簡易檢索 / 詳目顯示

研究生: 邱上睿
Shang-Jui Chiu
論文名稱: 摻雜氧對於奈米晶氮氧化鈦薄膜結構與性質之影響
Oxygen Doping on the Structure and Properties of Nanocrystalline Ti(N,O) Thin Film
指導教授: 喻冀平
Ge-Ping Yu
黃嘉宏
Jia-Hong Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 98
中文關鍵詞: 氮氧化鈦氧氣流量織構顏色
外文關鍵詞: Ti(N,O), oxygen flow rate, texture, color
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功的利用非平衡式磁控濺鍍法於350℃溫度下通入氧氣與氮氣鍍著出奈米晶氮氧化鈦薄膜於304不□鋼上。在研究中,主要探討改變氧氣流量對氮化鈦薄膜之組成、結構、性質以及腐蝕抗性的研究。從XPS及XRD的結果中我們發現了試片由TiN結構轉換成Ti3O5結構的取代現象。而由XRD圖我們發現了織構轉換的現象:由一開始的隨機分佈轉換成的(111)優選方向,而後又轉變成(200)優選方向。織構轉換是因為氧原子附著於TiN(200)面上阻止Ti原子移動至(111)面。轉換的成因是氧氣解離並阻礙Ti原子的移動。薄膜的硬度測量值可能受到膜與基材的附著力之影響。殘留應力可能受到薄膜當中非晶相的影響而對於氧含量的趨勢不明顯。硫酸動態極化的掃瞄結果顯示Ti3O5結構對於薄膜腐蝕抗性有著重要的影響,有著較高堆積密度之薄膜會有較好的腐蝕抗性。薄膜的顏色隨著氧含量由暖金色轉變成綠色,最後則變成粉紅色。顏色改變是因為試片中氮與氧原子會影響到TiN結構的可躍遷至導帶的自由電子數。


    Nano-crystalline Ti(N,O) films were successfully deposited on AISI 304 stainless steel substrates using unbalanced magnetron sputtering (UBM) system with addition of oxygen and nitrogen at 350℃. The effect of oxygen flow rate was investigated on the composition, microstructure and properties of Ti(N,O) thin films. From X-ray photoelectron spectroscopy (XPS) and XRD results, phase transformation of TiN phase displaced by Ti3O5 phase was observed. The diffraction patterns of XRD revealed that the texture evaluation from random distribution to (111) preferred orientation and then to (200) texture structure occurred at the oxygen content ranging from 4 to 5 at % and 5 to 23 at %. It was resulted from hindering of Ti adatoms by oxygen atoms stuck on (200) plane of TiN phase. The measured film hardness could be influenced by adhesion between the substrate and the films. Residual stress does not have clear trend with the oxygen content of films due to the possible effect of amorphous phase in the films. The results of potentiodynamic polarization test in 0.5M H2SO4 + 0.05M KSCN solution showed that Ti3O5 phase would affect the corrosion behavior. With higher packing density, Ti(N,O) thin films showed better corrosion resistance in H2SO4 solution. The results showed that the film coloration changes from warmer golden to vivid green and then to pink because N/Ti ratio influenced the free d electrons from Ti atoms and the number of free d electrons available for conductivity changes.

    Contents I Figures Caption ……………………………………………………………………… V Tables Caption ……………………………………………………………………….. VII Abstract………………………………………………………………………………… VIII Chapter 1 Introduction ……………………………………………………………… 1 Chapter 2 Literature Review ………………………………………………………... 3 2.1 Coating process ………………………………………………………………… 3 2.1.1 Unbalanced Magnetron sputtering …………………………………………. 3 2.2 Characteristics of Ti(N,O) films………………………………………………… 4 2.2.1 TiN phase …………………………………………………………………... 4 2.2.2 Characteristics of Ti(N,O) films……………………………………………. 5 2.2.3 Ti3O5 phase ……………………………………………………………......... 6 2.3 Effect of Processing Parameters on the Structure and Properties of TMeNxOy Films…………………………………………………………………………………… 6 2.3.1. Crystal structure………………...…………………………………………. 6 2.3.1.1. Deposition method ………………………………………………………. 6 2.3.1.2. Substitution ……………………………………………………………… 7 2.3.1.3. Structure Evolution………………………………………………………. 8 2.3.2 Texture Evolution…………………………………………………………… 9 2.3.2.1 Overall Energy …………………………………………………………… 9 2.3.2.2 Partial Pressure of N2……………………………....................................... 9 2.3.2.3 Surface diffusion …………………………………………………………. 10 2.3.2.4 Ion to Metal Ratio (Ji/JTi)………………………………………………… 11 2.3.2.5 Ti Adatom Chemical Potential…………………………………………… 12 2.4 Mechanical and Corrosion Properties…………………………………………… 14 2.4.1 Hardness…………………………………………………………………….. 14 2.4.2 Residual Stress……………………………………………………………… 14 2.4.3 Corrosion Properties………………………………………………………... 15 2.5 Coloration variation …………………………………………………………….. 16 2.5.1 Interband transition……………………………………………………......... 17 2.5.2 Absorption influenced by impurities……………………………………...... 17 2.5.3 Free-carrier absorption……………………………………………………… 18 Chapter 3 Experimental Details ……………………………………………………….. 20 3.1 Preparation of Substrate Material and Coating Process ………………………… 23 3.2 Characterization Methods ………………………………………………………. 24 3.2.1 X-ray Photoelectron Spectroscopy (XPS) …………………………………. 24 3.2.2 XRD and GIXRD ………………………………………………………… 25 3.2.3.. Rutherford Backscattering Spectroscopy (RBS) …………………………. 26 3.2.4 SIMS ……………………………………………………………………….. 27 3.3 Properties Measurement ………………………………………………………… 27 3.3.1 Hardness………….. ……………………………………………………….. 27 3.3.2 Roughness …………………………………………………………………. 28 3.3.3 Residual Stress (Modified XRD sin2ψ Method)………………………......... 28 3.3.4 Contact angle ……………………………………………………………..... 29 3.3.5 Corrosion Resistance ……………………………………………………… 29 3.3.5.1 Potentiodynamic Polarization…………………………………………….. 29 3.3.5.2 Salt spray test……………………………………………………………... 30 Chapter 4 Results …………………………………………………………………….. 32 4.1 Compositions (XPS) ……………………………………………………………. 32 4.1.1 The Full XPS Spectra of Ti(N,O) Thin Films ……………………………… 32 4.1.2 Individual XPS spectra of Ti-2p, N-1s and O-1s …………………………... 32 4.2 Structure ………………………………………………………………………… 46 4.2.1 SIMS ……………………………………………………………………….. 46 4.2.2 XRD diffraction …………………...……………………………………...... 46 4.2.3 Grain size …………………………………………………………………... 47 4.2.4 Glancing Incident X-ray diffraction (GIXRD)……………………………... 47 4.2.5 AFM ……………………………………... ………………………………. 53 4.2.6 Packing density …………………………………………………...………. 53 4.3 Properties ……………………………………………………………………….. 57 4.3.1 Coloration variations ……………………………………………………… 57 4.3.2 Hardness …………………………………………………………………... 57 4.3.3 Residual Stress …………………………………………………………….. 58 4.3.4 Corrosion Properties ……………………………………….………………. 65 4.3.5 Salt Spray Test…………………………………………….………………... 69 4.3.6 Contact angle..…………………………………………….………………... 69 Chapter 5 Discussion ……………………………………………………………….. 73 5.1 Substitution …………………………………………………............................... 73 5.2 Texture Evolution ……………………………………………………………….. 77 5.3 Mechanical and Electrical Properties ………………………………………….. 81 5.3.1 Film thickness ………………...…………………………………………... 81 5.3.2 Packing density ………………………………………………………….... 81 5.3.3 Residual stress……. ………………………………………………………. 82 5.3.4 Surface properties of AISI 304 stainless steel and corrosion properties…... 83 5.3.5 Hardness…………………………………………………………………… 87 5.3.6 Coloration Variations………………………………………………………. 88 Chapter 6 Conclusions ……………………………………………………………… 92 References …………………………………………………………………………… 93 Figures Caption Fig 2.1 Schematic of the L*a*b* color space (1976)…………………………... 20 Fig. 4.1 Full XPS spectra of Ti(N,O) thin films deposited at 0 sccm of oxygen flow rate………………………………………………………………… 35 Fig. 4.2 The deconvolution of XPS spectra of Ti-2p for samples deposited at (a) 0 sccm(b) 1.5 sccm of oxygen flow ………………………………...... 36 Fig. 4.3 The deconvolution of XPS spectra of N–1s for samples deposited at (a) 0 sccm(b) 1.5 sccm of oxygen flow ……………………….................... 37 Fig. 4.4 The deconvolution of XPS spectra of O-1s for samples deposited at (a) 0 sccm(b) 1.5 sccm of oxygen flow …………………………................ 38 Fig. 4.5 XPS spectra of Ti 3d with different oxygen flow rates ……………… 39 Fig. 4.6 XPS spectra of N 1s with different oxygen flow rates……………….... 40 Fig. 4.7 XPS spectra of O 1s with different oxygen flow rates ………………... 41 Fig. 4.8 The variation of Ti, O, N in Ti(N,O) films with respect of oxygen flow rate from 0 to 1.5sccm ……..................................................................... 42 Fig 4.9 The fraction of chemisorbed oxygen to titanium versus oxygen flow rate ……………………………………………………………………… 45 Fig. 4.10 The SIMS depth profile for samples with (a) 0 sccm (b) 0.625 sccm (c) 1.5 sccm oxygen flow rate……………………………………………... 49 Fig. 4.11 The XRD patterns for all specimens deposited at the oxygen flow rate ranging from 0 to 1.5 sccm…………………………………………….. 50 Fig. 4.12 The variation of grain size with oxygen content ……………………… 51 Fig. 4.13 The GIXRD patterns for specimens deposited at the oxygen flow rate ranging from 0 to 1.5 sccm ……………………………………………. 52 Fig 4.14 The AFM images with oxygen contents (a)0 at % (b)30 at % (c)50 at% ……………………………………………………………………. 54 Fig. 4.15 The variation of Rrms with the oxygen content ……………………..…. 56 Fig. 4.16 The variation of packing density with oxygen content…….………….. 53 Fig. 4.17 Coloration Variation with oxygen flow rate ………..……..................... 59 Fig. 4.18 The variation of L*value with oxygen content ………………………... 60 Fig. 4.19 The variation of a*value with oxygen content ………………………… 61 Fig. 4.20 The variation of a*value with oxygen content ………………………… 62 Fig. 4.21 The variation of hardness with oxygen content ………………….……. 63 Fig. 4.22 The variation of residual stress with oxygen content ….…………….... 64 Fig. 4.23 The variation of Icorr and Ecorr with different oxygen flow rate………… 66 Fig. 4.24 The variation of Icorr with oxygen content in 0.5M H2SO4 + 0.05MKSCN solution…………………………………………………... 68 Fig. 4.25 The variation of corrosion area with oxygen content………………….. 71 Fig. 4.26 The variation of contact angle with oxygen content…………………… 72 Fig. 5.1 The O/Ti, N/Ti and (N+O)/Ti ratios in TiN and Ti3O5, phases with different oxygen contents (without unbinding ratio)…………………… 75 Fig. 5.2 The ratios of TiO2 bonds, TiN bonds and TiNO bonds in TiN and Ti3O5 phases with different oxygen contents (without unbinding ratio)……… 76 Fig. 5.3 The variation of fraction of chemisorbed oxygen with (200) textute coefficient………………………………………………………………. 80 Fig. 5.4 The variation of Icorr with packing density……………………………... 85 Fig. 5.5 The AFM images with AISI stainless steel substrate…………………... 86 Fig. 5.6 The variation of b* values with N/Ti ratio…………………………….. 90 Fig. 5.7 The variation of L* values with packing density …………………….. 91 Tables Caption Table 3.1 The coating conditions of Ti(N,O) thin films ……………………………. 22 Table 3.2 Sample numbers with coating condition………………………………….. 23 Table 3.3 The conditions of spray test………………………………………………. 31 Table 4.1 The experimental results of Ti(N,O) thin film for samples deposited on SS304 at different oxygen flow rates …………………………………..... 43 Table 4.2 The properties of Ti(N,O) thin film for samples deposited on SS304 at different oxygen flow rate………………………………………………… 44 Table 4.3 CIE 1976 L*, a*, b*values for samples (S0-S7) versus oxygen content…. 59 Table 4.4 The results of the potentiodynamic polarization scan of all specimens in 0.5M H2SO4 + 0.05M KSCN solution…………………………………... 67 Table 4.5 The corrosion area percentage of all specimens after 500-hr salt spray test………………………………………………………………………… 70

    1. Ti(N,O) thin films with a variety of oxygen content were deposited on an AISI 304 stainless steel substrate by unbalanced magnetron sputtering system (UBMS).

    2. A crystallographic structure evolution transformed from NaCl-type TiN phase to a monoclinic - type Ti3O5 phase was observed.

    3. The texture evolution of NaCl-type TiN phase from the (111) preferred orientation to the (200) dominated orientation occurred at 23 at % of oxygen content in Ti(N,O) thin films.

    4. The packing density of Ti(N,O) thin films decreases with increasing of the oxygen content because of the crystal structure transformation to a loose Ti3O5 phase

    5. The compressive residual stress increased with ion bombardment and then decreased with the oxygen content above 23 at % due to the possible effect of amorphous phase in the films.

    6. The coloration of TiNxOy thin films changed from light gold to dark gold to pink with oxygen content increased. N/Ti ratio and packing density might be the major factor to influence the L*, a*, b* values of samples.

    7. The corrosion resistance of TiN phase with higher packing density showed higher corrosion resistance. With appearance of Ti3O5 phase, increase of Icorr in Ti3O5 phase is resulted from decrease of the packing density.

    Reference
    1. Jia-Hong Huang, Hao-Chung Yang, Xing-Jian Guo, Ge-Ping Yu, Surf. Coat. Technol. 195 (2005) 204.
    2. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 168 (2003) 43.
    3: Jia-Hong Huang, Kiang-Wee Lau, Ge-Ping Yu, Surf. Coat. Technol. 191 (2005) 17.
    4. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Corros. Sci. 43 (2001) 2023.
    5. F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Psichow, J. de Rijk, Thin Solid Films, 447-448 (2004) 449.
    6. Mehdi H. Kazemeini, Alexander A. Berezin, Nobuhiko Fukuhara, Thin Solid Films 372 (2000) 70.
    7. N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci. 185 (2001) 123.
    8. F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, Surf. Coat. Technol. 174-175 (2003) 197.
    9. A. Bittar, D. Cochrane, S. Caughley, I. Vickeridge, J. Vac. Sci. Technol. A15 (2) (1997) 223.
    10. M. Lazaror, P. Raths, H. Metager, W. Spirkl, J. Appl. Phys. 77 (5) (1995) 2133.
    11. J.-H. Huang, C.-Y. Hsu, S.-S Chen, G.-P. Yu, Mater. Chem. Phys. 77 (2002) 14.
    12. M.Ohring, The Material Science of Thin Films, p.111, Academic Press, San Diego (1992).
    13. J. Musil and J. Vlcek, Thin Solid Films, 343-344 (1999) 47.
    14. McLeod PS, Hartsough LD, J. Vac. Sci. Technol. 14(1), (1977) 263.
    15. Waits RK, J. Vac. Sci. Technol. 15(2), (1978) 263
    16. B. Window, Surf. Coat. Technol. 71, (1995) 93.
    17. Teer DG, US Patent No. 5 556 519.
    18. P.J. Kelly, R.D. Arnell, Vacuum 56, (2000) 159.
    19. Philippe E. Schmid, Masako Sato Sunaga, Francis Levy, J. Vac. Sci. Technol. A 16 (5) Sep/Oct (1998) 2870.
    20. S. Veprek, Thin Solid Films 130 (1985) 135.
    21. Yoichiro Tanaka, Edwin Kin, John Forster, Zheng Xu, J. Vac. Sci. Technol. B 17 (2) (1999) 416.
    22. J. P Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, X. H. Liu, J. Phys. D: Appl. Phys. 30 (1997) 5.
    23. Katsuhiro Yokota, Kazuhiro Nakamura, Tomohiko Kasuya, Katsuhia Mukai, Masami Ohnishi, J. Phys. D: Appl. Phys. 37 (2004) 1095.
    24. I. Petrov, A. Myers, J. E. Greene, J. R. Abelson, J. Vac. Sci. Technol. A.12(5) Sep/Oct (1994) 2846.
    25. H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, and J.E Sundgren, J. Appl. Phys., 80(12)(1996) 6725
    26. J. O. Kim, J. D. Achenbach, P.B. Mirkarimi, M. Shinn, and S.A. Barnett, J. Appl. Phys., 72(5)(1992)1805
    27. S. H. Mohamed, O. Kappertz, T. Niemeier, R. Drese, M. M. Wakkad, M. Wuttig, Thin Solid Films 468 (2004) 48.
    28. P. Carvalho, F. Vaz, L. Rebbouta, L. Cunha, C. J. Tavares, C. Moura, J. Appl. Phys. 98 (2005) 023715/1.
    29. J. O. Kim, J. D. Achenbach, P.B. Mirkarimi, M. Shinn, and S.A. Barnett, J. Appl. Phys. 72 (5) (1992) 1805.
    30. Min J. Jung, Kyung H. Nam, Yun M. Chung, Jin H. Boo, Jeon, G. Han, Surf. Coat. Technol. 171 (2003) 71.
    31. C. Mitterer., J. Komenda-Stallmaier, P. Losbichler, P. Schmolz, W.S.M. Werner, H.Stori, Vaccum 46 (1995) 1281.
    32. Liaoying Zheng, Sens. Actuators B94 (2003) 294.
    33. C. Hauf, R. Kniep, J. Mater. Sci. 34 (1999) 1287.
    34. S. Asbrink and A. Magneli, Acta Crystallogr. 12 (1959) 575..
    35. Masashige Onoda, J. Solid State Chem. 136 (1998) 76.
    36. Y. Makino, M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K. Nogi, Surf. Coat. Technol., 98 (1998) 934.
    37. S. Venkataraj, O. KappertzR. Jayavel, M. Wuttig, J. Appl. Phys. 92 (2002) 2461.
    38. F. Fabreguette, L. ImhoV, J. Guillot, B. Domenichini, M.C. Marco de Lucas,P. Sibillot, S. Bourgeois, M. Sacilotti, Surf. Coat. Technol. 125 (2000) 396.
    39. S. Collard, H. Kupfer, W. Hoyer, G. Hecht, Vacuum 55 (1999) 153.
    40. Jean-Marie Chappe, Nicolas Martin, Guy Terwagne, Jan Lintymer, Joseph Gavoille, Jamal Takadoum, Thin Solid Films 440 (2003) 66.
    41. M. Lottiaux, C. Boulesteix, G. Nihoul, F. Varnier, F. Flory, R. Galindo, E. Pelletier, Thin Solid Films 170 (1989) 107.
    42. J.A. Thornton, J. Vac. Sci. Technol. 11 (1974) 666.
    43. A. Bittar, D. Cochrane, S. Caughley, J. Vac. Sci. Technol. A15(2) (1997) 223.
    44. N.J. Ianno, H. Enshashy, R.O. Dillon, Surf. Coat. Technol. 155 (2002) 130.
    45. F. Vaz,, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau, J.P. Rivie`re, Thin Solid Films 469-470 (2004) 11.
    46. L. Cunha,, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J.P. Rivie`re, Surf. Coat. Technol. 200 (2006) 2917.
    47. J. Pelleg, L. Z. Zevin, S. Lungo and N. Croitora, Thin Solid Films 197 (1991) 117.
    48. U. C. Oh and J. H. Je, J. Appl. Phys. 74 (3) (1993) 1692.
    49. J. H. Je, D. Y. Noh, H. K. Kim, and K. S. Liang, J. Appl. Phys. 81(9) (1997) 6126.
    50. H. Yumoto, M. Ishihara, J. Jpn. Assoc. Cryst. Growt. 23 (1996) 382. C1= L63: S. Logothetidis, I. Alexandrou, A. Paperdopoulos, J. Appl. Phys. 77 (3) (1995) 1043.
    51. Carl Carney and Delcie Durham, J. Vac. Sci. Technol. A17(5) (1999) 2859.
    52. J-S. Chun, I. Petrov, and J. E. Greene, J. Appl. Phys. 86(7) (1999) 6126.
    53. P. Patsalas, C. Chartitidis, and L. Logothetidis, Surf. Coat. Technol. 125 (2000) 335.
    54. S. Kodambaka, V. Petrova, A. Vailionis, P. Desjardins, D. G. Cahill, I. Petrov, and J. E. Greene, Thin Solid Films 392 (2001) 164.
    55. J. E. Greene, Appl. Phys. Lett. 67 (20) 2928
    56. D. Gall, S. Kodambaka, M. A. Wall, I. Petrov, and J. E. Greenea, S. Kodambaka, J. Appl. Phys. 93(11) (2003) 9086.
    57. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 167 (2003)
    58. A. Delblanc, M. Herranen, H. Ljungcrantz, J-O. Carlsson, J-E. Sundgren, Surf. Coat. Technol. 91 (1997) 208.
    59. S. Logothetidis, I. Alexandrou, A. Paperdopoulos, J. Appl. Phys. 77 (3) (1995) 1043.
    60. S. Niyomsoan, W. Grant, D.L. Olson, B. Mishra Thin Solid Films. 415 (2002) 187
    61. C.A. Wert, R.M. Thomson, Physics of Solids, McGraw-Hill Series in Materials Science and Engineering, McGraw-Hill Book Co, New York, NY, 1964
    62. F. Abeles, Optical Properties of Solids, North–Holland Publishing Co, 1972.
    63. B.M. Loeffler, R.G. Burns, Am. Sci. 64 (Nov–Dec1976 ) 636.
    64. R.H. Bube, Electrons in Solids: An Introductory Survey, 3rd edition, Academic Press, New York, NY, 1992.
    65. American Society for Testing Materials, Symposium on Color, ASTM, Philadelphia, PA, 1941, p. 3.
    66. P. Scherrer, Gott. Nachr. 2 (1918) 98.
    67. Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray
    Crystallography”, McGraw-Hill, New York (1958), p.233.
    68. C. H. Ma, J. H. Huang, Haydn Chen, Thin Solid Films 418 (2002) 73.
    69. ASTM standards, Section 3, 1996, B117, p.4, and G85, 0.350
    70. Naresh C. Saha and Hadand G. Tompkins, J. Appl. Phys. 72 (7) (1992) 3072.
    71. M. Matsuoka, S. Isotani, J. C. R. Mittani, and J. F. D. Chubaci, J. Vac. Sci. Technol. A 23(1) (2005) 137.
    72. John F. Watts, John Wolstenholme, “An Introduction to Surface Analysis by XPS andAES”, John Wiley & Sons Ltd., (2003) p.64.
    73. http://webbook.nist.gov/chemistry/
    74. L. Wickikowski, B Kusz, L. Murawaki, K. Szaniawska, and B. Susla, Vaccum 54 (1999) 221.
    75. J. Pouilleau, D. Devilliers, F. Garrido, S, Durand-Vidal, and E. Mahe, Mater. Sci. Eng. B47 (1997) 235.
    76. E. Vogelzang, J. Sjollema, H.J. Boer, J.T.M. De. Hosson, J. Appl. Phys. 61(9) (1987) 4606.
    77. Yuya Kajikawa, Suguru Noda, and Hiroshi Komiyama, J. Vac. Sci. Technol. A21(6) Nov/Dec (2003) 1943.
    78. Mong Han Wang, “Effects of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by Unbalanced Magnetron Sputtering (UBM)” 2004, Master Thesis, National Tsing Hua University, R.O.C.
    79. Wen-Jun Chou, Chun-Hsing Sun, Ge-Ping Yu, Jia-Hong Huang, Mater. Chem. Phys., vol.82 pp.228-236
    80. Z. Wokulski, Phys. Stat. Solidi (a) 120(1990)175
    81. J.-H. Huang, C,-H. Lin, C.-H. Ma, Haydn Chen, Scripta. Mater. 42, (2000) 573
    82. Fan-Yi Ouyang, “Effect of Film Thickness and Ti Interlayer Thickness on the Structure and Properties of Nanocrystalline TiN Thin Film Deposited by Unbalanced Magnetron (UBM) Sputtering” 2004, Master Thesis, National Tsing Hua University, R.O.C.
    83. I.A. Ovid’ko, SCIENCE VOL 295 29 MARCH 2002
    84. Jakob Schi□tz* and Karsten W. Jacobsen, SCIENCE VOL 301 5 SEPTEMBER 2003
    85. Shao Hsien Chiu, “Synthesis and Characterization of Nano-crystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System (UBMS)” 2006, Master Thesis, National Tsing Hua University, R.O.C.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE