簡易檢索 / 詳目顯示

研究生: 巴士羅
Basrul
論文名稱: Interpolation between Outline Font Characters
向量字型字元的內插法
指導教授: 潘雙洪
Poon, Sheung-Hung
口試委員: 黃世強
Wong, Sai-Keung
陳朝欽
Chen, Chaur-Chin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 82
中文關鍵詞: 貝茲曲線內插法分段式
外文關鍵詞: Bézier curve, Interpolation, Subdividing.
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Outline font is one of method to represent font that consists of a series of straight line segments
    or curves. Usually they are designed as Bézier curves. In this thesis, we are going
    to interpolate two different outline fonts. We propose a pretty simple algorithm to solve
    this problem. We input two different outline fonts. Then we perform subdividing or cutting
    curve before interpolation. We cannot directly interpolate them because the composition of
    each font character is quite different, such as the total number of curves, position and size
    are totally different. We use subdividing curve method for cutting curve. The final output
    of total number curves of first and second font should then be same. Then we perform interpolation
    from the first to second font at any time point 0 · t · 1. For each t value, we
    can create a new curve as the final output for new outline font after interpolation. We also
    provide some experimentation results.


    Acknowledgements Abstract Contens List of Figures List of Tables 1 Introduction 1.1 Problem 1.2 1.2 Related Work 1.3 Outline 2 Background 2.1 Bézier Curve 2.2 Subdivision of Bezier Curve 2.3 Font Representation 3 Algorithm 3.1 Algorithm Overview 3.2 Algorithm Detail 3.3 Limitations of Algorithm 4 Implementation and Experimentation 5 Conclusion Bibliography

    [1] M. K. Agoston. Computer Graphics and Geometric Modelling: Implementation and
    Algorithms. Springer, USA, 2004.
    [2] A. L. Ahmad. Approximation of a bézier curve with a minimal number of line seg-
    ments. Master’s thesis, Universiy of South Alabama, 2001.
    [3] C. Alavala. CAD/CAM: Concept and Applications. PHI, New Delhi, 2009.
    [4] S. H. Baloch, H. Krim, W. Mio, and A. Srivastava. 3d curve interpolation and ob-
    ject reconstruction. IEEE Internationl Conference on Image Processiong, 2:982–985,
    2005.
    [5] S. R. Buss. 3-D Computer Graphics: A mathematical introduction with opengl. Cam-
    bridge University Press, New York, 2003.
    [6] S. Chavan. Rapidex DTP Course. Unicorn Books Pvt.Ltd., New Delhi, 2005.
    [7] S. Erdogan. A comparision of interpolation methods for producing digital elevation
    models at the field scale. Earth Surfaces Process Landforms, 34:366–376, 2009.
    [8] J. Fisher, J. Lowther, and C. K. Shene. Curve and surface interpolation and approxi-
    mation: knowledge unit and software tool. Proceedings of Innovation and Technology
    in Computer Science Education, 36(3):146–150, 2004.
    [9] M. Ganesh. Basics of Computer Aided Geometric Design: An Algorithm Approach.
    I.K International, New Delhi, 2008.
    [10] S. Gao, Z. Zhang, and C. Cao. Particle swarm algorithm for the shortest bézier curve.
    Intelligent Systems and Applications (ISA), pages 1–4, 2009.
    [11] R. Goldman. Pyramid Algorithm: A dynamic programming approach to curves and
    surfaces for geometric modelling. Elsevier Science, USA, 2003.
    [12] K. Itoh and Y. Ohno. A curve fitting algorithm for character fonts. Electronic Pub-
    lishing, 6(3):195–205, 1993.
    [13] P. Jamjuntr. Thai font type recognition using linear interpolation analysis. Computer
    Graphics, Imaging and Visualization, pages 406–409, 2009.
    [14] M. A. Khan. An efficient design font method. Master’s thesis, King Fahd University
    of Petroleum & Minerals, 2001.
    [15] T. M. Lehmann, C. Gonner, and K. Spitzer. Survey: Interpolation methods in medical
    image processing. IEEE Transactions on Medical Imaging, 18(11):1049–1075, 1999.
    [16] M.Abbas, E. Jamal, and J. M. Ali. Bézier curve interpolation constrained by a line.
    Applied Mathematica Sciences, 5(37):1817–1832, 2011.
    [17] D. Marsh. Applied Geometry for Computer Graphics and CAD. Springer-Verlag,
    London, 2005.
    [18] J. J. McConnell. Computer Graphics: Theory into Practice. Jones & Bartlett Pub-
    lisher, Inc., USA, 2006.
    [19] D. Meek, B. Ong, and D. Walton. Constrained interpolation with rational cubics.
    Computer Aided Geometric Design, 20:253–275, 2003.
    [20] P. Pandunata, Shamsuddin, and S. Mariyam. Differential evolution optimization for
    bézier curve fitting. Computer Graphics, Imaging and Visualization (CGIV), pages
    68–72, 2010.
    [21] J. G. Pu, X. P. Xu, and S. Q. Wu. A universal interpolation algorithm for parametric
    curves. Electrical and Control Engineering (ICECE), pages 311–314, 2010.
    [22] T. Rabinowitz. Exploring Typography. Thomson/Delmar Learning, Inc., USA, 2006.
    [23] S. P. Regalla. Computer Aided Analysis and Design. I.K International, New Delhi,
    2010.
    [24] D. F. Rogers. An Introduction to NURBS : with Historical Perspective. Morgan Kauf-
    mann, 2001.
    [25] D. Salomon. Curves and Surfaces for Computer Graphics. Springer, 2006.
    [26] M. Sarfraz. Some algorithms for curve design and automatic outline capturing of
    images. International Journal of Image and Graphics, 4(2):301–324, 2004.
    [27] M. Sarfraz and S. Raza. Towards automatic recognition of fonts using genetic ap-
    proach. Recent Advances in Computers, Computing and Communication, pages 290–
    295, 2002.
    [28] M. Sarfraz and M. Razzak. An algorithm for automatic capturing of the font outlines.
    Computer and Graphics, pages 795–804, 2002.
    [29] L. Shao and H. Zhou. Curve fitting with bézier cubics. Graphical Models and Image
    Processing, 58(3):223–232, 1996.
    [30] P. Shirley and S. Marschner. Fundamental of Computer Graphics. Taylor and Francis
    Group, USA, 2010.
    [31] R. W. Smith. LPIC-1: Linux Professional Institue Certification Study Guide. John
    Wiley & Sons, Inc., Indiana, 2013.
    [32] F. A. Sohel, L. S. Dooley, and G. C. Karmakar. A dynamic bézier curve model. Image
    Processing (ICIP), 2:II–474–7, 2005.
    [33] F. A. Sohel, L. S. Dooley, and G. C. Karmakar. A novel half-way shifting bézier curve
    model. TENCON 2005 IEEE Region 10, pages 1–6, 2005.
    [34] K. P. Soman, K.I.Ramachandran, and N.G.Resmi. Insight into Wavelets: From theory
    to practice. PHI, New Delhi, 2010.
    [35] P. Thevenaz, T. Blu, and M. Unser. Interpolation revisited. IEEE Transaction on
    Medical Imaging, 19(7):739–758, 2000.
    [36] J. A. Tierney. Calculus and Analytic Geometry. Allyn and Bacon, Inc., 1975.
    [37] A. F. Wahab, R. Zakaria, and J. M. Ali. Fuzzy interpolation rational bézier curve.
    Computer Graphics, Imaging and Visualization (CGIV), pages 63–67, 2010.
    [38] H. M. Yang, J. J. Lu, and H. J. Lee. A bézier curve-based approach to shape description
    for chinese calligraphy characters. Proceedings Document Analysis and Recognition,
    pages 276–280, 2001.
    [39] C. Zhang and F. Cheng. Constructing parametric quadratic curves. Computational
    and Applied Mathematics, 102:21–36, 1999.
    [40] J. Y. Zhao, H. Guo, and N. Jiang. The design and development of outline fonts of the
    dai characters based on opentype. International Symposium on Electronic Commerce
    and Security, 2009.
    [41] I. Zied and R. Sivasubramanian. CAD/CAM: Theory and Practice. McGraw-Hill, Inc.,
    2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE