研究生: |
張秀晶 Siu Cin Tjong |
---|---|
論文名稱: |
硫化醣鍵結物與蛇毒心臟毒蛋白的結合模式 Sulfoglycoconjugates Interact with Cobra Cardiotoxin |
指導教授: |
吳文桂
Wen-Guey Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 187 |
中文關鍵詞: | 硫化糖鍵結物 、蛇毒心臟毒蛋白 、硫肝脂 、糖肝素 、脂筏 |
外文關鍵詞: | sulfoglycoconjugate, cobra cardiotoxin, sulfatide, heparin, lipid raft |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鞘糖脂在細胞膜上的量雖少但他卻扮演一些重要的功能如脂質膜運輸及細胞訊號傳遞等因此他是細胞不可缺乏的成分。糖脂頭部的糖化則是非常多樣化,無論是頭部的大小、成分及其脂肪酸的長度。擁有複雜且較大的頭部的GM1,他的頭部必定比磷脂的膽鹼還要突出因而有比較可能性跟蛋白質做接觸。然而對於有一些糖脂如半乳糖神經酸胺、葡萄糖神經酸胺、及硫肝脂,其頭部的大小則是小於或等於磷脂的膽鹼。因此蛋白質是如何由多數磷脂質形成的膜當中辨認出糖脂還待理清。本論文利用固態及液態核磁共振實驗來證明硫肝脂的頭部的確比磷脂的膽鹼突出。我們成功的辨認出硫肝脂的水脂介面上的氫與十二烷基磷脂微胞的膽鹼上的氫之間的分子間的NOE。此類的分子間NOE也可以在其他不同組合的微胞如SGC/LPC及GM1/DPC觀察到。雖然我們可以在微胞小球觀察到此現象但為胞的弧度比正常的細胞膜大,我們因此運用固態HRMAS實驗來觀察SGC/POPC在有或無膽固醇的多水多層膜,結果也顯示在50~600ms的時間內也有相同的分子間NOE。除此之外也依據由X-光繞射得到的SGC/POPC多層膜的膜厚度,我們推斷SGC有時會比磷脂還突出因而方便蛋白來辨認。
台灣眼鏡蛇中的主要心臟毒素CTX A3是beta摺板蛋白對心肌細胞膜的硫肝脂具有專一性,在脂質膜上打洞、造成膜外漏及內吞等作用。我們針對含有10%硫肝脂的磷脂質囊泡做螢光實驗,結果顯示硫肝脂會使CTX A3凝聚而形成30 Å 及10-2 秒的短暫的孔洞。H9C2細胞膜的膜片鉗電生理實驗不異而同的給相同的結果。接著我們進一步以核磁共振搭配上分子模擬方式研究CTXA3與含有硫肝脂微胞小球的週邊結合模式而進一步與X-光晶體在類式脂質膜環境下所解出的CTX A3□硫肝脂複合體做比較。核磁共振實驗結果顯示硫肝脂的頭部結構會受到CTX A3的結合而改變,其結合前後的結構會由彎曲(-sc/ap)變成伸展(sc/ap)結構。比較X-光繞射的雙合體與核磁共振的單體體結構,我們發現硫肝脂的總體方向必須有所改變才能夠由CTX A3單體進一步形成CTX A3雙合體。由於從頭到尾CTXA3摺疊方式並沒有大改變,我們提出下列的說法:埋在磷脂膜當中的硫肝脂可以改變其局部和全體的結構來達到CTX A3雙體化同時也改變了CTX A3與膜結合方位來促進CTX A3形成短暫孔洞及細胞內吞作用。
帶正電的三指環心臟毒素蛋白(CTX)已證實可以與各種不同的帶負電的小分子作用例如蛇毒中的檸檬酸鹽,糖胺素,硫化鞘醣脂,及核三磷酸。CTXA3與這些小分子作用後所引起的生化反應也大不相同包含毒素雙體化,保留在細胞表面,在膜上形成孔洞,細胞內吞以及阻礙激酶酵素反應。之前研究顯示同源性心臟毒素之間會針對不同負電小分子提供不同的結合位子也引起不同效應。在本論文我們利用核磁共振技術來研究無機磷酸根、三磷酸脫氧腺苷、由肝素中取得的四糖結合到Naja atra的CTXA1。CTX A1是新型心臟毒素會使骨骼肌的壞死。我們將在本論文裡證明CTX利用多變通的側鏈提共上述的小分子相同的結合位子。不同鏈長的肝素在與CTX A3單一結合區作用時也是運用這種多變通的結合模式。我們的結果顯示硫酸肝素與蛋白質的相互作用是靠整體的電荷聚集而並非靠他們的細部結構。在此我們也顯示說心臟毒素同源性蛋白的結構雖有四對雙硫鍵穩定住,靠近結合位子的非保守胺基酸卻可以針對小分子結合位子做細部微調來影響其結合及雙體化的能力。
Glycosphingolipids are minor but essential components of cell membrane that exhibit important biological function in membrane trafficking and cell signaling. These glycolipids however are highly diverse in their carbohydrate head group size, composition and their ceramide chain length. For glycolipids with big and complex head group such as GM1, their head group is far more extended out from choline head of PC, providing an efficient contact with proteins. However for some glycolipids such GalCer, GluCer, and sulfatide (SGC), their head group size is of similar size or even smaller than choline of PC (major component of cell membrane). How proteins can efficiently interact with these glycolipids remains to be illustrated. By using solution and solid state NMR, herein we provide evidence suggesting a protruding state of sulfatide head group. We identified the intermolecular NOEs between protons at interface region of SGC and proton of choline head of DPC micelles. Similar intermolecular NOEs also evidences for SGC/LPC and GM1/DPC micelle. To rule out possibilities that these glycolipids protruding out from PC micelle due to high membrane curvature of micelles, we further perform HRMAS experiments on fully hydrated SGC/POPC with or without cholesterol at multilamellar condition, showing that at mixing time of 50ms ~ 600ms, similar intermolecular NOEs can also be observed. Along with X-ray diffraction data that gives the membrane thickness information of SGC/POPC multilamellar, we conclude that SGC may dynamically protrude out from PC to provide an efficient mechanism for protein recognition.
The major cardiotoxin from Taiwan cobra (CTX A3) is a pore forming □-sheet polypeptide that requires sulfatide (sulfogalactosylceramide, SGC) on the plasma membrane of cardiomyocytes for the CTX-induced membrane leakage and cell internalization. Herein, we demonstrate by fluorescence spectroscopic studies that sulfatides induce CTX A3 oligomerization in sulfatide containing phosphatidylcholine (PC) vesicles to form transient pore with pore size and lifetime in the range of about 30 Å and 10-2 sec, respectively. These values are consistent with the CTX A3-induced conductance and mean lifetime determined previously by using patch-clamp electrophysiological experiment on the plasma membrane of H9C2 cells. We also derived the peripheral binding structural model of CTX A3□sulfatide complex in sulfatide containing PC micelles by NMR and molecular docking method and compare with other CTX A3□sulfatide complex structure determined previously by X-ray in membrane-like environment. The NMR results indicate that sulfatide head group conformation changes from a bent shovel (-sc/ap) to an extended (sc/ap) conformation upon initial binding of CTX A3. An additional global reorientation of sulfatide molecule is also needed for CTX A3 dimer formation as inferred by the difference between the X-ray and NMR complex structure. Since the overall folding of CTX A3 molecules remain the same, sulfatide in phospholipids bilayer is proposed to play an active role by involving its local and global conformational changes to promote both the oligomerization and reorientation of CTX A3 molecule for its transient pore formation and cell internalization.
Cobra cardiotoxins (CTXs) are three-fingered polypeptides with positively charged domains that have been shown to bind to anionic ligands of snake venom citrate, glycosaminoglycans, sulfoglycosphingolipid and nucleotide triphosphate with various biochemical effects including toxin dimerization, cell surface retention, membrane pore formation, cell internalization and blocking of enzymatic activities of kinase and ATPase. The reported anionic binding sites, however, are found to be different among different CTX homologues for potentially different CTX activities. Herein, by NMR studies of the binding of inorganic phosphate, dATP (stable form of ATP), and heparin-derived tetrasaccharide to Naja atra CTX A1, a novel CTX molecule exhibiting in vivo necrotic activity on skeletal muscle; we demonstrate that diverse ligands binding to CTXs could also occur at a single protein site with flexible side chain interactions. The flexibility of such an interaction is also illustrated by the available heparin□CTX A3 complex structures with different heparin chain lengths binding at the same site. Our results provide a likely structural explanation on how the interaction between heparan sufate and proteins depends more on the overall charge cluster organization rather than on their fine structures. We also suggest that the ligand binding site of CTX homologues can be fine-tuned by nonconserved residues near the binding pocket because of their flexible side chain interaction and dimerization ability, even for the rigid CTX molecules tightened by four disulfide bonds.
References
Chapter 1 part A: Cardiotoxins of snake venoms
1. Lo, T. B., Chen, Y. H., and Lee, C. Y. (1966) J. Chinese Chem. Soc. 13, 165□177.
2. Lee, C. Y., Lin, J. S., and Wei, J. W. (1970) in 2nd Intern. Symp. Animal and Plant Toxins, pp 307□318, Tel-Aviv, Israel.
3. Chen, Y. H., Hu, C. T., and Yang, J. T. (1984) Biochem. Int. 8, 329□338.
4. Chaim-Matyas, A., and Ovadia, M. (1987) Life Sci. 40, 1601□1607.
5. Borkow, G.., Chaim-Matyas, A., and Ovadia, M. (1992) FEMS Microbiol. Immunol. 5, 139□145.
6. Lee, C. Y., Chang, C. C., Chiu, T. H., Chiu, P. J. S., Tseng, T. C., and Lee, S. Y. (1968) Arch. Pharmak. Exp. Path. 259, 360□374.
7. Harvey, A. L., and Hayashi, K. (1987) Toxicon 25, 681□684.
8. Sun, J. J., and Walker, M. J. A. (1986) Toxicon 24, 233□245.
9. Wu, W. (1997) J. Toxicol. 16, 115□134.
10. Endo, T., and Tamiya, N. (1991) in Snake Toxins, pp165□222, Pergamon Press, New Yorks.
11. Lambeau, G., and Lazdunski, M. (1999) Trends Pharmacol. Sci. 20, 162□170.
12. Boffa, M. C., Boffa, G. A., and Josso, F. (1969) C R Acad. Sci. Hebd. Seances. Acad. Sci. D. 269, 2036□2039.
13. Jaing, M. S., Fletcher, J. E., and Smith, L. A. (1989) Toxicon 27, 247□257.
14. Kini, R. M., Haar, N. C., and Evans, H. J. (1988) Biochem. Biophys. Res. Commun. 150, 1012□1016.
15. Warrell, D. A., Greenwood, B. M., Davidson, N. M., Ormerod, L. D., and Prentice, C. R. (1976) Q. J. Med. 45, 1□22.
16. Takechi, M., Tanaka, Y., and Hayashi, K. (1986) FEBS Lett. 205, 143□146.
17. Wang, C. H., and Wu, W. G.. (2005) FEBS Lett. 579, 3169□3174.
18. Bougis, P. E., Khelif, A., and Rochat, H. (1989) Biochemistry 28, 3037□3043.
19. Raynor, R. L., Zheng, B., and Kuo, J. F. (1991) J. Biol. Chem. 266, 2753□2758.
20. Wu, P. L., Lee, S. C., Chuang, C. C., Mori, S., Akakura, N., Wu, W. G., and Takada, Y. (2006) J. Biol. Chem. 281, 7937□7945.
21. Wang, C. H., Liu, J. H., Lee, S. C., Hsiao, C. D., and Wu, W. G. (2006) J. Biol. Chem. 281, 656□667.
22. Patel, H. V., Vyas, A. A., Vyas, K. A., Liu, Y. S., Chiang, C. M., Chi, L. M., and Wu, W. (1997) J. Biol. Chem. 272, 1484□1492.
23. Vyas, K. A., Patel, H. V., Vyas, A. A., and Wu W. (1998) Biochemistry 37, 4527□4534.
24. Jayaraman, G., Krishnaswamy, T., Kumar, S., and Yu, C. (1999) J. Biol. Chem. 274, 17869□17875.
25. Wu, W. (1998) Trends. Cardiovas. Med. 8, 270□278.
26. Chien, K. Y., Huang, W. N., Jean, J. H., and Wu, W. (1991) J. Biol. Chem. 266, 3252□3259.
27. Chen, T. S., Chung, F. Y., Tjong, S. C., Goh, K. S., Huang, W. N., Chien, K. Y., Wu, P. L., Lin, H. C., Chen, C. J., and Wu, W. G. (2005) Biochemistry 44, 7414□7426.
28. Chien, K. Y., Chiang, C. M., Hseu, Y. C., Vyas, A. A., Rule, G. S. and Wu, W. (1994) J. Biol. Chem. 269, 14473□14483.
29. Efremov, R. G., Volynsky, P. E., Nolde, D. E., Dubovskii, P. V., and Arseniev, A. S. (2002) Biophys. J. 83, 144□153.
30. Sue, S. C., Jarrell, H. C., Brisson, J. R., and Wu, W. (2001) Biochemistry 40, 12782□12794.
31. Bilwes, A., Rees, B., Moras, D., Menez, R., and Menez, A. (1994) J. Mol. Biol. 239, 122□136.
32. Sun, Y. J., Wu, W., Chiang, C. M., Hsin, A.Y., and Hsiao, C. D.(1997) Biochemistry 36, 2403□2413.
33. Huang, W. N., Sue, S. C., Wang, D. S., Wu, P. L., and Wu W. (2003) Biochemistry 42, 7457□7466.
34. Forouhar, F., Huang, W. N., Lin, J. H., Chien, K. Y. Wu, W., and Hsiao, C.D. (2003) J. Biol. Chem. 278, 21980□21988.
35. Bratosin, D., Mazurier, J., Tissier, J. P., Estaquier, J., Huart, J. J., Ameisen, J. C., Aminoff, D., and Montreuil, J. (1998) Biochimie 80, 173□195.
36. Vyas, A. A., Pan, J. J., Patel, H. V., Vyas, K. A., Chiang, C. M., Sheu, Y. C., Hwang, J. K., and Wu, W. (1997) J. Biol. Chem. 272, 9661□9670.
37. Lee, S. C. (2004) Binding specificity and binding mode of cobra cardiotoxin-heparin interaction and their biological implication, Ph. D. thesis, National Tsing Hua University, Hsin Chu, Taiwan.
38. Sue, S. C., Brisson, J. R., Chang, S. C., Huang, W. N., Lee, S. C., Jarrell, H. C., and Wu, W. (2001) Biochemistry 40, 10436□10446.
39. Kuschert, G. S. V., Coulin, F., Power, C. A., Proudfoot, A. E. I., Hubbard, R. E., Hoogewerf, A. J., and Well, T. N. C. (1999) Biochemistry 38, 12959□12968.
40. Goger, B., Halden, Y., Rek, A., Mösl, R., Pye, D., Gallagher, J. T., and Kungl, A. J. (2002) Biochemistry 41, 1640□1646.
41. Vivès, R.R., Sadir, R., Imberty, A., Rencurosi, A., and Lortat-Jacob, H. (2002) Biochemistry 41, 14779□14789.
42. Proudfoot, A. E., Handel, T. M., Johnson, Z., Lau, E. K., LiWang, P., Clark-Lewis, I., Borlat, F., Wells, T. N., and Kosco-Vilbois, M. H. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 1885□1890.
43. Grognet, J. M., Menez, A., Drake, A., Hayashi, K., Morrison, I. E., and Hider, R. C. (1988) Eur. J. Biochem. 172, 383□388.
44. O’Connell, J. F., Bougis, P. E., and Wu¨thrich, K. (1993) Eur. J. Biochem. 213, 891□900.
45. Otting, G., Marchot, P., Bougis, P. E., Rochat, H., and Wuthrich, K. (1987) Eur. J. Biochem. 168, 603□607.
46. Gilquin, B., Roumestand, C., Zinn-Justin, S., Menez, A., and Toma, F. (1993) Biopolymers 33, 1659□1675.
47. Dementieva, D. V., Bocharov, E. V., and Arseniev, A. S. (1999) Eur. J. Biochem. 263, 152□162.
48. Jahnke, W., Mierke, D. F., Beress, L., and Kessler, H. (1994) J. Mol. Biol. 240, 445□458.
49. Bhaskaran, R., Huang, C. C., Tsai, Y. C., Jayaraman, G., Chang, D. K., and Yu, C. (1994) J. Biol. Chem. 269, 23500□23508.
50. Jang, J. Y., Krishnaswamy, T., Kumar, S., Jayaraman, G., Yang, P. W., and Yu, C. (1997) Biochemistry 36, 14635□14641.
51. Jayaraman, G., Kumar, T. K., Tsai, C. C., Srisailam, S., Chou, S. H., Ho, C. L., and Yu, C. (2000) Protein Sci. 9, 637□646.
52. Rees, B., Bilwes, A., Samama, J. P., and Moras, D. (1990) J. Mol. Biol. 214, 281□297.
53. Singhal, A. K., Chien, K. Y., Wu, W., and Rule, G. S. (1993) Biochemistry 32, 8036□8044.
54. Grishina, I. B., and Woody, R. W. (1994) Faraday Discuss. 99, 245□262.
55. Chakrabartty, A., Kortemme, T., Padmanabhan, S., and Baldwin, R. L. (1993) Biochemistry 32, 5560□5565.
56. Schubert, M., Labudde, D., Oschkinat, H., and Schmieder, P. (2002) J. Biomol. NMR 24, 149□154.
Chapter 1 part B: Structure and heterogeneity of sulfoglyco- conjugates
1. Murray, R. K. (2003) Glycoscience and Nutrition 4, 1□10.
2. Roseman, S. (2001) J. Biol. Chem. 276, 41527□41542.
3. Lever, R., and Page, C. P. (2002) Nature Rev. Drug Disc. 1, 140□148.
4. Turnbull, J., Powell, A., and Guimond, S. (2001) Trends Cell Biol. 11, 75□82.
5. Belting, M. (2003) Trends Biochem. Sci. 28, 145□151.
6. Gallagher, J. T. (2001) J. Clin. Invest. 108, 357□361.
7. Nakato, H., and Kimata, K. (2002) Biochim. Biophys. Acta 1573, 312□318.
8. Pellegrini, L. (2001) Curr. Opin. Struct. Biol. 11, 629□634.
9. Faham, S. Linhardt, R. J., and Rees, D. C. (1998) Curr. Opin. Struct. Biol. 8, 578□586.
10. Hileman, R. E., Fromm, J. R., Weiler, J. M., and Linhardt, R. J. (1998) Bioessays 20, 156□167
11. Spillmann, D., and Lindahl, U. (1994) Curr. Opin. Struct. Biol. 4, 677□682.
12. Lindahl, U. (2000) Glycoconjugate J. 17, 597□605.
13. Mulloy, B., and Linhardt, R. J. (2001) Curr. Opin. Struct. Biol. 11, 623□628.
14. Linhardt, R. J. (2003) J. Med. Chem. 46, 2551□2564.
15. Esko, J. D., and Selleck, S. B. (2002) Annu. Rev. Biochem. 71, 435□471.
16. Capila, I., and Linhardt, R. J. (2002) Angew. Chem. Int. Ed. 41, 390□412.
17. Prydz, K., and Dalen, K. T. (2000) J. Cell. Sci. 113, 193□205.
18. Mulloy, B., Forster, M. J., Jones, C., and Davie, D. B. (1993) Biochem. J. 293, 849□858.
19. Merchant, Z. M., Kim, Y. S., Rice, K. G., and Linhardt, R. J. (1985) Biochem. J. 229, 369□377.
20. Ragazzi, M., Ferro, D. R., Provasoli, A., Pumilia, P., Cassinari, A., Torri, G., Guerrini, M., Casu, B., Nader, H. B., and Dietrich, C. P. (1993) J. Carbohydr. Chem. 12, 523□535.
21. Ferro, D. R., Provasolli, A., Ragazzi, M., Torri, G., Casu, B., Gatti, G., Jacquinet, J. C.,Sinay, P., Petitou, M., and Choay, J. (1986) J. Am. Chem. Soc. 108, 6773□6778.
22. Desai, U. R., Wang, H. M., Kelly, T. R., and Linhardt, R. J. (1993) Carbohydr. Res. 241, 249□259.
23. Ferro, D. R., Provasolli, A., Ragazzi, M., Casu, B., Torri, G., Bossennec, V., Perty, B., Sinay, P., Petitou, M., and Choay, J. (1990) Carbohydr. Res. 195, 157□167.
24. Scott, J. E., Heatley, F., and Wood, B. (1995) Biochemistry 34, 15467□15474.
25. Ferro, D. R., Gajdoš, J., Ragazzi, M., Ungarelli, F., and Piani, S. (1995) Carbohydr. Res. 277, 25□38.
26. Ernst, S., Langer, R., Cooney, C. L., and Sasisekharan, R. (1995) Crit. Rev. Biochem. Mol. Biol. 30, 387□444.
27. Casu, B., Petitou, M., Provasoli, M., and Sinaÿ, P. (1988) Trends Biochem. Sci. 13, 221□225.
28. Sanderson, P. N., Huckerby, T. N., and Nieduszynski, I. A. (1987) Biochem. J. 243, 175□181.
29. Mulloy, B., Forster, M. J., Jones, C., Drake, A. F., Johnson, E. A., and Davies, D. B. (1994) Carbohydr. Res. 255, 1□26.
30. Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Carbohydr. Res. 277, 11□23.
31. Mikhailov, D., Linhardt, R. J., and Mayo, K. H. (1997) Biochem. J. 328, 51□61.
32. Janmey, P.A., and Kinnunen, P. K. J. (2006) Trends Cell Biol.16, 538□546.
33. Svennerholm, L. (1963) J. Neurochem.10, 613□623.
34. Ruocco, M. J., and Shipley, G. G. (1986) Biochim. Biophys. Acta 859, 246□256.
35. Koshy, K. M. and Boggs, J. M. (1983) Chem. Phys. Lipids 34, 41□53.
36. Boggs, J. M., Koshy, K. M., and Rangaraj, G. (1984) Chem. Phys. Lipids 36, 65□89.
37. Ito, T., and Ohnishi, S.-I. (1974) Biochim. Biophys. Acta 352, 29□37.
38. Jacobson, K., and Papahadjopoulos, D. (1975) Biochemistry 14, 152□161.
39. Hauser, H., Finer, G. G., and Darke, A. (1977) Biochem.Biophys. Res. Commun. 76, 267□274.
40. Koynova, R., and Caffrey, M. (1995) Biochim. Biophys. Acta 1255, 213□236.
41. Norton, W., and Cammer, W. (1984) in Myelin (Morell, P., ed.), pp 147□195, Plenum Press, New York.
42. Yanagisawa, K. (2005) Neuroscientist 11, 250–260.
43. Rawat, S. S., Viard, M., Gallo, S. A., Rein, A., Blumenthal, R., and Puri, A. (2003) Mol. Membr. Biol. 20, 243–254.
44. Rawat, S. S., Johnson, B. T., and Puri, A. (2005) Biosci. Rep. 25, 329–343.
45. Kiyokawa, E., Makino, A., Ishii, K., Otsuka, N., Yamaji-Hasegawa, A., and Kobayashi, T. (2004) Biochemistry 43, 9766–9773.
46. Wang, C. H., Monette, R., Lee, S. C., Morley, P., and Wu, W. G. (2005) Toxicon 46, 430–440.
47. Rosen, H., and Goetzl, E. J. (2005) Nat. Rev., Immunol. 5, 560–570.
48. Hirabayashi, T. Murayama, T., and Shimizu, T. (2004) Biol. Pharm. Bull. 27, 1168–1173.
49. Ruvolo, P. P. (2003) Pharmacol. Res. 47, 383–392.
50. Hanada, K., Kumagai, K., Yasuda, S., Miura, Y., Kawano, M., Fukasawa, M., and Nishijima, M. (2003) Nature 426, 803–809.
51. Sasaki, T. (1985) Chem. Phys. Lipids 38, 63–77.
52. H.M. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) Nucleic Acids Res. 28, 235–242.
Chapter 2: A protruding state of glycosphingolipid arrangement on membrane: NMR and X-ray Study of SGC/POPC membrane
1. Singer, S. J., and Nicolson, G. L. (1972) Science 175, 720□731.
2. Simons, K., and Ikonen, E. (1997) Nature 387, 569□572.
3. Denny, P. W., Goulding, D., Ferguson, M. A. J., and Smith, D. F. (2004) Mol. Microbiol. 52, 313□327.
4. Hsueh, Y. W., Giles, R., Kitson, N., and Thewalt, J. (2002) Biophys. J. 82, 3089□3095.
5. Xu, X., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C., and London, E. (2001) J. Biol. Chem. 276, 33540□33546.
6. Wang, T. Y., and Silvius, J. R. (2003) Biophys. J. 84, 367□378.
7. Maggio, B., Montich, G. G., and Cumar, F. A. (1988) Chem. Phys. Lipids 46, 137□146.
8. Maggio, B., Ariga, T., Sturtevant, J. M., and Yu, R. K. (1985) Biochim. Biophys. Acta 818, 1□12.
9. Ballou, L. R., Laulederkind, S. J. K., Rosloniec, E. F., and Raghow, R. (1996) Biochim. Biophys. Acta.1301, 273□287.
10. Bektas, M., and Spiegel, S. (2004) Glycoconj. J. 20, 39□47.
11. Blitterswijk, W. J., Van Der Luit, A. H., Veldman, R. J., Verheij, M., and Borst, J. (2003) Biochem. J. 369, 199□211.
12. Boggs, J. M., Wang, H., Gao, W., Arvanitis, D. N., Gong, Y., and Min, Y. (2004) Glycoconj. J. 21, 97□110.
13. Bucior, I., and Burger, M. M. (2004) Glycoconj. J. 21, 111□123.
14. Hakomori, S. (2004) Glycoconj. J. 21, 125□137.
15. Hoekstra, D., Maier, O., van der Wouden, J. M., Slimane, T., and van Ijzendoorn, S. C. D. (2003) J. Lipid Res. 44, 869□877.
16. Simons, E., and Toomre, D. (2000) Nat. Rev. Mol. Cell Biol. 1, 31□39.
17. Degroote, S., Wolthoorn, J., and van Meer, G. (2004) Semin. Cell Dev. Biol. 15, 375□387.
18. Brown, D. A., and London, E. (2000) J. Biol. Chem. 275, 17221□17224.
19. Rietveld, A., and Simons, K. (1998) Biochim. Biophys. Acta. 1376, 467□479.
20. Dahlén, B., and Pascher, I. (1979) Chem. Phys. Lipids 24, 119□133.
21. O'Brien, J. S., and Rouser, G. (1964) J. Lipid Res. 5, 339□342.
22. DeVries, G. H., and Norton, W. T. (1974) J. Neurochem. 22, 251□257.
23. Mehlhorn, I. E., Florio, E., Barber, K. R., Lordo, C., and Grant, C. W. (1988) Biochim. Biophys. Acta 939, 151□159.
24. Boggs, J. M., and Koshy, K. M. (1994) Biochim. Biophys. Acta 1189, 233□241.
25. Nabet, A., Boggs, J. M., and Pezolet, M. (1996) Biochemistry 35, 6674□6683.
26. Mason, J. T., Huang, C., and Biltonen, R. L. (1981) Biochemistry 20, 6086□6092.
27. Sackmann, E. (1983) Physical foundations of the molecular organization and dynamics of membranes, in: Hoppe, W. Lohmann, W., Markl, H., Ziegler, H. (Eds.), Biophysics, pp 425–457, Springer-Verlag, Berlin.
28. Lehtonen, J. Y. A., Rytomaa, M., and Kinnunen, P. K. J. (1996) Biophys. J. 70, 2185□2194.
29. Shah, J., Atienza, J. M., Duclos, R. I., Rawlings, A. V., Dong, Z., and Shipley, G. G. (1995) J. Lipid Res. 36, 1936□1944.
30. Holopainen, J. M., Subramanian, M., and Kinnunen, P. K. J. (1998) Biochemistry 37, 17562□17570.
31. Ramstedt, B., and Slotte, P. (2002) FEBS Lett. 531, 33□37.
32. Ferguson-Yankey, S. R., Borchman, D., Taylor, K. G., DuPre, D. B., and Yappert, M. C. (2000) Biochim. Biophys. Acta. 1467, 307□325.
33. Li, L., Taylor, K. G., DuPre, D. B., and Yappert, M. C. (2002) Biophys. J. 82, 2067□2080.
34. Talbott, C. M., Vorobyov, I., Borchman, D., Taylor, K. G., DuPre, D. B., and Yappert, M. C. (2000) Biochim. Biophys. Acta. 1467, 326□337.
35. Vorobyov, I., Yappert, M. C., and Dupre, D. B. (2002) J. Phys. Chem. 106, 10691□10699.
36. Chiu, S. W., Vasudevan, S., Jakobsson, E., Mashi, R. J., and Scott, H. L. (2003) Biophys. J. 85, 3624□3635.
37. Mombelli, E., Morris, R., Taylor, W., and Fratermali, F. (2003) Biophys. J. 84, 1507□1517.
38. Niemela, P., Hyvonen, M. T., and Vattulainen, I. (2004) Biophys. J. 87, 2976□2989.
39. Moore, D. J., Rerek, M. F., and Mendelsohn, R. (1997) J. Phys. Chem. 101, 8933□8940.
40. Bielawska, A., Crane, H. M., Liotta, D., Obeid, L. M., and Hannun, Y. A. (1993) J. Biol. Chem. 268, 26226□26232.
41. Obeid, L. M., Linardic, C. M., Karolak, L. A., and Hannun, Y. A. (1993) Science 259, 1769□1771.
42. He, L., Byun, H. S., Smit, J., Wilschut, J., and Bittman, R. (1999) J. Am. Chem. Soc. 121, 3897□3903.
43. Corver, J., Moesby, L., Erukulla, R. K., Reddy, K. C., Bittman, R., and Wilschut, J. (1995) J. Virol. 69, 3220□3223.
44. Rog, T., and Pasenkiewicz-Gierula, M. (2003) Biophys. J. 84, 1818□1826.
45. Rog, T., and Pasenkiewicz-Gierula, M. (2006) Biophys. J. 91, 3756□3767.
46. Long, J. R., Sun, B. Q., Bowen, A., and Griffin, R. G. (1994) J. Am. Chem. Soc. 116, 11950□11956.
47. Gawrisch, K., Eldho, N. V., and Polozov, I. V. (2002) Chem. Phys. Lipids 116, 135□151.
48. Huster, D., and Gawrisch, K. (1999) J. Am. Chem. Soc. 121, 1992□1993.
49. Huster, D., Arnold, K., and Gawrisch, K. (1999) J. Phys. Chem. B 103, 243□251.
50. Ernst, R. R., Bodenhausen, G., and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press: Oxford, England.
51. Bodenhausen, G., Kogler, H., and Ernst, R. R. (1984) J. Magn. Res. 58, 370□388.
52. Murray, J., Cuccia, L., Ianoul, A., Cheetham, J. J., and Johnston, L. J. (2004) Chembiochem. 5, 1489□1494.
53. de-Almeida, R. F., Fedorov, A., and Prieto, M. (2003) Biophys J. 85, 2406□2416.
54. Chen, F. Y., Lee, M. T., and Huang, H. W. (2003) Biophys. J. 84, 3751□3758.
55. Lee, M. T., Hung, W. C., Chen, F. Y., and Huang, H. W. (2005) Biophys. J. 89, 4006□4016.
56. Chen, Z., and Rand, R. P. (1997) Biophys. J. 73, 267□276.
57. Wu, Y., He, K., Ludtke, S. J., and Huang, H. W. (1995) Biophys. J. 68, 2361□2369.
58. McIntosh, T. J., and Simon, S. A. (1986) Biochemistry 25, 4058□4066.
59. Ruocco, M. J., and Shipley, G. G. (1986) Biochim. Biophys. Acta 859, 246□256.
60. Davis, P. J., and Keough, K. M. W. (1985) Biophys. J. 48, 915□918.
61. Luzzati, V. (1968) X-ray diffraction studies of lipid-water systems, in Biological Membranes, Vol. 1, pp71□123, D. Chapman, editor. Academic Press, New York.
62. Stevenson, C., Rich, N., and Boggs, J. (1992) Biochemistry 31, 1875□1881.
63. Stinson, R., and Boggs, J. (1989) Biochim. Biophys. Acta 986, 234□240.
64. Boggs, J. M., and Koshy, K. M. (1994) Biochim. Biophys. Acta 1189, 233□241.
65. Aittoniemi, J., Niemela, P. S., Hyvonen, M. T., Karttunen, M., and Vattulainen, I. (2007) Biophys. J. 92, 1125□1137.
66. Vogel, M., Munster, C., Fenzl, W., and Salditt, T. (2000) Phys. Rev. Lett. 84, 390□393.
67. Cruzeiro-Hansson, L., Ipsen, J. H., and Mouritsen, O. G. (1989) Biochim. Biophys. Acta 979, 166□176.
68. Ianoul, A., Street, M., Grant, D., Pezacki, J., Taylor, R., and Johnston, L. J. (2004) Biophys. J. 87, 3525□3535.
69. Ianoul, A., Grant, D. D., Rouleau, Y., Bani-Yaghoub, M., Johnston, L. J., and Pezacki, J. P. (2005) Nat. Chem. Biol. 1, 196□202.
70. Boxer, S. G. (2000) Curr. Opin. Chem. Biol. 4, 704□709
71. Saslowsky, D. E., Lawrence, J., Ren, X., Brown, D. A., Henderson, R. M., and Edwardson, J. M. (2002) J. Biol. Chem. 277, 26966□26970.
72. Milhiet, P.-E., Giocondi, M. C., Baghdadi, O., Ronzon, F., Roux, B., and Le Grimellec, C. (2002) EMBO 3, 485□490.
73. Shaikh, S. R., Dumaual, A. C., Castillo, A., LoCascio, D., Siddiqui, R. A. Stillwell, W., and Wassall, S. R. (2004) Biophys. J. 87, 1752□1766.
74. Tokumasu, F., Jin, A. J., Feigenson, G. W., and Dvorak, J. A. (2003) Biophys. J. 84, 2609□2618.
75. Weerachatyanukul, W., Probodh, I., Kongmanas, K., Tanphaichitr, N., and Johnston, L. J. (2007) Biochim. Biophys. Acta 1768, 299□310.
76. Sekharam, K. M., Bradrick, T. D., and Georghiou, S. (1991) Biochim. Biophys. Acta 1063, 171□174.
77. Dahlen, B., and Pascher, I. (1979) Chem. Phys. Lipids 24, 119□133.
78. Zaraiskaya, T., and Jeffrey, K. R. (2005) Biophys. J. 88, 4017□4031.
79. Curotolo, W., Sears, B., and Neuringer, L. J. (1985) Biochim. Biophys. Acta 817, 261□270.
80. Huang, W. N., Sue, S. C., Wang, D. S., Wu, P. L., and Wu, W.G. (2003) Biochemistry 42, 7457□7466.
81. Bruzik, K. S., and Nyholm, P. G. (1997) Biochemistry 36, 566□575.
82. Tjong, S. C., Wu, P. L., Wang, C. M., Huang, W. N., Ho, N. L., and Wu, W. G. (2007) Biochemistry (submitted).
Chapter 3: Cobra cardiotoxin/sulfatide binding modes on membrane surface suggest a role of glycosphingolipid conformational changes in its membrane pore forming activity
1. Campagna, S., Saint, N., Molle, G., Aumelas, A. (2007) Biochemistry 46, 1771□1778.
2. Tilley, S. J., and Saibil, H. R. (2006) Curr. Opin. Struct. Biol. 16, 230□236.
3. Brogden, K. A. (2005) Nat. Rev. Microbiol. 3, 238□250.
4. Kasson, P. M., Kelley, N. W., Singhal, N., Vrljic, M., Brunger, A. T., and Pande, V. S. (2006) Proc. Natl. Acad. Sci. U S A 103, 11916□11921.
5. Cohen, F. S., and Melikyan, G. B. (2004) J. Membr. Biol. 199, 1□14.
6. Kinnunen, P. K., and Holopainen, J. M. (2000) Biosci. Rep. 20, 465□482.
7. Balayssac, S., Burlina, F., Convert, O., Bolbach, G., Chassaing, G., and Lequin, O. (2006) Biochemistry 45, 1408□1420.
8. Deshayes, S., Morris, M. C., Divita, G., and Heitz, F. (2006) Biochim. Biophys. Acta 1758, 328□335.
9. Domene, C., Vemparala, S., Klein, M. L., Venien-Bryan, C., and Doyle, D. A. (2006) Biophys J. 90, L01□L03.
10. Boudker, O., Ryan, R. M., Yernool, D., Shimamoto, K., and Gouaux, E. (2007) Nature 445, 387□393.
11. Gouaux, E., and Mackinnon, R. (2005) Science 310, 1461□1465.
12. Lacapere, J. J., Pebay-Peyroula, E., Neumann, J. M., and Etchebest, C. (2007) Trends Biochem. Sci. 32, 259□270.
13. Law, R. J., Capener, C., Baaden, M., Bond, P. J., Campbell, J., Patargias, G., Arinaminpathy, Y., and Sansom, M. S. (2005) J. Mol. Graph Model 24, 157□165.
14. Fleishman, S. J., Unger, V. M., and Ben-Tal, N. (2006) Trends Biochem. Sci. 31, 106□113.
15. Werten, P. J., Remigy, H. W., de Groot, B. L., Fotiadis, D., Philippsen, A., Stahlberg, H., Grubmuller, H., and Engel, A. (2002) FEBS Lett. 529, 65□72.
16. Teriete, P., Franzin, C. M., Choi, J., and Marassi, F. M. (2007) Biochemistry 46, 6774□6783.
17. Attrill, H., Imamura, A., Sharma, R. S., Kiso, M., Crocker, P. R., and van Aalten, D.M. (2006) J. Biol. Chem. 281, 32774□32783.
18. Cheever, M. L., Kutateladze, T. G., and Overduin, M. (2006) Protein Sci. 15, 1873□1882.
19. Kusnetzow, A. K., Altenbach, C., and Hubbell, W. L. (2006) Biochemistry 45, 5538□5550.
20. Nyholm, T. K., Ozdirekcan, S., and Killian, J. A. (2007) Biochemistry 46, 1457□1465.
21. Gibbons, W. J. Jr., Karp, E. S., Cellar, N. A., Minto, R. E., and Lorigan, G. A. (2006) Biophys J. 90,1249□1259.
22. Bond, P. J., and Sansom, M. S. (2007) Proc. Natl. Acad. Sci. U S A 104, 2631□2636.
23. Sands, Z. A., and Sansom, M.S. (2007) Structure 15, 235□244.
24. Haider, S., Khalid, S., Tucker, S. J., Ashcroft, F. M., and Sansom, M. S. (2007) Biochemistry 46, 3643□3652.
25. Dubovskii, P. V., Lesovoy, D. M., Dubinnyi, M. A., Utkin, Y. N., and Arseniev, A. S. (2003) Eur. J. Biochem. 270, 2038□2046.
26. Chien, K.Y., Huang, W. N., Jean, J. H., and Wu, W. (1991) J. Biol. Chem. 266, 3252–3259.
27. Wu, W. G. (1998) Trends Cardiovasc. Med. 8, 270□278.
28. Vyas, A. A., Pan, J. J., Patel, H. V., Vyas, K. A., Chiang, C. M., Sheu, Y. C., Hwang, J. K., and Wu, W. (1997) J. Biol. Chem. 272, 9661□9670.
29. Patel, H. V., Vyas, A. A., Vyas, K. A., Liu, Y. S., Chiang, C. M., Chi, L. M., and Wu, W. (1997) J. Biol. Chem. 272, 1484□1492.
30. Wang, C. H., Liu, J. H., Lee, S. C., Hsiao, C. D., and Wu, W. G. (2006) J. Biol. Chem. 281, 656□667.
31. Huang, W. N., Sue, S. C., Wang, D. S., Wu, P. L., and Wu, W. G. (2003) Biochemistry 42, 7457□7466.
32. Forouhar, F., Huang, W. N., Liu, J. H., Chien, K. Y., Wu, W. G., and Hsiao, C. D. (2003) J. Biol. Chem. 278, 21980□21988.
33. Leontiadou, H., Mark, A. E., and Marrink, S. J. (2006) J. Am. Chem. Soc. 128, 12156□12161.
34. Ludtke, S. J., He, K., Heller, W. T., Harroun, T. A., Yang, L., and Huang, H. W. (1996) Biochemistry 35, 13723□13728.
35. Yang, L., Harroun, T. A., Weiss, T. M., Ding, L., and Huang, H. W. (2001) Biophys J. 81, 1475□1485.
36. Chien, K. Y., Chiang, C. M., Hseu, Y. C., Vyas, A. A., Rule, G. S., and Wu, W. (1994) J. Biol. Chem. 269, 14473–14483.
37. Prenner, E. J., Lewis, R. N., and McElhaney, R. N. (1999) Biochim. Biophys. Acta 1462, 201□221.
38. Matsuzaki, K., Sugishita, K. I., Harada, M., Fujii, N., and Miyajima, K. (1997) Biochim. Biophys. Acta 1327, 119□130.
39. Chen, T. S., Chung, F. Y., Tjong, S. C., Goh, K. S., Huang, W. N., Chien, K. Y., Wu, P. L., Lin, H. C., Chen, C. J., and Wu, W. G. (2005) Biochemistry 44, 7414□7426.
40. Dauplais, M., Neumann, J. M., Pinkasfeld, S., Menez, A., and Roumestand, C. (1995) Eur. J. Biochem. 230, 213–220.
41. Dubovskii, P. V., Dementieva, D. V., Bocharov, E. V., Utkin, Y. N., and Arseniev, A. S. (2001) J. Mol. Biol. 305, 137□149.
42. Chiang, C. M., Chien, K. Y., Lin, H. J., Lin, J. F., Yeh, H. C., Ho, P. L., and Wu, W. G. (1996) Biochemistry 35, 9167□9176.
43. Sue, S. C., Chien, K. Y., Huang, W. N., Abraham, J. K., Chen, K. M., and Wu, W. G. (2002) J. Biol. Chem. 277, 2666□2673.
44. Sue, S. C., Brisson, J. R., Chang, S. C., Huang, W. N., Lee, S. C., Jarrell, H. C., and Wu, W. (2001) Biochemistry 40, 10436□10446.
45. O'Brien, J. S., Fillerup, D. L., and Mead, J. F. (1964) J. Lipid Res. 5, 329□338.
46. Ladokhin, A. S., Selsted, M. E., and White, S. H. (1997) Biophys J. 72, 1762–1766.
47. Lanzetta, P. A., Alvarez, L. J., and Reinach, P. S. (1979) Anal. Biochem. 100, 95–97.
48. Rex, S., and Schwarz, G. (1998) Biochemistry 37, 2336□2345.
49. Schwarz, G., and Arbuzova, A. (1995) Biochim. Biophys. Acta 1239, 51□57.
50. Runnels, L. W., and Scarlata, S. F. (1995) Biophys. J. 69, 1569–1583.
51. Sharpe, J. C., and Landon, E. (1999) J. Membr. Biol. 171, 209–221.
52. Bax, A., and Davis, D. G. (1969) J. Magn. Reson. 65, 355–360.
53. Sue, S. C., Jarrell, H. C., Brisson, J. R., and Wu, W. (2001) Biochemistry 40, 12782–12794.
54. Singhal, A. K., Chien, K. Y., Wu, W. G., and Rule, G. S. (1993) Biochemistry 32, 8036□8044.
55. Klyne, W., and Prelog, V. (1960) Experientia 16, 521□523.
56. Bruzik, K. S. (1988) Biochim. Biophys. Acta 939, 315□326.
57. Nyholm, P. G., and Pascher, I. (1993) Biochemistry 32, 1225□1234.
58. Bruzik, K. S. (1997) Biochemistry 36, 566□575.
59. Li, L., Tang, X., Taylor, G., DuPré, D. B., and Yappert, M. C. (2002) Biophysical J. 82, 2067□2080.
60. Dabrowski J, Egge H, and Hanfland P. (1980) Chem. Phys. Lipids 26, 187□196.
61. Pascher, I., and Sundell, S. (1977) Chem. Phys. Lipids 20, 175□191.
62. Homans, S. W. (1990) Biochemistry 29, 9110□9118.
63. Huige, C. J. M., and Altona, C. (1995) J. Comput. Chem. 16, 56□79.
64. Benachir T, and Lafleur M. (1995) Biochim. Biophys. Acta 1235, 452□460.
65. Pokorny, A., and Almeida, P. F. (2004) Biochemistry 43, 8846□8857.
66. Tjong, S. C., Chen, T. S., Huang, W. N., and Wu, W. G. (2007) Biochemistry (accepted).
67. Pascher, I., Lundmark, M., Nyholm, P. G., and Sundell, S. (1992) Biochim. Biophys. Acta 1113, 339□373.
68. Nyholm, P. G., Pascher, I., and Sundell, S. (1990) Chem. Phys. Lipids 52, 1□10.
69. Zajonc, D. M., Cantu, C., Mattner, J., Zhou, D., Savage, P. B., Bendelac, A., Wilson, I. A., and Teyton, L. (2005) Nat. Immunol. 6, 810□818.
70. Koch, M., Stronge, V. S., Shepherd, D., Gadola, S. D., Mathew, B., Ritter, G., Fersht, A. R., Besra, G. S., Schmidt, R. R., Jones, E. Y., and Cerundolo, V. (2005) Nat. Immunol. 6, 819□826.
71. Wu, D., Zajonc, D. M., Fujio, M., Sullivan, B. A., Kinjo, Y., Kronenberg, M., Wilson, I. A., and Wong, C. H. (2006) Proc. Natl. Acad. Sci. USA 103, 3972□3977.
72. Fantini, J. (2003) Cell Mol Life Sci. 60, 1027□1032.
73. Wu, P. L., Lee, S. C., Chuang, C. C., Mori, S., Akakura, N., Wu, W. G., and Takada, Y. (2006) J. Biol. Chem. 281, 7937□7945.
Chapter 4: Structures of Heparin-Derived Tetrasaccharide Bound to Cobra Cardiotoxins: Heparin Binding at a Single Protein Site With Diverse Side Chain Interactions
1. Dufton, M. J., and Hider, R. C. (1991) The structure and pharmacology of Elapid cytotoxins, in Snake Toxins (Harvey, A.L., (ed)), pp 259□272, Pergamon Press, New York.
2. Fletcher, J. E., and Jiang, M. H. (1993) Toxicon 31, 669□695.
3. Sun, J. J., and Walker, M. J. (1986) Toxicon 24, 233□245.
4. Hider, R. C., and Khader, F. (1982) Toxicon 20, 175□179.
5. Wu, W. G. (1998) Trends Cardiovasc. Med. 8, 270□278.
6. Lee, C. Y., Ed. (1979) Snake Venom: Handbook of Experimental Pharmacology, Vol. 52, Springer□Verlag, Berlin.
7. Hirata, A., Masuda, S., Tamura, T., Kai, K., Ojima, K., Fukase, A., Motoyoshi, K., Kamakura, K., Miyagoe-Suzuki, Y., and Takeda, S. B. (2003) Am. J. Pathol. 163, 203□215.
8. Chattopadhyay, A., Patra, R. D., Shenoy, V., Kumar, V., and Nagendhar, Y. (2004) Indian J. Pediatr. 71, 397□399.
9. Hung, D. Z., Liau, M. Y., and Lin-Shiau, S. Y. (2003) Toxicon 41, 409□415.
10. Chen, S. E., Gerken, E., Zhang, Y., Zhan, M., Mohan, R. K., Li, A. S., Reid, M. B., and Li, Y. P. (2005) Am. J. Physiol. Cell Physiol. 289, C1179□C1187.
11. Tonsing, L., Potgieter, D. J., Louw, A. I., and Visser, L. (1983) Biochim. Biophys. Acta 732, 282□288.
12. Ownby, C. L., Fletcher, J. E., and Colberg, T. R. (1993) Toxicon 31, 697□709.
13. Wu, P. L., Lee, S. C., Chuang, C. C., Mori, S., Akakura, N., Wu, W. G., and Takada, Y. (2006) J. Biol. Chem. 281, 7937□7945.
14. Wang, C. H., Liu, J. H., Lee, S. C., Hsiao, C. D., and Wu, W. (2006) J. Biol. Chem. 281, 656□667.
15. Wang, C. H., Monette, R., Lee, S. C., Morley, P., and Wu, W. (2005) Toxicon 46, 430□440.
16. Sue, S. C., Chien, K. Y., Huang, W. N., Abraham, J. K., Chen, K. M., and Wu, W. (2002) J. Biol. Chem. 277, 2666□2673.
17. Vyas, A. A., Pan, J. J., Patel, H. V., Vyas, K. A., Chiang, C. M., Sheu, Y. C., Hwang, J. K., and Wu, W. (1997) J. Biol. Chem. 272, 9661□9670.
18. Lee, S. C., Guan, H. H., Wang, C. H., Huang, W. N., Tjong, S. C., Chen, C. J., and Wu, W. (2005) J. Biol. Chem. 280, 9567□9577.
19. Chien, K. Y., Chiang, C. M., Hseu, Y. C., Vyas, A. A., Rule, G. S., and Wu, W. (1994) J. Biol. Chem. 269, 14473□14483.
20. Chen, T. S., Chung, F. Y., Tjong, S. C., Goh, K. S., Huang, W. N., Chien, K. Y., Wu, P. L., Lin, H. C., Chen, C. J., and Wu, W.G. (2005) Biochemistry 44, 7414□7426.
21. Kumar, T. K. S., Jayaraman, G., Lee, C. S., Arunkumar, A. I., Sivaraman, T., Samuel, D., and Yu, C. (1997) J. Biomol. Struct. Dyn. 15, 431–463.
22. Kuo, J. F., Raynor, R. L., Mazzei, G. J., Schatzman, R. C., Turner, R. S., and Kem, W. R. (1983) FEBS Lett. 153, 183–186.
23. Raynor, R. L., Zheng, B., and Kuo, J. F. (1991) J. Biol. Chem. 266, 2753–2758.
24. Chiou, S. H., Raynor, R. L., Zheng, B., Chambers, T. C., and Kuo, J. F. (1993) Biochemistry 32, 2062–2067.
25. Jayaraman, G., Krishnaswamy, T., Kumar, S., and Yu, C. (1999) J. Biol. Chem. 274, 17869□17875.
26. Lee, S. C. (2004) Binding specificity and binding mode of cobra cardiotoxin-heparin interaction and their biological implication, Ph. D. thesis, Chapter 6, pp127□136, National Tsing Hua University, Hsin Chu, Taiwan.
27. Vyas, K. A., Patel, H. V., Vyas, A. A., and Wu, W. (1998) Biochemistry 37, 4527□4534.
28. Patel, H. V., Vyas, A. A., Vyas, K. A., Liu, Y. S., Chiang, C. M., Chi, L. M., and Wu, W. (1997) J. Biol. Chem. 272, 1484□1492.
29. Handel, T. M., Johnson, Z., Crown, S. E., Lau, E. K., and Proudfoot, A. E. (2005) Annu. Rev. Biochem. 74, 385□410.
30. Lortat-Jacob, H., Grosdidier, A., and Imberty, A. (2002) Proc. Natl. Acad. Sci. U S A 99, 1229□1234.
31. Kreuger, J., Spillmann, D., Li, J. P., and Lindahl, U. (2006) J. Cell Biol. 174, 323□327.
32. Kamimura, K., Koyama, T., Habuchi, H., Ueda, R., Masu, M., Kimata, K., and Nakato, H. (2006) J. Cell Biol. 174, 773□778.
33. Chien, K. Y., Huang, W. N., Jean, J. H., and Wu, W. (1991) J. Biol. Chem. 266, 3252□3259.
34. Yamada, S., Murakami, T., Tsuda, H., Yoshida, K., and Sugahara, K. (1995) J. Biol. Chem. 270, 8696□8705.
35. Rice, K. G., Rottink, M. K., and Linhard, R. J. (1987) Biochem. J. 244, 515□522.
36. Bax, A., and Davis, D. G. (1985) J. Magn. Reson. 65, 355□360.
37. Piotto, M., Saudek, V., and Sklendar, V. (1992) J. Biomol. NMR 2, 661□665.
38. Homans, S. W. (1990) Biochemistry 29, 9110□9118.
39. Huige, C. J. M., and Altona, C. (1995) J. Comput. Chem. 16, 56□79.
40. Jahnke, W., Mierke, D. F., Beress, L., and Kessler, H. (1994) J. Mol. Biol. 240, 445□458.
41. Rees, B., Bilwes, A., Samarna, J. P., and Moras, D. (1990) J. Mol. Biol. 214, 281□297.
42. Sharp, K. A. and Honig, B. (1990) Annu. Rev. Biophys. Biophys. Chem. 19, 301□332.
43. Uhrin, D., and Barlow, P. N. (1997) J. Magn. Reson. 126, 248□255.
44. Uhrin, D., and Brisson, J. R. (2000) NMR in Microbiology: Theory and Applications, pp 165□190, Horizon Scientific Press, Wymondham, U.K.
45. Kupce, E., and Freeman, R. (1995) J. Magn. Reson. Ser. A 112, 134□137.
46. Moseley, H. N. B., Curto, E. V., and Krishna, N. R. (1995) J. Magn. Reson. Ser. B 108, 243□261.
47. Krishna, N. R., and Moseley, H. N. B. (1999) in Biological Magnetic Resonance, Vol. 17, pp 223□307, Kluwer Academic/Plenum Publishers, New York.
48. Krishna, N. R., Agresti, D. G., Glickson, J. D., and Walter, R. (1978) Biophys. J. 24, 791□814.
49. Chen, T. S. (2003) Structural characterization of class I and class II cardiotoxins and their interaction with ligands, Ph. D. thesis Chapter 4, pp 53□71, National Tsing Hua University, Hsin Chu, Taiwan.
50. Sue, S. C., Brisson, J. R., Tjong, S. C., Huang, W. N., Lee, S. C., Jarrell, H. C., and Wu W. (2001) Biochemistry 40, 10436□10446.
51. Mikhailov, D., Mayo, K. H., Vlahov, I. R., Toida, T., Pervin, A., and Linhardt, R. J. (1996) Biochem. J. 318, 93□102.
52. Capila, I., and Linhardt, R. J. (2002) Angew. Chem. Int. Ed. 41, 391□412.
53. Sauter, N. K., Hanson, J. E., Glick, G. D., Brown, J. H., Crowther, R. L., Park, S. J., Skehel, J. J., and Wiley, D. C. (1992) Biochemistry 31, 9609□9621.
54. Loris, R., De Greve, H., Dao-Thi, M. H., Messens, J., Imberty, A., and Wyns, L. (2000) J. Mol. Biol. 301, 987□1002.
55. del Carmen Fernandez-Alonso, M., Canada, F. J., Jimenez-Barbero, J., Cuevas, G. (2005) J. Am. Chem. Soc. 127, 7379□7386.
56. Asensio, J. L., Canada, F. J., Siebert, H. C., Laynez, J., Poveda, A., Nieto, P. M., Soedjanaamadja, U. M., Gabius, H. J., and Jimenez-Barbero, J. (2000) Chem. Biol. 7, 529□543.
57. Canales, A., Angulo, J., Ojeda, R., Bruix, M., Fayos, R., Lozano, R., Gimenez-Gallego, G., Martin-Lomas, M., Nieto, P. M., and Jimenez-Barbero, J. (2005) J. Am. Chem. Soc. 127, 5778□5779.
58. Ma, B., Shatsky, M., Wolfson, H. J., and Nussinov, R. (2002) Protein Sci. 11, 184□197.
59. James, L. C., Roversi, P., and Tawfik, D. S. (2003) Science 299, 1362□1367.
Appendix I: Mechanism of Monoclonal Antibody 3-2 block SARS-CoV six helix bundle formation
1. Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A., Berger, A., Burguiere, A. M., Cinat, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J. C., Muller, S., Rickerts, V., Sturmer, M., Vieth, S., Klenk, H. D., Osterhaus, A. D., Schmitz, H., and Doerr, H. W. (2003) N. Engl. J. Med. 348, 1967□1976.
2. Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A. E., Humphrey, C. D., Shieh, W. J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., DeRisi, J., Yang, J. Y., Cox, N., Hughes, J. M., LeDuc, J. W., Bellini, W. J., and Anderson, L. J. (2003) N. Engl. J. Med. 348, 1953□1966.
3. Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., Cheng, V. C., Chan, K. H., Tsang, D. N., Yung, R. W., Ng, T. K., and Yuen, K. Y. (2003) Lancet 361, 1319□1325.
4. Poon, L. L., Wong, O. K., Luk, W., Yuen, K. Y., Peiris, J. S., and Guan, Y. (2003) Clin. Chem. 49, 953□955.
5. Martina, B. E., Haagmans, B. L., Kuiken, T., Fouchier, R. A., Rimmelzwaan, G. F., Van Amerongen, G., Peiris, J. S., Lim, W., and Osterhaus, A. D. (2003) Nature 425, 915.
6. Guan, Y., Zheng, B. J., He, Y. Q., Liu, X. L., Zhuang, Z. X., Cheung, C. L., Luo, S. W., Li, P. H., Zhang, L. J., Guan, Y. J., Butt, K. M., Wong, K. L., Chan, K. W., Lim, W., Shortridge, K. F., Yuen, K. Y., Peiris, J. S., and Poon, L. L. (2003) Science 302, 276□278.
7. Bos, E. C., Heijnen, L., Luytjes, W., and Spaan, W. J. (1995) Virology 214, 453□463.
8. De Groot, R. J., Van Leen, R. W., Dalderup, M. J., Vennema, H., Horzinek, M. C., and Spaan, W. J. (1989) Virology 171, 493□502.
9. Luo, Z., and Weiss, S. R. (1998) Virology 244, 483□494.
10. Spaan, W., Cavanagh, D., and Horzinek, M. C. (1988) J. Gen. Virol. 69, 2939□2952.
11. Bosch, B. J., van der Zee, R., de Haan, C. A., and Rottier, P. J. (2003) J. Virol. 77, 8801□8811.
12. Frana, M. F., Behnke, J. N., Sturman, L. S., and Holmes, K. V. (1985) J. Virol. 56, 912□920.
13. Sturman, L. S., Ricard, C. S., and Holmes, K. V. (1985) J. Virol. 56, 904□911.
14. Taguchi, F. (1995) J. Virol. 69, 7260□7263.
15. Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., and Greenough, T. C. (2003) Nature 426, 450□454.
16. Dimitrov, D. S. (2003) Cell 115, 652□653.
17. Hakansson-McReynolds, S., Jiang, S., Rong, L., and Caffrey, M. (2006) J. Biol. Chem. 281, 11965□11971.
18. Tripet, B., Howard, M. W., Jobling, M., Holmes, R. K., Holmes, K. V., and Hodges, R. S. (2004) J. Biol. Chem. 279, 20836□20849.
19. Supekar, V. M., Bruckmann, C., Ingallinella, P., Bianchi, E., Pessi, A., and Carfı, A. (2004) Proc. Nat. Acad. Sci. 101, 17958□17963.
20. Luo, Z., Matthews, A. M., and Weiss, S. R. (1999) J. Virol. 73, 8152□8159.
21. Matsuyama, S., and Taguchi, F. (2002) J. Virol. 76, 11819□11826.
22. Taguchi, F., and Matsuyama, S. (2002) J. Virol. 76, 950□958.
23. Zelus, B. D., Schickli, J. H., Blau, D. M., Weiss, S. R., and Holmes, K. V. (2003) J. Virol. 77, 830□840.
24. Skehel, J. J., and Wiley, D. C. (1998) Cell 95, 871□874.
25. Baker, K. A., Dutch, R. E., Lamb, R. A., and Jardetzky, T. S. (1999) Mol. Cell 3, 309□319.
26. Chan, D. C., Fass, D., Berger, J. M., and Kim, P. S. (1997) Cell 89, 263□273.
27. Caffrey, M., Cai, M., Kaufman, J., Stahl, S. J., Wingfield, P. T., Covell, D. G., Gronenborn, A. M., and Clore, G. M. (1998) EMBO J. 17, 4572□4584.
28. Fass, D., Harrison, S. C., and Kim, P. S. (1996) Nat. Struct. Biol. 3, 465□469.
29. Kobe, B., Center, R. J., Kemp, B. E., and Poumbourios, P. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 4319□4324.
30. Malashkevich, V. N., Chan, D. C., Chutkowski, C. T., and Kim, P. S. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 9134□9139.
31. Malashkevich, V. N., Schneider, B. J., McNally, M. L., Milhollen, M. A., Pang, J. X., and Kim, P. S. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 2662□2667.
32. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., and Wiley, D. C. (1997) Nature 387, 426□430.
33. Weissenhorn, W., Carfi, A., Lee, K. H., Skehel, J. J., and Wiley, D. C. (1998) Mol. Cell 2, 605□616.
34. Tan, K., Liu, J., Wang, J., Shen, S., and Lu, M. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 12303□12308.
35. Yang, Z. N., Mueser, T. C., Kaufman, J., Stahl, S. J., Wingfield, P. T., and Hyde, C. C. (1999) J. Struct. Biol. 126, 131□144.
36. Zhao, X., Singh, M., Malashkevich, V. N., and Kim, P. S. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 14172□14177.
37. Bosch, B. J., Martina, B. E., Van Der Zee, R., Lepault, J., Haijema, B. J., Versluis, C., Heck, A. J., De Groot, R., Osterhaus, A. D., and Rottier, P. J. (2004) Proc. Natl. Acad. Sci. USA 101, 8455□8460.
38. Chan, D. C., and Kim, P. S. (1998) Cell 93, 681□684.
39. Eckert, D. M., and Kim, P. S. (2001) Proc. Natl. Acad. Sci. USA 98, 11187□11192.
40. Root, M. J., Kay, M. S., and Kim, P. S. (2001) Science 291, 884□888.
41. Bianchi, E., Finotto, M., Ingallinella, P., Hrin, R., Carella, A. V., Hou, X. S., Schleif, W. A., Miller, M. D., Geleziunas, R., and Pessi, A. (2005) Proc. Natl. Acad. Sci. USA 102, 12903□12908.
42. LaBonte, J., Lebbos, J., and Kirkpatrick, P. (2003) Nat. Rev. Drug Discov. 2, 345□346.
43. Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C. R., Xiong, H., Farmar,J., Debnath, A. K., Tien, P., and Jiang, S. (2004) Lancet 363, 938□947.
44. Yuan, K., Yi, L., Chen, J., Qu, X., Qing, T., Rao, X., Jiang, P., Hu, J., Xiong, Z., Nie, Y., Shi, X., Wang, W., Ling, C., Yin, X., Fan, K., Lai, L., Ding, M., and Deng, H. (2004) Biochem. Biophys. Res. Commun. 319, 746□752.
45. Zhu, J., Xiao, G., Xu, Y., Yuan, F., Zheng, C., Liu, Y., Yan, H., Cole, D. K., Bell, J. I., Rao, Z., Tien, P., and Gao, G. F. (2004) Biochem. Biophys. Res. Commun. 319, 283□288.
46. Lai, S. C., Chong, P. C., Yeh, C. T., Liu, L. S., Jan, J. T., Chi, H. Y., Liu, H. W., Chen, A., and Wang, Y. C. (2005) J. Biomed. Sci. 12, 711□727.
47. Xu, Y., Zhu, J., Liu, Y., Lou, Z., Yuan, F., Liu, Y., Cole, D. K., Ni, L., Su, N., Qin, L., Li, X., Bai, Z., Bell, J. I., Pang, H., Tien, P., Gao, G. F., and Rao, Z. (2004) Biochemistry 43,14064□14071.
48. Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., and Farzan, M. (2003) Nature 426, 450□454.
49. Mayer, M., and Meyer, B. (1999) Angew.Chem. 111, 1902□1906.
50. Mayer, M., and Meyer, B (2001) J.Am.Chem. Soc. 123, 6108□6117.
51. Klein, J., Meinecke, R., Mayer, B., and Meyer, B. (1999) J.Am.Chem. Soc. 121, 5336□5337.
52. Meinecke, R., and Meyer, B. (2001) J.Med.Chem. 44, 3059□3065.
53. Vogtherr, M., and Peters, T. (2000) J. Am. Chem. Soc. 122, 6093□6099.
54. Umemoto, K., Oikawa, S., Aida, M., and Sugawara, Y. (1988) J. Biomol. Struct. Dyn. 6, 593□608.
55. Maaheimo, H., Kosma, P., Brade, L., Brade, H., and Peters, T. (2000) Biochemistry 39, 12778□12788.
56. Louis, J. M., Nesheiwat, I., Chang, L. C., Clore, G. M., and Bewley, C. A. (2003) J. Biol.Chem. 278, 20278□20285.
57. Beniac, D. R., Andonov, A., Grudeski, E., and Booth, T. F. (2006) Nat. Struct. Mol. Biol. 13, 751□752.
58. Chen, J., Lee, K. H., Steinhauer, D. A., Stevens, D. J., Skehel, J. J., and Wiley, D. C. (1998) Cell 95, 409□417.
59. Li, F., Li, W., Farzan, M., and Harrison, S. C. (2005) Science 309, 1864□1868.
Appendix II: Sulfatide monomer conformation in solution
1. Coetzee, T., Fujita, N., Dupree, J., Shi, R., Blight, A., Suzuki, K., Suzuki, K., and Popko, B. (1996) Cell 86, 209□219.
2. Bosio, A., Binczek, E., and Stoffel, W. (1996) Proc. Natl. Acad. Sci. U S A 93, 13280□13285.
3. Yoshida, H., Ikeda, K., Achiwa, K., and Hoshino, H. (1995) Chem. Pharm. Bull. 43, 594□602.
4. Fantini, J., Hammache, D., Delezay, O., Pieroni, G., Tamalet, C., and Yahi, N. (1998) Virology 246, 211□220.
5. Roberts, D. D. (1986) Chem. Phys. Lipids. 42, 173□183.
6. Ginsburg, V., and Roberts, D. D. (1988) Biochimie 70, 1651□1659.
7. Suzuki, Y., Toda, Y., Tamatani, T., Watanabe, T., Suzuki, T., Nakao, T., Murase, K., Kiso, M., Hasegawa, A., Tadano-Aritomi, K., Ishizuka, I., and Miyasaka, M. (1993) Biochem. Biophys. Res. Commun. 190, 426□434.
8. Pascher, I., and Sundell, S. (1977) Chem. Phys, Lipids 20, 175□191.
9. Nyholm, P. G., and Pascher, I. (1993) Biochemistry 32, 1225□1234.
10. Bruzik, K. S. (1988) Biochim. Biophys. Acta 939, 315□326.
11. Bruzik, K. S. (1997) Biochemistry 36, 566□575.
12. Nyholm, P.G., Samuelsson, B. E., Breimer, M., and Pascher, I. (1989) J. Mol. Recogn. 2, 103□113.
13. Nyholm, P.G., Pascher, I., and Sundell, S. (1990) Chem. Phys. Lipids 52, 1□10.
14. O'Brien, J. S., Fillerup, D. L., and Mead, J. F. (1964) J Lipid Res 5, 329□338.
15. Uhrin, D., and Barlow, P. N. (1997) J. Magn. Reson. 126, 248□255.
16. Uhrin, D., and Brisson, J.-R. (2000) NMR in Microbiology: Theory and Applications, pp 165□190, Horizon Scientific Press, Wymondham, U.K.
17. Kupce, E., and Freeman, R. (1995) J. Magn. Reson., Ser. A 112, 134□137.
18. Klyne, W., and Prelog, V. (1960) Experientia 16, 521□523.
19. Dabrowski, J., Egge, H., and Hanfland, P. (1980) Chem. Phys. Lipids 26, 187□196.
20. Pascher, I., Lundmark, M., Nyholm, P. G., and Sundell, S. (1992) Biochim. Biophys. Acta 1113, 339□373.
21. Curatolo, W. (1982) Biochemistry 21, 1761□1764.
22. Curatolo, W., and Jungalwala, F. B. (1985) Biochemistry 24, 6608□6613.
23. Pascher, I. (1976) Biochim. Biophys. Acta 455, 433□451.
24. Haasnot, C. A. G., De Leew, F. A. A. M., and Altona, C. (1980) Tetrahedron 36, 2783□2792.