簡易檢索 / 詳目顯示

研究生: 黃聖閔
Huang, Sheng-Min
論文名稱: 注意力不足過動症之動物模式的大腦網路
The Brain Networks of an ADHD Animal Model
指導教授: 王福年
Wang, Fu-Nien
口試委員: 葉子成
鍾孝文
林發暄
黃騰毅
彭旭霞
彭馨蕾
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 85
中文關鍵詞: 靜息態功能性磁振造影大腦網路注意力不足過動症過動症自發性高血壓大鼠疾病發展
外文關鍵詞: resting state fMRI, brain network, ADHD, Spontaneously hypertensive rat, disease development
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 靜息態功能性磁振造影在近幾年來受到受到相當大的注目。藉由偵測大腦於休息狀態下的低頻訊號擾動,可以得到於休息狀態下的大腦連結,稱之為靜息態網路。靜息態功能性磁振造影目前已被運用於許多神經精神疾病的臨床研究,如注意力不足過動症。然而在注意力不足過動症的動物模式上,仍幾乎未有相關的靜息態網路研究。由於動物模式能協助我們了解人類疾病的病理,本篇論文將利用靜息態功能性磁振造影與擴散磁振造影來探討注意力不足過動症的大鼠模式:自發性高血壓大鼠(SHR) 的大腦網路。
    首先,我們比較SHR與其對照組WKY大鼠於6週齡時的靜息態網路差異。結果顯示SHR大鼠的預設模式網路中,大腦紋狀體與與海馬迴部分區域有異常的活化現象。我們亦發現,這兩種大鼠在這些腦區的擴散磁振造影結果也有所不同。由於前額葉-紋狀體迴路的異常一直以來被認為與注意力不足過動症有所相關,我們的發現應能支持SHR大鼠的紋狀體功能異常與其症狀有關。
    於論文第二部分,我們針對不同週齡的大鼠進行研究,包含6週至10週大的SHR與WKY。相對於穩定的WKY,我們發現SHR大鼠的預設模式網路強度會隨著週齡增長而減小,主要在於紋狀體區域與前額葉皮質內側。而在擴散磁振造影方面,擴散參數亦能反映出SHR與WKY的差異,包含紋狀體與前額葉皮質內側。這些研究結果顯示,紋狀體與前額葉皮質內側這兩個區域在SHR大鼠的疾病發展上有著重要的地位。
    總結而言,紋狀體區域在SHR大鼠這個注意力不足過動症的動物模式上扮演著一個重要的角色。除了一般常見的動物行為分析以外,本篇論文的研究結果提供了腦功能層面上的資訊。因此,未來將能利用靜息態功能性磁振造影與SHR大鼠這個動物模式,來拓展注意力不足過動症的研究。


    Resting state functional magnetic resonance imaging (rs-fMRI) has received enormous attention since its discovery more than a decade ago. Rs-fMRI detects the intrinsic low-frequency fluctuations of brain and uncovers the brain connectivity termed resting state networks (RSNs). This technique has been employed on investigating several neuropsychological disorders including attention deficit and hyperactivity disorder (ADHD). However, the rs-fMRI study on ADHD animal model remains unexplored. Since animal model provides a beneficial pathway to discover the pathologies of diseases, we aim to investigate brain networks of an ADHD rodent model: spontaneously hypertensive rat (SHR). In this dissertation, rs-fMRI and diffusion MRI were utilized for exploring the brain networks of SHR rat.
    In the first part, SHR and Wistar Kyoto rat (WKY) at 6 weeks old were compared. The default mode network (DMN), which is the most prominent RSN, was derived by using retrosplenial cortex as seed. Our results showed that the major DMN differences are the activities in caudate putamen and hippocampus region. Diffusion scalars also reported abnormality in these regions. Since the dysfunction of prefrontal striatal circuits has long been considered a correlate of ADHD, our findings could support that the striatal dysfunction in SHR rats is related to ADHD symptom.
    In the second part, the developmental changes in brain networks were investigated. Animals from 6 to 10 weeks old underwent rs-fMRI and diffusion MRI experiments. The age-related reduction of DMN activity was identified in the caudate putamen and the medial prefrontal cortex of SHR rats. Furthermore, diffusion scalars reflect the microstructural differences between SHR and WKY rats at the same time. Our results suggest the importance of caudate putamen and medial prefrontal cortex in the development of ADHD research using SHR model.
    In summary, the striatal area plays an important role in this ADHD rat model. In addition to the conventional behavior evidence on SHR rat, the network details in this dissertation offer an insight into brain function, suggesting the possibility of further ADHD research on rodent models through rs-fMRI techniques.

    CONTENTS ABSTRACT………………………………………………..……………………I CONTENTS…………………………………………………………….…..IV LIST OF FIGURES……………………………………………….………VI LIST OF TABLES………………………………………….….....………VII Chapter 1: Introduction 1 1.1 Background 1 1.2 Attention deficit and hyperactivity disorder and its animal model 4 1.3 Resting state functional MRI and ADHD 8 1.4 Diffusion MRI and ADHD 13 1.5 Objectives 15 Chapter 2: The brain networks of ADHD rat model 16 2.1 Introduction 16 2.2 Materials and Methods 18 2.2.1 Identification of the resting state functional networks 19 2.2.1.1 Resting state MRI acquisition 19 2.2.1.2 Data analysis 20 2.2.2 The effect of isoflurane anesthesia on stimulus-provoked BOLD signal changes 23 2.2.2.1 Forepaw stimulation paradigm 23 2.2.2.2 fMRI acquisition 23 2.2.2.3 Data analysis 24 2.2.3 Diffusion MRI on ADHD rat model 25 2.2.3.1 Diffusion MRI acquisition 25 2.2.3.2 Data analysis 25 2.3 Results 28 2.3.1 Identification of the resting state functional networks 28 2.3.2 The effect of isoflurane anesthesia on stimulus-provoked BOLD signal changes 36 2.3.3 Diffusion MRI on ADHD rat model 38 2.4 Discussions 40 2.5 Conclusion 52 Chapter 3: Age effect on brain networks of ADHD rodent model: A preliminary study 53 3.1 Introduction 53 3.2 Materials and Methods 55 3.3 Results 56 3.3.1 Age effect on resting state networks 56 3.3.2 Age effect on diffusion scalars 58 3.4 Discussions 60 3.5 Conclusion 64 Chapter 4: Summary and Future Works 65 4.1 Summary 65 4.2 Future works 67 Bibliography 68 Appendices 80 Appendix A 80 Appendix B 82 Appendix C 84

    1. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34(4):537-541.
    2. Moussa MN, Steen MR, Laurienti PJ, Hayasaka S. Consistency of network modules in resting-state FMRI connectome data. PLoS One 2012;7(8):e44428.
    3. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences 2008;1124:1-38.
    4. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage 2007;37(4):1083-1090; discussion 1097-1089.
    5. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW. Conceptual processing during the conscious resting state. A functional MRI study. Journal of cognitive neuroscience 1999;11(1):80-95.
    6. Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH. Decoupling of the brain's default mode network during deep sleep. Proc Natl Acad Sci U S A 2009;106(27):11376-11381.
    7. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003;100(1):253-258.
    8. Greicius MD, Menon V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. Journal of cognitive neuroscience 2004;16(9):1484-1492.
    9. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 2006;103(37):13848-13853.
    10. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 2009;106(31):13040-13045.
    11. Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 2013;34(10):1866-1872.
    12. Posner J, Park C, Wang Z. Connecting the dots: a review of resting connectivity MRI studies in attention-deficit/hyperactivity disorder. Neuropsychology review 2014;24(1):3-15.
    13. Konrad K, Eickhoff SB. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp 2010;31(6):904-916.
    14. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, Shaw D, Shehzad Z, Di Martino A, Biswal B, Sonuga-Barke EJ, Rotrosen J, Adler LA, Milham MP. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 2008;63(3):332-337.
    15. Tian L, Jiang T, Wang Y, Zang Y, He Y, Liang M, Sui M, Cao Q, Hu S, Peng M, Zhuo Y. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett 2006;400(1-2):39-43.
    16. Hoekzema E, Carmona S, Ramos-Quiroga JA, Richarte Fernandez V, Bosch R, Soliva JC, Rovira M, Bulbena A, Tobena A, Casas M, Vilarroya O. An independent components and functional connectivity analysis of resting state fMRI data points to neural network dysregulation in adult ADHD. Hum Brain Mapp 2014;35(4):1261-1272.
    17. van Ewijk H, Heslenfeld DJ, Zwiers MP, Buitelaar JK, Oosterlaan J. Diffusion tensor imaging in attention deficit/hyperactivity disorder: a systematic review and meta-analysis. Neurosci Biobehav Rev 2012;36(4):1093-1106.
    18. Sato JR, Hoexter MQ, Castellanos XF, Rohde LA. Abnormal brain connectivity patterns in adults with ADHD: a coherence study. PLoS One 2012;7(9):e45671.
    19. Sonuga-Barke EJ, Castellanos FX. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 2007;31(7):977-986.
    20. Zametkin AJ, Nordahl TE, Gross M, King AC, Semple WE, Rumsey J, Hamburger S, Cohen RM. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. The New England journal of medicine 1990;323(20):1361-1366.
    21. Biederman J, Spencer T. Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiat 1999;46(9):1234-1242.
    22. LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N, Kennedy JL. Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry 1996;1(2):121-124.
    23. Russell VA. Overview of animal models of attention deficit hyperactivity disorder (ADHD). Current protocols in neuroscience / editorial board, Jacqueline N Crawley [et al] 2011;Chapter 9:Unit9 35.
    24. Barkley RA. Major life activity and health outcomes associated with attention-deficit/hyperactivity disorder. J Clin Psychiatry 2002;63 Suppl 12:10-15.
    25. Biederman J, Petty CR, Fried R, Kaiser R, Dolan CR, Schoenfeld S, Doyle AE, Seidman LJ, Faraone SV. Educational and occupational underattainment in adults with attention-deficit/hyperactivity disorder: a controlled study. J Clin Psychiatry 2008;69(8):1217-1222.
    26. Biederman J, Faraone SV, Mick E, Spencer T, Wilens T, Kiely K, Guite J, Ablon JS, Reed E, Warburton R. High-Risk for Attention-Deficit Hyperactivity Disorder among Children of Parents with Childhood-Onset of the Disorder - a Pilot-Study. Am J Psychiat 1995;152(3):431-435.
    27. Gilger JW, Pennington BF, Defries JC. A Twin Study of the Etiology of Comorbidity - Attention-Deficit Hyperactivity Disorder and Dyslexia. Journal of the American Academy of Child and Adolescent Psychiatry 1992;31(2):343-348.
    28. Swanson JM, Flodman P, Kennedy J, Spence MA, Moyzis R, Schuck S, Murias M, Moriarity J, Barr C, Smith M, Posner M. Dopamine genes and ADHD. Neurosci Biobehav Rev 2000;24(1):21-25.
    29. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005;57(11):1313-1323.
    30. Floresco SB, Tse MT. Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J Neurosci 2007;27(8):2045-2057.
    31. Madras BK, Miller GM, Fischman AJ. The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry 2005;57(11):1397-1409.
    32. Krause KH, Dresel SH, Krause J, la Fougere C, Ackenheil M. The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2003;27(7):605-613.
    33. Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD. Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging 2003;30(2):306-311.
    34. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ. Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 1999;354(9196):2132-2133.
    35. Volkow ND, Wang GJ, Newcorn J, Fowler JS, Telang F, Solanto MV, Logan J, Wong C, Ma Y, Swanson JM, Schulz K, Pradhan K. Brain dopamine transporter levels in treatment and drug naive adults with ADHD. Neuroimage 2007;34(3):1182-1190.
    36. van Dyck CH, Quinlan DM, Cretella LM, Staley JK, Malison RT, Baldwin RM, Seibyl JP, Innis RB. Unaltered dopamine transporter availability in adult attention deficit hyperactivity disorder. Am J Psychiatry 2002;159(2):309-312.
    37. McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteous L, Prince E, Sonuga-Barke E, Warner JO, Stevenson J. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 2007;370(9598):1560-1567.
    38. Wang GJ, Volkow ND, Wigal T, Kollins SH, Newcorn JH, Telang F, Logan J, Jayne M, Wong CT, Han H, Fowler JS, Zhu W, Swanson JM. Long-term stimulant treatment affects brain dopamine transporter level in patients with attention deficit hyperactive disorder. PLoS One 2013;8(5):e63023.
    39. Schweitzer JB, Lee DO, Hanford RB, Tagamets MA, Hoffman JM, Grafton ST, Kilts CD. A positron emission tomography study of methylphenidate in adults with ADHD: alterations in resting blood flow and predicting treatment response. Neuropsychopharmacology 2003;28(5):967-973.
    40. Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM. DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci 1998;18(15):5901-5907.
    41. Russell VA, Sagvolden T, Johansen EB. Animal models of attention-deficit hyperactivity disorder. Behavioral and brain functions : BBF 2005;1:9.
    42. Willner P. Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog Neuropsychopharmacol Biol Psychiatry 1986;10(6):677-690.
    43. Arime Y, Kubo Y, Sora I. Animal models of attention-deficit/hyperactivity disorder. Biological & pharmaceutical bulletin 2011;34(9):1373-1376.
    44. Sontag TA, Tucha O, Walitza S, Lange KW. Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. Attention deficit and hyperactivity disorders 2010;2(1):1-20.
    45. Sagvolden T, Johansen EB, Woien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby O, Jensen V, Aase H, Russell VA, Killeen PR, Dasbanerjee T, Middleton FA, Faraone SV. The spontaneously hypertensive rat model of ADHD--the importance of selecting the appropriate reference strain. Neuropharmacology 2009;57(7-8):619-626.
    46. Sagvolden T, Johansen EB, Aase H, Russell VA. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. The Behavioral and brain sciences 2005;28(3):397-419.
    47. Sagvolden T, Metzger MA, Schiorbeck HK, Rugland AL, Spinnangr I, Sagvolden G. The Spontaneously Hypertensive Rat (Shr) as an Animal-Model of Childhood Hyperactivity (Adhd) - Changed Reactivity to Reinforcers and to Psychomotor Stimulants. Behavioral and neural biology 1992;58(2):103-112.
    48. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Japanese circulation journal 1963;27:282-293.
    49. McCarty R, Chiueh CC, Kopin IJ. Differential behavioral responses of spontaneously hypertensive (SHR) and normotensive (WKY) rats to d-amphetamine. Pharmacology, biochemistry, and behavior 1980;12(1):53-59.
    50. Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J. Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder--the spontaneously hypertensive rat. Brain Res 1995;676(2):343-351.
    51. van den Bergh FS, Bloemarts E, Chan JS, Groenink L, Olivier B, Oosting RS. Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacology, biochemistry, and behavior 2006;83(3):380-390.
    52. Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 2000;24(1):31-39.
    53. Sagvolden T, Pettersen MB, Larsen MC. Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav 1993;54(6):1047-1055.
    54. McCarty R, Kirby RF. Spontaneous hypertension and open-field behavior. Behavioral and neural biology 1982;34(4):450-452.
    55. Waldstein SR. The relation of hypertension to cognitive function. Curr Dir Psychol Sci 2003;12(1):9-12.
    56. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP. Toward discovery science of human brain function. Proc Natl Acad Sci U S A 2010;107(10):4734-4739.
    57. Rosazza C, Minati L, Ghielmetti F, Mandelli ML, Bruzzone MG. Functional connectivity during resting-state functional MR imaging: study of the correspondence between independent component analysis and region-of-interest-based methods. AJNR Am J Neuroradiol 2012;33(1):180-187.
    58. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral cortex 2005;15(9):1332-1342.
    59. Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 2009;45(1 Suppl):S199-209.
    60. Cubillo A, Halari R, Smith A, Taylor E, Rubia K. A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with Attention Deficit Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex; a journal devoted to the study of the nervous system and behavior 2012;48(2):194-215.
    61. Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci 2012;16(1):17-26.
    62. Weissman DH, Roberts KC, Visscher KM, Woldorff MG. The neural bases of momentary lapses in attention. Nat Neurosci 2006;9(7):971-978.
    63. Sun L, Cao Q, Long X, Sui M, Cao X, Zhu C, Zuo X, An L, Song Y, Zang Y, Wang Y. Abnormal functional connectivity between the anterior cingulate and the default mode network in drug-naive boys with attention deficit hyperactivity disorder. Psychiatry research 2012;201(2):120-127.
    64. Fair DA, Posner J, Nagel BJ, Bathula D, Dias TG, Mills KL, Blythe MS, Giwa A, Schmitt CF, Nigg JT. Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry 2010;68(12):1084-1091.
    65. Qiu MG, Ye Z, Li QY, Liu GJ, Xie B, Wang J. Changes of brain structure and function in ADHD children. Brain topography 2011;24(3-4):243-252.
    66. Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL. The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A 2008;105(10):4028-4032.
    67. Cao X, Cao Q, Long X, Sun L, Sui M, Zhu C, Zuo X, Zang Y, Wang Y. Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder. Brain Res 2009;1303:195-206.
    68. Tian L, Jiang T, Liang M, Zang Y, He Y, Sui M, Wang Y. Enhanced resting-state brain activities in ADHD patients: a fMRI study. Brain Dev 2008;30(5):342-348.
    69. Mills KL, Bathula D, Dias TG, Iyer SP, Fenesy MC, Musser ED, Stevens CA, Thurlow BL, Carpenter SD, Nagel BJ, Nigg JT, Fair DA. Altered cortico-striatal-thalamic connectivity in relation to spatial working memory capacity in children with ADHD. Frontiers in psychiatry 2012;3:2.
    70. Posner J, Rauh V, Gruber A, Gat I, Wang Z, Peterson BS. Dissociable attentional and affective circuits in medication-naive children with attention-deficit/hyperactivity disorder. Psychiatry research 2013;213(1):24-30.
    71. Costa Dias TG, Wilson VB, Bathula DR, Iyer SP, Mills KL, Thurlow BL, Stevens CA, Musser ED, Carpenter SD, Grayson DS, Mitchell SH, Nigg JT, Fair DA. Reward circuit connectivity relates to delay discounting in children with attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 2013;23(1):33-45.
    72. Sonuga-Barke EJ, Sergeant JA, Nigg J, Willcutt E. Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: nosologic and diagnostic implications. Child Adolesc Psychiatr Clin N Am 2008;17(2):367-384, ix.
    73. Liang Z, King J, Zhang N. Intrinsic organization of the anesthetized brain. J Neurosci 2012;32(30):10183-10191.
    74. Pawela CP, Biswal BB, Cho YR, Kao DS, Li R, Jones SR, Schulte ML, Matloub HS, Hudetz AG, Hyde JS. Resting-state functional connectivity of the rat brain. Magn Reson Med 2008;59(5):1021-1029.
    75. Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, Scholl CA, Rea W, Yang Y, Stein EA. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci U S A 2007;104(46):18265-18269.
    76. Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y. Rat brains also have a default mode network. Proc Natl Acad Sci U S A 2012;109(10):3979-3984.
    77. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics 2007;4(3):316-329.
    78. Liang Z, King J, Zhang N. Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci 2011;31(10):3776-3783.
    79. Becerra L, Pendse G, Chang PC, Bishop J, Borsook D. Robust reproducible resting state networks in the awake rodent brain. PLoS One 2011;6(10):e25701.
    80. Hutchison RM, Mirsattari SM, Jones CK, Gati JS, Leung LS. Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state FMRI. J Neurophysiol 2010;103(6):3398-3406.
    81. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 1998;22(1):139-152.
    82. Woods RP, Grafton ST, Watson JD, Sicotte NL, Mazziotta JC. Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 1998;22(1):153-165.
    83. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 2011;6(9):e25031.
    84. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates: Academic Press, San Diego, CA.; 1998.
    85. Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts in Magnetic Resonance Part A 2006;28A(2):123-154.
    86. Uylings HBM, Groenewegen HJ, Kolb B. Do rats have a prefrontal cortex? Behavioural brain research 2003;146(1-2):3-17.
    87. Hsu JW, Lee LC, Chen RF, Yen CT, Chen YS, Tsai ML. Striatal volume changes in a rat model of childhood attention-deficit/hyperactivity disorder. Psychiatry research 2010;179(3):338-341.
    88. Soares JM, Sampaio A, Ferreira LM, Santos NC, Marques P, Marques F, Palha JA, Cerqueira JJ, Sousa N. Stress Impact on Resting State Brain Networks. PLoS One 2013;8(6):e66500.
    89. Henckens MJ, van der Marel K, van der Toorn A, Pillai AG, Fernandez G, Dijkhuizen RM, Joels M. Stress-induced alterations in large-scale functional networks of the rodent brain. Neuroimage 2015;105:312-322.
    90. Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 2012;8:49-76.
    91. Gheysen F, Van Opstal F, Roggeman C, Van Waelvelde H, Fias W. Hippocampal contribution to early and later stages of implicit motor sequence learning. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale 2010;202(4):795-807.
    92. Gilbert DL, Isaacs KM, Augusta M, Macneil LK, Mostofsky SH. Motor cortex inhibition: a marker of ADHD behavior and motor development in children. Neurology 2011;76(7):615-621.
    93. Macneil LK, Xavier P, Garvey MA, Gilbert DL, Ranta ME, Denckla MB, Mostofsky SH. Quantifying excessive mirror overflow in children with attention-deficit/hyperactivity disorder. Neurology 2011;76(7):622-628.
    94. Jonckers E, Delgado y Palacios R, Shah D, Guglielmetti C, Verhoye M, Van der Linden A. Different anesthesia regimes modulate the functional connectivity outcome in mice. Magn Reson Med 2014;72(4):1103-1112.
    95. Grandjean J, Schroeter A, Batata I, Rudin M. Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. Neuroimage 2014;102 Pt 2:838-847.
    96. Sharp PS, Shaw K, Boorman L, Harris S, Kennerley AJ, Azzouz M, Berwick J. Comparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime. Sci Rep 2015;5:12621.
    97. Hutchison RM, Hutchison M, Manning KY, Menon RS, Everling S. Isoflurane induces dose-dependent alterations in the cortical connectivity profiles and dynamic properties of the brain's functional architecture. Hum Brain Mapp 2014;35(12):5754-5775.
    98. Chemali JJ, Kenny JD, Olutola O, Taylor NE, Kimchi EY, Purdon PL, Brown EN, Solt K. Ageing delays emergence from general anaesthesia in rats by increasing anaesthetic sensitivity in the brain. Br J Anaesth 2015;115 Suppl 1:i58-i65.
    99. Leoni RF, Paiva FF, Henning EC, Nascimento GC, Tannus A, de Araujo DB, Silva AC. Magnetic resonance imaging quantification of regional cerebral blood flow and cerebrovascular reactivity to carbon dioxide in normotensive and hypertensive rats. Neuroimage 2011;58(1):75-81.
    100. Soddu A, Vanhaudenhuyse A, Demertzi A, Bruno MA, Tshibanda L, Di H, Melanie B, Papa M, Laureys S, Noirhomme Q. Resting state activity in patients with disorders of consciousness. Functional neurology 2011;26(1):37-43.
    101. Cauda F, Micon BM, Sacco K, Duca S, D'Agata F, Geminiani G, Canavero S. Disrupted intrinsic functional connectivity in the vegetative state. Journal of neurology, neurosurgery, and psychiatry 2009;80(4):429-431.
    102. Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 2009;101(6):3270-3283.
    103. Scholvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA. Neural basis of global resting-state fMRI activity. Proc Natl Acad Sci U S A 2010;107(22):10238-10243.
    104. Liu X, Zhu XH, Zhang Y, Chen W. Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cerebral cortex 2011;21(2):374-384.
    105. Osuka S, Matsushita A, Ishikawa E, Saotome K, Yamamoto T, Marushima A, Satou N, Zaboronok A, Masumoto T, Matsumura A. Elevated diffusion anisotropy in gray matter and the degree of brain compression Clinical article. J Neurosurg 2012;117(2):363-371.
    106. Thomason ME, Thompson PM. Diffusion imaging, white matter, and psychopathology. Annu Rev Clin Psychol 2011;7:63-85.
    107. Kim T, Richard Jennings J, Kim SG. Regional cerebral blood flow and arterial blood volume and their reactivity to hypercapnia in hypertensive and normotensive rats. J Cereb Blood Flow Metab 2014;34(3):408-414.
    108. Dickhout JG, Lee RM. Blood pressure and heart rate development in young spontaneously hypertensive rats. Am J Physiol 1998;274(3 Pt 2):H794-800.
    109. Sabbatini M, Strocchi P, Vitaioli L, Amenta F. The hippocampus in spontaneously hypertensive rats: a quantitative microanatomical study. Neuroscience 2000;100(2):251-258.
    110. Sabbatini M, Baldoni E, Cadoni A, Vitaioli L, Zicca A, Amenta F. Forebrain white matter in spontaneously hypertensive rats: a quantitative image analysis study. Neurosci Lett 1999;265(1):5-8.
    111. Tajima A, Hans FJ, Livingstone D, Wei L, Finnegan W, DeMaro J, Fenstermacher J. Smaller local brain volumes and cerebral atrophy in spontaneously hypertensive rats. Hypertension 1993;21(1):105-111.
    112. Shah D, Deleye S, Verhoye M, Staelens S, Van der Linden A. Resting-state functional MRI and [18F]-FDG PET demonstrate differences in neuronal activity between commonly used mouse strains. Neuroimage 2016;125:571-577.
    113. Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V. Development of functional and structural connectivity within the default mode network in young children. Neuroimage 2010;52(1):290-301.
    114. Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D, Clasen L, Evans A, Giedd J, Rapoport JL. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A 2007;104(49):19649-19654.
    115. Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR, McKinstry RC. Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 2001;221(2):349-358.
    116. Tseng KY, Chambers RA, Lipska BK. The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behavioural brain research 2009;204(2):295-305.
    117. Mengler L, Khmelinskii A, Diedenhofen M, Po C, Staring M, Lelieveldt BP, Hoehn M. Brain maturation of the adolescent rat cortex and striatum: changes in volume and myelination. Neuroimage 2014;84:35-44.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE