研究生: |
邱上睿 Shang-Jui Chiu |
---|---|
論文名稱: |
摻雜氧對於奈米晶氮氧化鈦薄膜結構與性質之影響 Oxygen Doping on the Structure and Properties of Nanocrystalline Ti(N,O) Thin Film |
指導教授: |
喻冀平
Ge-Ping Yu 黃嘉宏 Jia-Hong Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 98 |
中文關鍵詞: | 氮氧化鈦 、氧氣流量 、織構 、顏色 |
外文關鍵詞: | Ti(N,O), oxygen flow rate, texture, color |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功的利用非平衡式磁控濺鍍法於350℃溫度下通入氧氣與氮氣鍍著出奈米晶氮氧化鈦薄膜於304不□鋼上。在研究中,主要探討改變氧氣流量對氮化鈦薄膜之組成、結構、性質以及腐蝕抗性的研究。從XPS及XRD的結果中我們發現了試片由TiN結構轉換成Ti3O5結構的取代現象。而由XRD圖我們發現了織構轉換的現象:由一開始的隨機分佈轉換成的(111)優選方向,而後又轉變成(200)優選方向。織構轉換是因為氧原子附著於TiN(200)面上阻止Ti原子移動至(111)面。轉換的成因是氧氣解離並阻礙Ti原子的移動。薄膜的硬度測量值可能受到膜與基材的附著力之影響。殘留應力可能受到薄膜當中非晶相的影響而對於氧含量的趨勢不明顯。硫酸動態極化的掃瞄結果顯示Ti3O5結構對於薄膜腐蝕抗性有著重要的影響,有著較高堆積密度之薄膜會有較好的腐蝕抗性。薄膜的顏色隨著氧含量由暖金色轉變成綠色,最後則變成粉紅色。顏色改變是因為試片中氮與氧原子會影響到TiN結構的可躍遷至導帶的自由電子數。
Nano-crystalline Ti(N,O) films were successfully deposited on AISI 304 stainless steel substrates using unbalanced magnetron sputtering (UBM) system with addition of oxygen and nitrogen at 350℃. The effect of oxygen flow rate was investigated on the composition, microstructure and properties of Ti(N,O) thin films. From X-ray photoelectron spectroscopy (XPS) and XRD results, phase transformation of TiN phase displaced by Ti3O5 phase was observed. The diffraction patterns of XRD revealed that the texture evaluation from random distribution to (111) preferred orientation and then to (200) texture structure occurred at the oxygen content ranging from 4 to 5 at % and 5 to 23 at %. It was resulted from hindering of Ti adatoms by oxygen atoms stuck on (200) plane of TiN phase. The measured film hardness could be influenced by adhesion between the substrate and the films. Residual stress does not have clear trend with the oxygen content of films due to the possible effect of amorphous phase in the films. The results of potentiodynamic polarization test in 0.5M H2SO4 + 0.05M KSCN solution showed that Ti3O5 phase would affect the corrosion behavior. With higher packing density, Ti(N,O) thin films showed better corrosion resistance in H2SO4 solution. The results showed that the film coloration changes from warmer golden to vivid green and then to pink because N/Ti ratio influenced the free d electrons from Ti atoms and the number of free d electrons available for conductivity changes.
1. Ti(N,O) thin films with a variety of oxygen content were deposited on an AISI 304 stainless steel substrate by unbalanced magnetron sputtering system (UBMS).
2. A crystallographic structure evolution transformed from NaCl-type TiN phase to a monoclinic - type Ti3O5 phase was observed.
3. The texture evolution of NaCl-type TiN phase from the (111) preferred orientation to the (200) dominated orientation occurred at 23 at % of oxygen content in Ti(N,O) thin films.
4. The packing density of Ti(N,O) thin films decreases with increasing of the oxygen content because of the crystal structure transformation to a loose Ti3O5 phase
5. The compressive residual stress increased with ion bombardment and then decreased with the oxygen content above 23 at % due to the possible effect of amorphous phase in the films.
6. The coloration of TiNxOy thin films changed from light gold to dark gold to pink with oxygen content increased. N/Ti ratio and packing density might be the major factor to influence the L*, a*, b* values of samples.
7. The corrosion resistance of TiN phase with higher packing density showed higher corrosion resistance. With appearance of Ti3O5 phase, increase of Icorr in Ti3O5 phase is resulted from decrease of the packing density.
Reference
1. Jia-Hong Huang, Hao-Chung Yang, Xing-Jian Guo, Ge-Ping Yu, Surf. Coat. Technol. 195 (2005) 204.
2. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 168 (2003) 43.
3: Jia-Hong Huang, Kiang-Wee Lau, Ge-Ping Yu, Surf. Coat. Technol. 191 (2005) 17.
4. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Corros. Sci. 43 (2001) 2023.
5. F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Psichow, J. de Rijk, Thin Solid Films, 447-448 (2004) 449.
6. Mehdi H. Kazemeini, Alexander A. Berezin, Nobuhiko Fukuhara, Thin Solid Films 372 (2000) 70.
7. N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci. 185 (2001) 123.
8. F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, Surf. Coat. Technol. 174-175 (2003) 197.
9. A. Bittar, D. Cochrane, S. Caughley, I. Vickeridge, J. Vac. Sci. Technol. A15 (2) (1997) 223.
10. M. Lazaror, P. Raths, H. Metager, W. Spirkl, J. Appl. Phys. 77 (5) (1995) 2133.
11. J.-H. Huang, C.-Y. Hsu, S.-S Chen, G.-P. Yu, Mater. Chem. Phys. 77 (2002) 14.
12. M.Ohring, The Material Science of Thin Films, p.111, Academic Press, San Diego (1992).
13. J. Musil and J. Vlcek, Thin Solid Films, 343-344 (1999) 47.
14. McLeod PS, Hartsough LD, J. Vac. Sci. Technol. 14(1), (1977) 263.
15. Waits RK, J. Vac. Sci. Technol. 15(2), (1978) 263
16. B. Window, Surf. Coat. Technol. 71, (1995) 93.
17. Teer DG, US Patent No. 5 556 519.
18. P.J. Kelly, R.D. Arnell, Vacuum 56, (2000) 159.
19. Philippe E. Schmid, Masako Sato Sunaga, Francis Levy, J. Vac. Sci. Technol. A 16 (5) Sep/Oct (1998) 2870.
20. S. Veprek, Thin Solid Films 130 (1985) 135.
21. Yoichiro Tanaka, Edwin Kin, John Forster, Zheng Xu, J. Vac. Sci. Technol. B 17 (2) (1999) 416.
22. J. P Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, X. H. Liu, J. Phys. D: Appl. Phys. 30 (1997) 5.
23. Katsuhiro Yokota, Kazuhiro Nakamura, Tomohiko Kasuya, Katsuhia Mukai, Masami Ohnishi, J. Phys. D: Appl. Phys. 37 (2004) 1095.
24. I. Petrov, A. Myers, J. E. Greene, J. R. Abelson, J. Vac. Sci. Technol. A.12(5) Sep/Oct (1994) 2846.
25. H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, and J.E Sundgren, J. Appl. Phys., 80(12)(1996) 6725
26. J. O. Kim, J. D. Achenbach, P.B. Mirkarimi, M. Shinn, and S.A. Barnett, J. Appl. Phys., 72(5)(1992)1805
27. S. H. Mohamed, O. Kappertz, T. Niemeier, R. Drese, M. M. Wakkad, M. Wuttig, Thin Solid Films 468 (2004) 48.
28. P. Carvalho, F. Vaz, L. Rebbouta, L. Cunha, C. J. Tavares, C. Moura, J. Appl. Phys. 98 (2005) 023715/1.
29. J. O. Kim, J. D. Achenbach, P.B. Mirkarimi, M. Shinn, and S.A. Barnett, J. Appl. Phys. 72 (5) (1992) 1805.
30. Min J. Jung, Kyung H. Nam, Yun M. Chung, Jin H. Boo, Jeon, G. Han, Surf. Coat. Technol. 171 (2003) 71.
31. C. Mitterer., J. Komenda-Stallmaier, P. Losbichler, P. Schmolz, W.S.M. Werner, H.Stori, Vaccum 46 (1995) 1281.
32. Liaoying Zheng, Sens. Actuators B94 (2003) 294.
33. C. Hauf, R. Kniep, J. Mater. Sci. 34 (1999) 1287.
34. S. Asbrink and A. Magneli, Acta Crystallogr. 12 (1959) 575..
35. Masashige Onoda, J. Solid State Chem. 136 (1998) 76.
36. Y. Makino, M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K. Nogi, Surf. Coat. Technol., 98 (1998) 934.
37. S. Venkataraj, O. KappertzR. Jayavel, M. Wuttig, J. Appl. Phys. 92 (2002) 2461.
38. F. Fabreguette, L. ImhoV, J. Guillot, B. Domenichini, M.C. Marco de Lucas,P. Sibillot, S. Bourgeois, M. Sacilotti, Surf. Coat. Technol. 125 (2000) 396.
39. S. Collard, H. Kupfer, W. Hoyer, G. Hecht, Vacuum 55 (1999) 153.
40. Jean-Marie Chappe, Nicolas Martin, Guy Terwagne, Jan Lintymer, Joseph Gavoille, Jamal Takadoum, Thin Solid Films 440 (2003) 66.
41. M. Lottiaux, C. Boulesteix, G. Nihoul, F. Varnier, F. Flory, R. Galindo, E. Pelletier, Thin Solid Films 170 (1989) 107.
42. J.A. Thornton, J. Vac. Sci. Technol. 11 (1974) 666.
43. A. Bittar, D. Cochrane, S. Caughley, J. Vac. Sci. Technol. A15(2) (1997) 223.
44. N.J. Ianno, H. Enshashy, R.O. Dillon, Surf. Coat. Technol. 155 (2002) 130.
45. F. Vaz,, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau, J.P. Rivie`re, Thin Solid Films 469-470 (2004) 11.
46. L. Cunha,, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J.P. Rivie`re, Surf. Coat. Technol. 200 (2006) 2917.
47. J. Pelleg, L. Z. Zevin, S. Lungo and N. Croitora, Thin Solid Films 197 (1991) 117.
48. U. C. Oh and J. H. Je, J. Appl. Phys. 74 (3) (1993) 1692.
49. J. H. Je, D. Y. Noh, H. K. Kim, and K. S. Liang, J. Appl. Phys. 81(9) (1997) 6126.
50. H. Yumoto, M. Ishihara, J. Jpn. Assoc. Cryst. Growt. 23 (1996) 382. C1= L63: S. Logothetidis, I. Alexandrou, A. Paperdopoulos, J. Appl. Phys. 77 (3) (1995) 1043.
51. Carl Carney and Delcie Durham, J. Vac. Sci. Technol. A17(5) (1999) 2859.
52. J-S. Chun, I. Petrov, and J. E. Greene, J. Appl. Phys. 86(7) (1999) 6126.
53. P. Patsalas, C. Chartitidis, and L. Logothetidis, Surf. Coat. Technol. 125 (2000) 335.
54. S. Kodambaka, V. Petrova, A. Vailionis, P. Desjardins, D. G. Cahill, I. Petrov, and J. E. Greene, Thin Solid Films 392 (2001) 164.
55. J. E. Greene, Appl. Phys. Lett. 67 (20) 2928
56. D. Gall, S. Kodambaka, M. A. Wall, I. Petrov, and J. E. Greenea, S. Kodambaka, J. Appl. Phys. 93(11) (2003) 9086.
57. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 167 (2003)
58. A. Delblanc, M. Herranen, H. Ljungcrantz, J-O. Carlsson, J-E. Sundgren, Surf. Coat. Technol. 91 (1997) 208.
59. S. Logothetidis, I. Alexandrou, A. Paperdopoulos, J. Appl. Phys. 77 (3) (1995) 1043.
60. S. Niyomsoan, W. Grant, D.L. Olson, B. Mishra Thin Solid Films. 415 (2002) 187
61. C.A. Wert, R.M. Thomson, Physics of Solids, McGraw-Hill Series in Materials Science and Engineering, McGraw-Hill Book Co, New York, NY, 1964
62. F. Abeles, Optical Properties of Solids, North–Holland Publishing Co, 1972.
63. B.M. Loeffler, R.G. Burns, Am. Sci. 64 (Nov–Dec1976 ) 636.
64. R.H. Bube, Electrons in Solids: An Introductory Survey, 3rd edition, Academic Press, New York, NY, 1992.
65. American Society for Testing Materials, Symposium on Color, ASTM, Philadelphia, PA, 1941, p. 3.
66. P. Scherrer, Gott. Nachr. 2 (1918) 98.
67. Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray
Crystallography”, McGraw-Hill, New York (1958), p.233.
68. C. H. Ma, J. H. Huang, Haydn Chen, Thin Solid Films 418 (2002) 73.
69. ASTM standards, Section 3, 1996, B117, p.4, and G85, 0.350
70. Naresh C. Saha and Hadand G. Tompkins, J. Appl. Phys. 72 (7) (1992) 3072.
71. M. Matsuoka, S. Isotani, J. C. R. Mittani, and J. F. D. Chubaci, J. Vac. Sci. Technol. A 23(1) (2005) 137.
72. John F. Watts, John Wolstenholme, “An Introduction to Surface Analysis by XPS andAES”, John Wiley & Sons Ltd., (2003) p.64.
73. http://webbook.nist.gov/chemistry/
74. L. Wickikowski, B Kusz, L. Murawaki, K. Szaniawska, and B. Susla, Vaccum 54 (1999) 221.
75. J. Pouilleau, D. Devilliers, F. Garrido, S, Durand-Vidal, and E. Mahe, Mater. Sci. Eng. B47 (1997) 235.
76. E. Vogelzang, J. Sjollema, H.J. Boer, J.T.M. De. Hosson, J. Appl. Phys. 61(9) (1987) 4606.
77. Yuya Kajikawa, Suguru Noda, and Hiroshi Komiyama, J. Vac. Sci. Technol. A21(6) Nov/Dec (2003) 1943.
78. Mong Han Wang, “Effects of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by Unbalanced Magnetron Sputtering (UBM)” 2004, Master Thesis, National Tsing Hua University, R.O.C.
79. Wen-Jun Chou, Chun-Hsing Sun, Ge-Ping Yu, Jia-Hong Huang, Mater. Chem. Phys., vol.82 pp.228-236
80. Z. Wokulski, Phys. Stat. Solidi (a) 120(1990)175
81. J.-H. Huang, C,-H. Lin, C.-H. Ma, Haydn Chen, Scripta. Mater. 42, (2000) 573
82. Fan-Yi Ouyang, “Effect of Film Thickness and Ti Interlayer Thickness on the Structure and Properties of Nanocrystalline TiN Thin Film Deposited by Unbalanced Magnetron (UBM) Sputtering” 2004, Master Thesis, National Tsing Hua University, R.O.C.
83. I.A. Ovid’ko, SCIENCE VOL 295 29 MARCH 2002
84. Jakob Schi□tz* and Karsten W. Jacobsen, SCIENCE VOL 301 5 SEPTEMBER 2003
85. Shao Hsien Chiu, “Synthesis and Characterization of Nano-crystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System (UBMS)” 2006, Master Thesis, National Tsing Hua University, R.O.C.