current Opinion in Biotechnology, 2007. 18(5): p. 454-459.
    60. Chen, J.-C., Development of Smart Polymer Chip Structures and Their Application to Microfluidic Power-Modular Systems. 2010.
    61. Liu, C., H. Qin, and P.T. Mather, Review of progress in shape-memory polymers. Journal of Materials Chemistry, 2007. 17(16): p. 1543-1558.
    62. A. E. Torma, a.D.R., Biodesulfurization of rubber materials. Bioprocess Engineering Symposium, 1990. 16: p. 81-87.
    63. Tazuke, S. and S. Okamura, PHOTO AND THERMAL POLYMERIZATION SENSITIZED BY DONOR-ACCEPTOR INTERACTION .I. N-VINYL-CARBAZOLE-ACRYLONITRILE AND RELATED SYSTEMS. Journal of Polymer Science Part a-1-Polymer Chemistry, 1968. 6(10PA): p. 2907-&.
    64. Kelch, A.L.a.S., Shape-Memory Polymers. Vol. 41. 2002: Angewandte Chemie.
    65. G.F. Franklin , J.D.P.a.M.W., Digital Control of Dynamic System. 1998: Addision Wesley, 3th edition.
    66. Stern, E., et al., Label-free biomarker detection from whole blood. Nature nanotechnology, 2009. 5(2): p. 138-142.
    67. Fang, X., et al., A portable and integrated nucleic acid amplification microfluidic chip for identifying bacteria. Lab on a Chip, 2012. 12(8): p. 1495-1499.
    68. Chia, B.T., H.H. Liao, and Y.J. Yang, A novel thermo-pneumatic peristaltic micropump with low temperature elevation on working fluid. Sensors and Actuators A: Physical, 2011. 165(1): p. 86-93.
    69. 李東哲, 溫度對 DWDM 濾光片光學穩定性研究. 2005.
    70. Li, L., et al., A plug-based microfluidic system for dispensing lipidic cubic phase (LCP) material validated by crystallizing membrane proteins in lipidic mesophases. Microfluidics and nanofluidics, 2010. 8(6): p. 789-798.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE