研究生: |
陳仲威 Chen, Chung-Wei |
---|---|
論文名稱: |
溝槽毛細平板熱管之可視化觀察與蒸發熱阻量測 Visualization and Evaporation Resistance Measurement for Groove-Wick Evaporator of Operating Flat-Plate Heat Pipes |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 熱管 、可視化 、溝槽毛細 、蒸發熱阻 |
外文關鍵詞: | Heat pipe, Visualization, Groove-wick, Evaporation Resistance |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用可視化之平板熱管,研究具平行溝槽毛細結構之平板
熱管蒸發區在操作中發生的現象。溝槽截面為U 形,寬0.25mm、深
0.16mm,採用的工作流體分別有水、甲醇、或丙酮。另亦包括於溝
槽蒸發區燒結不規則細銅粉的複合式毛細結構。可視化觀察指出,除
在低加熱量外,各溝槽中之水膜會分別出現一聚光性端部,各溝槽之
水膜的動態行為彼此獨立,隨加熱量增加時,水膜端部逐漸退離加熱
區,熱阻會隨此乾化過程而上升。然而,本研究之溝槽毛細之最低蒸
發熱阻量測值高於本實驗室先前對多層銅網或燒結銅粉毛細測得之
最低蒸發熱阻值,且實驗重複性不及另兩種毛細之平板熱管。當採用
複合式毛細結構時,熱管操作性能較溝槽毛細結構時穩定,且具較高
之最大加熱量。此外,在三種不同工作流體下均未觀察到核沸騰現象。
[1] G.P. Peterson, An Introduction to Heat Pipes, Modeling, Testing, and Applications, Wiley, 1994.
[2] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill,1976.
[3] R. Hopkins, A. Faghri, D. Khrustalev, Flat Miniature Heat Pipes With Micro Capillary Grooves, J. Heat Transfer 121 (1999), 102-109
[4] K. H. Do, S. J. Kim, S. V. Garimella, A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick, Int. J. Heat Mass Transfer 51 (2008) 4637–4650
[5] S. J. Kim, J. K. Seo, K. H. Do,Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure, Int. J. Heat Mass Transfer 46 (2003) 2051 - 2063
[6] S. Anand, S. De, S. Dasgupta, Experimental and theoretical study of axial dryout point for evaporation from V-shaped microgrooves, Int. J. Heat Mass Transfer 45 (2002) 1535–1543
[7] Y. Tang, D. Deng, L. Lu, M. Pan, Q. Wang, Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera, Experimental Thermal and Fluid Science 34 (2010) 190–196.
[8] S.-W. Chen, J.-C. Hsieh, C.-T. Chou, H.-H. Lin, S.-C. Shen, M.-J. Tsai, Experimental investigation and visualization on capillary and boiling limits of micro-grooves made by different processes, Sensors and Actuators A 139 (2007) 78–87.
[9] J.-H. Liou , C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498-1506.
[10] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 3792-3798.
[11] S. Lips, F. Lefèvre, J. Bonjour, Nucleate boiling in a flat grooved heat pipe,Int. J. Thermal Sciences 48 (2009) 1273–1278.
[12] F.W. Holm, S.P. Goplen, Heat transfer in the meniscus thin film transition region, ASME J. Heat Transfer 101 (1979) 543 - 547.
[13] G.R. Stroes, I. Catton, An experimental study of the capillary performance of triangular versus sinusoidal channels, ASME J. Heat Transfer 119 (1997) 851–853.
[14] R.H. Nilson, S.W. Tchikanda, S.K. Griffiths, M.J. Martinez, Steady evaporating flow in rectangular microchannels, Int. J. Heat Mass Transfer 49 (2006) 1603–1618.
[15] A.J. Jiao, H.B. Ma, J.K. Critser, Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves,Int. J. Heat Mass Transfer 50 (2007) 2905–2911.
[16] H. Wang, S.V. Garimella , J.Y. Murthy, Characteristics of an evaporating thin film in a microchannel,Int. J. Heat Mass Transfer 50 (2007) 3933–3942.
[17] H.K. Dhavaleswarapu, S.V. Garimella, J.Y. Murthy, Microscale Temperature Measurements Near the Triple Line of an Evaporating Thin Liquid Film, ASME J. Heat Transfer 131 (2009) 061501
[18] 劉睿凱,王肇浩,張長生,白先聲,複合式熱管開發應用研究,熱管理產業通訊2008年第9期.