簡易檢索 / 詳目顯示

研究生: 黃俊凱
Chun-Kai Huang
論文名稱: 高積集度非揮發性鐵電記憶體應用之含氧白金電極之研究
Integration and Electrical Characteristics of Ferrolectric Capacitors by Using PtOx Electrodes for High-density Embedded Nonvolatile Memory Application
指導教授: 吳泰伯
Tai-Bor Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 183
中文關鍵詞: 鐵電薄膜非揮發性記憶體含氧白金
外文關鍵詞: ferroelectric, PZT, FeRAM, PtO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵電記憶體元件整合隨CMOS製程縮微,其電容由傳統平面發展為堆疊立體結構,製程當中面臨蝕刻與還原氣氛(forming gas)引起電性失效的問題。本研究探討適用高積集度記憶體元件之電極開發,提出含氧白金(PtOx)材料作為過渡模板的白金電極,解決傳統白金(Pt)電極不易蝕刻,側壁殘留於元件縮微時無法整合的問題,完成金屬-鐵電薄膜-金屬(MIM)堆疊電容結構整合。PtOx電極對於鋯鈦酸鉛(PZT)鐵電薄膜,其活性氧於熱處理中釋放,填補PZT與電極介面間的氧空缺,並使PZT薄膜受一壓應力,相較於Pt電極,提高殘留極化量與增加電性可靠度。在蝕刻PtOx電極中,藉由氧氣氛添加,其側壁氧化形成保護作用,可藉此得到高蝕刻選擇比,無殘留、側壁斜角大於75度的鐵電電容陣列。藉由控制PtOx電極中氧成份與功函數的提升,延滯Pt催化造成鐵電電容劣化,其漏電流機制蕭特基發射(Schotty emission),介面缺陷與Schotty能障相關。最後,利用電子束微影製程與原子力顯微鏡檢測,完成90奈米尺度鐵電電容電性直接測量技術,其電容於90奈米尺度下仍維持高殘留極化量,並探討鐵電電容尺寸效應(size effect),於80K低溫下,仍維持極化值。其研究成果可具體提供量產製造與標準檢驗流程供奈米級高密度非揮發性記憶體製程於次世代使用。


    《Contents》 Table captions……………………………………………………….Ⅴ Figure captions……………………………………………………...Ⅵ Chapter 1 Introduction 1-1. Technology developments of ferroelectric memories………1 1-2. Motivation of the research…………………………………...4 1-3. Objectives of This Research………………………………….7 Chapter 2 Literature review 2-1. Ferroelectric materials………………………………………..11 2-2. Electrode materials for ferroelectric capacitors…………….13 2-3. Ferroelectric memories……………………………………….15 2-3-1. FERAM cell and operation……………………………16 2-3-2. Deposition techniques of ferroelectric capacitors…….18 2-3-3. Dry etching technologies of ferroelectric memories….19 2-3-4.Scaling…………………………………………………...21 2-4. Reliability issues of ferroelectric memories…………………23 2-4-1. General aspects…………………………………………23 2-4-2. Fatigue…………………………………………………..25 2-4-3. Retention………………………………………………..26 2-4-4. Imprint………………………………………………….27 Chapter 3 Enhancement in reliability characteristics of Pb(Zr0.4Ti0.6)O3 thin film capacitors by using PtOx electrodes 3-1. Introduction…………………………………………………...37 3-2. Experimental procedures……………………………………. 38 3-3. Results and Discussion………………………………………..39 3-4. Conclusion……………………………………………………..48 Chapter 4 Dry etching of submicron feature-size PZT capacitors with PtOx top electrode for memory application 4-1. Introduction…………………………………………………...65 4-2. Experimental procedures……………………………………..67 4-2-1. Thin film deposition……………………………………67 4-2-2. Dry etching techniques………………………………... 67 4-3. Results and Discussion………………………………………..70 4-3-1. Etching characteristics of PtOx films………………….70 4-3-2. Etching characteristics of PtOx /PZT films capacitor stacks…………………………………………………...73 4-4. Conclusion……………………………………………………. 78 Chapter 5 Improvements in electrical properties of hydrogen-treated ferroelectric capacitors with PtOx top electrode for memory applications 5-1. Introduction…………………………………………………...98 5-2 Experimental procedures……………………………………...99 5-2-1 Thin films preparation and ferroelectric capacitors fabrication…………………………………………….100 5-2-2. Forming gas annealing………………………………...100 5-3. Results and Discussion……………………………………….101 5-3-1. RBS spectra analysis for the composition of deposited films……………………………………………………101 5-3-2. Characteristics of hydrogen-treated ferroelectric capacitors……………………………………………………...101 5-3-3. The relationship of the Schottky barrier height with defect concentrations…………………………………………109 5-4. Conclusion…………………………………………………….112 Chapter 6 Fabrication and electrical characterization of nanoscale PtOx/PZT/PtOx capacitors for G-bit embedded ferroelectric memory application 6-1. Introduction…………………………………………………..133 6-2. Experimental procedure and technique…………………….135 6-2-1. Thin film preparation…………………………………135 6-2-2. PtOx/PZT/PtOx/Pt capacitor fabrication…………….136 6-2-3. Measurement setup……………………………………137 6-3. Results and Discussion……………………………………….138 6-3-1. Structural characterization…………………………...138 6-3-2. Properties of PtOx/PZT/PtOx/Pt capacitor…………..138 6-3-3. Ferroelectric characteristics in nanoscale…………...141 6-4. Conclusion…………………………………………………….142 Chapter 7 Conclusions……………………………………………158 Reference…………………………………………………………….160 《Table captions》 Table 1-1 The technology development of FeRAM. 9 Table 1-2 Nonvolatile Semiconductor Memory Market Estimates (in $Billion). 9 Table 2-1 Prospect of several integrated ferroelectric devices. 29 Table 3-1 Process parameters for PtOx and PZT films. 49 Table 3-2 The elastic modulus and Poisson ratio for the materials. 50 Table 4-1 Etching recipes of PtOx and Pt films. 79 Table 4-2 Etching recipes of PZT films. 79 Table 4-3 Ashing recipes of PR. 80 Table 5-1 The PtOx and PZT composition of RBS spectra for scattering 2MeV He2+ ions from different PtO/PZT, PtO0.4/PZT and Pt/PZT configurations annealing at200℃ for 30min. 114 Table 5-2 Parameters used in evaluating barrier height of top electrode/PZT capacitors. 115 《Figure Captions》 Figure 1-1 Integrated bluetooth single chip. 10 Figure 1-2 Structure of Next-Generation Smart Card. 10 Figure 2-1 ABO3 perovskite unit cell. 30 Figure 2-2 Hysteresis loop of a ferroelectric material. 31 Figure 2-3 PbTiO3-PbZrO3 subsolidus phase diagram. 32 Figure 2-4 (a) A 1T/1C memory cell. The cell consists of one transistor and one ferroelectric capacitor. (b)A 2T/2C memory cell. 33 Figure 2-5 Schematic diagram of Virtual Ground hysteresis measurement method. 34 Figure 2-6 Effect of fatigue, imprint, and loss of retention of 1T/1C cells. 35 Figure 2-7 Schematic drawing of a sequential pulse for (a) fatigue (b) retention and (c) imprint measurement. 36 Figure 3-1 (a) Resistivity of PtOx films as a function of O2 gas flow ratio and (b) the XRD pattern of PtOx films prepared with different Ar/O2 gas mixture ratio. 51 Figure 3-2 SEM micrographs of various PtOx films prepared under (a) Ar/O2 = 100/0, (b) Ar/O2 = 90/10, (c) Ar/O2 = 70/30, and (d) Ar/O2 = 50/50, respectively. 52 Figure 3-3 Surface morphology of PtOx film prepared with Ar/O2=70/30 gas mixture ratio (a) before RTA treated. (b) after RTA treatred at 600℃ in O2 ambient for 5min, the surface roughness from 3.41nm to 3.52nm after annealing. 54 Figure 3-4 XRD spectrums of PZT films deposited on the various PtOx and Pt electrode, followed by RTA treatment at 600℃in O2 ambient for 5min. 55 Figure 3-5 (a) P-E hystersis loops of PZT capacitors with various PtOx electrodes. (b) Pr and Ec value dependences of PZT capacitors obtained at various applied voltage. 56 Figure 3-6 The room temperature stress of PtOx thin films varied with different Ar/O2 gas mixture. 57 Figure 3-7 Room temperature stress state comparison of Pt and PtOx films with 600℃ RTA treatment for 5min as a function of deposition temperature. 58 Figure 3-8 XRD spectrums of PtOx films deposited at (a) 400℃ (b) 150℃, followed by RTA treatment at 600℃ in O2 ambient for 5min. (c) Pure Pt films for reference. 59 Figure 3-9 X-ray photoelectron spectra of Pt4f electrons for PtOx films deposited at (a) 400℃ (b) 150℃, followed by RTA treatment at 600℃ in O2 ambient for 5min. 60 Figure 3-10 Pulse-width dependence of polarization for PZT capacitors with different electrodes measured by 5V at room temperature. 61 Figure 3-11 Fatigue endurance behavior of different PZT capacitors structure with different electrodes under 5V bipolar cycles at a frequency of 1MHz. 62 Figure 3-12 The retention properties of PZT capacitors structure with different electrodes configuration under 5ms pulse width ±5V read and write pulses at room temperature. 63 Figure 3-13 Plot of the logarithm of switching polarization as a function of time with a stretched exponential function. 64 Figure 4-1 Schematic diagram of the helicon wave plasma etch system. 81 Figure 4-2 Variation of etchng rate of PtOx and Pt films as a function of (a) source power(Etching fixed condition: bias power 250W, gas flow rate:40sccm, gas ratio: Ar/(20%)Cl2 and pressure: 5mTorr). (b) bias power (Etching fixed condition: source power 2100W, gas flow rate: 40sccm, gas ratio: Ar/(20%)Cl2 and pressure: 5mTorr), and (c) gas pressure (Etching fixed condition: source power2100W, bias power 250W, gas flow rate: 40sccm, and gas ratio: Ar/(20%) Cl2. 82 Figure 4-3 SEM micrograph of (a) Pt pattern and (b) PtOx pattern. Less sidewall residues are observed in PtOx pattern while etched in Ar/(20%)Cl2 gas mixture.(Etching condition, source power: 2100W, bias power: 250W gas pressure: 5mTorr and gas flow rate:40sccm.) 84 Figure 4-4 X-ray photoelectron spectra of Cl2p and Pt4f electrons from etched films: (a) Pt etched in Ar/Cl2(20%) (b) PtOx etched in Ar/Cl2(20%). 85 Figure 4-5 Etch rates of PtOx and Pt and their etching selectivity against photoresist (PR) as a function of O2 content in the Ar/Cl2/O2 plasma. (Etching condition: source power: 2100W, bias power 250W, gas pressure: 5 mTorr, and gas flow rate: 40sccm.) 86 Figure 4-6 SEM micrograph of the PtO patterns etched in the Ar/(10%)O2/(20%)Cl2 plasma, after PR ashing , the etch slope was over 75°and free of residue. (a) Line pattern (b) Island pattern. 87 Figure 4-7 X-ray photoelectron spectra of Pt4f electrons from etched films:(a) PtOx etched in Ar/Cl2(20%) (b) PtOx etched in Ar/Cl2 (20%)/O2(5%) plasmas. (c) PtOx etched in Ar/Cl2(20%) /O2(10%) plasmas, and (d) compared of Cl2p peak intensity with or without O2 addition in etching gas mixture. 88 Figure 4-8 Etch rates of PtOx and PZT and their etching selectivity as a function of Cl2 content in the Ar/(10%)O2/Cl2 plasma. (Etching condition: source power: 2500W, bias power 150W, gas pressure: 5 mTorr, and gas flow rate: 40sccm.) 90 Figure 4-9 Etch rates of PtOx and PZT and their etching selectivity as a function of O2 content in the Ar/(50%)CF4/O2 plasma. (Etching condition: source power: 2500W, bias power 150W, gas pressure: 5 mTorr, and gas flow rate: 40sccm.) 91 Figure 4-10 SEM micrographs of PtOx/PZT capacitor stacks. The PZT films were etched in (a) Ar/ (10%)O2/(30%)Cl2 plasma and in (b) Ar / (50%)CF4/ (30%)O2 plasma. The slope of the sidewall capacitor is 72°. 92 Figure 4-11 Comparison of P-E hysteresis loops of 100×100μm2 PtOx /PZT capacitors etched with the O2 gas added to Ar/(50%) CF4 plasma. 93 Figure 4-12 (a) Comparison of fatigue characteristics of 100×100μm square PtOx /PZT capacitor stacks etched with the O2 gas added to Ar/(50%) CF4 plasma. Inset showed the fatigue characteristics of (b) the polarization switching current density and (c) P-E hysteresis loops for PtOx /PZT capacitors etched in Ar/(30%) CF4 /(50%) CF4 plasma. The applied voltage was 5V and operated at a frequency of 1 MHz. 94 Figure 4-13 X-ray photoelectron spectra for the comparison with O2 gas addition (a) Pb4f electrons (b) Zr3d electrons and (c) Ti2p electrons from etched PZT films. 95 Figure 4-14 Atomic concentration of etched PZT capacitors with the various O2 concentrations in Ar/(50%) CF4 plasma 97 Figure 5-1 RBS spectra for scattering 2Mev He2+ ions from different stoichiometric PtOx films on Ti/Si substrate. The films with Ar/O2= 90/10 and 70/30 gas mixture ratio corresponded with stoichiometric Pt/O=1/0.4 and Pt/O=1/1, respectively. 115 Figure 5-2 RBS spectra for scattering 2Mev He2+ ions of stoichiometric Pb(Zr0.4 Ti0.6)O3 films on Si substrate. 115 Figure 5-3 Comparison of P-V hysteresis loops of Pt/PZT/Pt capacitors with different forming gas annealing time at 200℃. 116 Figure 5-4 Comparison of P-V hysteresis loops of (a) PtO0.4/PZT /Pt capacitors and (b) PtO/PZT /Pt capacitors with different forming gas annealing time at 200℃. 117 Figure 5-5 Remanent polarization of PtO/PZT/Pt capacitor cell size dependence after forming gas annealing at 200℃. 30min. The inset show (b) P-V hysteresis loops measured by AFM for 0.25μm2 capacitors before and after annealing. (c) SEM micrograph of PZT capacitor stack. 118 Figure 5-6 SIMS depth profiles of hydrogen-treated (a) PtO/PZT/Sub and(b) Pt/PZT/Sub specimens. Hydrogen annealing was performed at 200℃ for 15min. 119 Figure 5-7 ERD spectra for scattering 2.7Mev He2+ ions from blanket Pt/PZT/Pt configurations with different annealing time at 200℃ (a) 15min (b) 30min (c) 45min. 120 Figure 5-8 Energy diagrams for the PtOx/PZT capacitor; (a) before H2 treatment and (b) after H2 treatment. When the injected hydrogen trapped at Pt/PZT interface, the defect act as donors and provides electrons due to the high work function of Pt, causing the development of a negative built-in voltage and bending of band in PZT. 121 Figure 5-9 ERD spectra for scattering 2.7Mev He2+ ions from different blanket top electrode(a) PtO/PZT (b)PtO0.4/PZT (c)Pt/PZT configurations annealing at 200℃ for 30min. 122 Figure 5-10 X-ray photoelectron spectra of (a) Pt4f and (b) O1s electrons obtained from the PtO/PZT/Pt capacitor specimen before and after H2 annealing at 200℃ for 15min; Oads denotes the adsorbed oxygen, and Os the oxygen incorporated in the PtOx film. 123 Figure 5-11 The work function differences of PtOx films with varied stoichiometric compositions before and after forming gas annealing at 200℃ 15min. Inset exhibited work function differences of PtO films measured by photoelectron spectrometer. 124 Figure 5-12 J-V characteristics of hydrogen-treated PZT capacitors with different top electrode at 298K. The forming gas annealing was performed at 200℃ for 15min. 125 Figure 5-13 Temperature dependence of J-V characteristics from PZT capacitors with different top electrode. (a) PtO/PZT/Pt capacitor before forming gas annealing. (b) PtO/PZT/Pt capacitors after forming gas annealing at 200℃ for 15min. (c) Pt/PZT/Pt capacitor before forming gas annealing. (d) Pt/PZT/Pt capacitors after forming gas annealing at 200℃ for 15min. 126 Figure 5-14 Schottky emission Plots of ln(J/T2) vs (V1/2) at an intermediate voltage from 1V to 7.84 V with different specimens. (a) PtO/PZT/Pt capacitor before annealing. (b) PtO/PZT/Pt capacitors after annealing at 200℃ for 15min. (c) Pt/PZT/Pt capacitor before forming gas annealing. (d) Pt/PZT/Pt capacitors after forming gas annealing at 200℃ for 15min. 128 Figure 5-15 Plots of ln(J/T2)V=0 Vs. (1/T) from specimens (a) PtO/PZT/Pt capacitors and (b) Pt/PZT/Pt capacitors before and after annealing. The Schottky barrier height can be derived from the Arrhenius plot of ln(J/T2)V=0 Vs. (1/T). 130 Figure 5-16 Diagram showing sign of screen charge on the electrode when polarization is in the same direction as the applied electric field and vice-versa. 131 Figure 5-17 Energy band diagram of a metal-n- type semiconductor contact with an interfacial layer. ψm: work function of metal, ψBn : barrier height of m-s surface barrier, ψ0: energy level at surface defined in (5-5), ψn: energy difference between conduction band and Fermi level in bulk semiconductor, △ψn: image force barrier lowering, Eg: energy gap of semiconductor, εi: dielectric constant of interfacial layer, εs: dielectric constant of semiconductor, χs: electron affinity, δ: thickness of interfacial layer, Qm: surface charge density on mental, Qss surface state charge density on semiconductor, Qsc :space charge density in semiconductor. 131 Figure 5-18 Calculation Schottky barrier height variation against interfacial doping concentration for hydrogen treated (a) PtO electrode and (b) Pt electrode. 132 Figure 6-1 Schematic diagram of the VT Beam Deflection AFM 25. 143 Figure 6-2 XRD diffraction patterns of PtOx/PZT/PtOx/Pt thin films structure deposited and followed by the annealing process for crystallization. 144 Figure 6-3 Dependence of the critical dimension of NEB resist dot size with variation of exposure electron-beam dosages. 145 Figure 6-4 Etch rate of PtOx and NEB and their etching selectivity as a function of O2 content in the Ar/(20%)Cl2/O2 plasma. 146 Figure 6-5 Etch rates of PZT and NEB and their etching selectivity as a function of O2 content in the Ar/(50%)CF4/O2 plasma. 146 Figure 6-6 SEM micrographs showing (a) array (b) single cell capacitor of 500nm lateral size. 147 Figure 6-7 SEM micrographs showing (a) array (b) single cell capacitor of 300nm lateral size 148 Figure 6-8 SEM micrographs showing (a) array (b) single cell capacitor of 200nm lateral size 149 Figure 6-9 SEM micrographs showing (a) array (b) single cell capacitor of 180nm lateral size. 150 Figure 6-10 SEM micrographs showing (a) array (b) single cell capacitor of 150nm lateral size. 151 Figure 6-11 SEM micrographs showing (a) array (b) single cell capacitor of 90nm lateral size. 152 Figure 6-12 Cross-section view SEM micrographs of PtOx /PZT capacitors with (a) 150nm (b) 90nm feature size. 153 Figure 6-13 (a) AFM surface morphology image and (b) SCM image after domain patterning at (dC/dV) =0 was obtained from 2μm square PZT capacitor. 154 Figure 6-14 Comparison of P-V hystersis loops obtained from PtOx /PZT capacitor stacks with 0.09× 0.09μm2 feature size. (a) Before compensated with open measurement and (b) after compensation. Clear hystersis loops were exhibited. 155 Figure 6-15 Comparison of P-V hystersis loops with different capacitors feature size. 156 Figure 6-16 P-V hysteresis loops of 0.2 ×0.2μm2 capacitors at various temperature. 157

    References
    [1-1] A Kingon,〝Device physics: Memories are made of ...〞, Nature 401, 658 (1999).
    [1-2] Itoh, A.; Hikosaka, Y.; Saito, T.; Naganuma, H.; Miyazawa, H.; Ozaki, Y.; Kato, Y.; Mihara, S.; Iwamoto, H.; Mochizuki, S.; Nakamura, M.; Yamazaki, T., 〝Mass-productive high performance 0.5 μm embedded FRAM technology with triple layer metal〞(Fujitsu), VLSI Tech.Dig., 32 (2000)
    [1-3] Horii, Y. Hikosaka, Y. Itoh, A. Matsuura, K. Kurasawa, M. Komuro, G. Maruyama, K. Eshita, T. Kashiwagi, S., 4 Mbit embedded FRAM for high performance System on Chip (SoC) with large switching charge, reliable retention and high imprint resistance〞 (Fujitsu), IEDM, (2002)
    [1-4] Dong-Jin Jung; Sung-Yung Lee; Bon-Jae Koo; Yoo-Sang Hwang; Dong-Won Shin; Jin-Woo Lee; Yoon-Soo Chun; Soo-Ho Shin; Mi-Hyang Lee; Hong-Bae Park; Sang-In Lee; Kinam Kim; Jong-Gil Lee; 〝A highly reliable 1T/1C ferroelectric memory〞(Samsung), VLSI Tech.Dig., 122 (1998)
    [1-5] H. H. Kim, Y. J. Song, S . Y. Lee, H. J. Joo, N. W. Jang, D. J. Jung, Y. S. Park, S. 0. Park,K. M. Lee, S. H. Joo, S. W. Lee, S. DL Nam, and Kinam Kim〝Novel integration technologies for highly manufacturable 32 Mb FRAM〞(Samsung), VLSI Tech.Dig., 122 (2002)
    [1-6] S.Shiratake, T.Miyakawa, Y.Takeuchi, R.Ogiwara, M.Kamoshida, K.Hoya, K.Oikawa, T.Ozaki, I.Kunishima, K.Yamakawa, S.Sugimoto, D.Takashima, H.O.Joachim, N.Rehm, J.Wohlfahrt1, N.Nagel,G.Beitel1, M.Jacob1, T.Roehr, 〝32Mb chain FeRAM with segment/stitch array architecture〞(Toshiba and Infineon), IEEE Solid-State Circuits Tech. Dig.1 ,282( 2003)
    [1-7] Naoya Inoue, Takeshi Nakura, and Yoshihiro Hayashi, 〝Low Thermal-Budget Process of Sputtered-PZT Capacitor Over Multilevel Metallization〞(NEC), IEEE Trans. Electron Devices 50, 2081 (2003).
    [1-8] Oh, S.-H.; Hong, S.-K.; Noh, K.-H.; Kweon, S.-Y.; Kim, N.-K.; Yang, Y.-H.; Kim, J.-G.; Seong, J.-Y.; Jang, I.-W.; Park, S.-H.; Bang, K.-H.; Lee, K.-N.; Jeong, H.-J.; Son, J.-H.; Lee, S.-S.; Choi, E.-S.; Sun, H.-J.; Yeom, S.-J.; Ban, K.-D.; Park, J.-W.; Park, G.-D.; Song, S.-Y.; Shin, J.-H.; Lee, S.-I.; Park, Y.-J.;〝Noble FeRAM technologies with MTP cell structure and BLT ferroelectric capacitors〞(Hynix), IEDM, 34 5-1 (2002)
    [1-9] Toshiyuki Nishihara and Yasuyuki Ito, 〝A Quasi-Matrix Ferroelectric Memory for FutureSilicon Storage〞(SONY), IEEE Solid-State Circuits 37, 1479 (2002)
    [1-10] Hugh P. McAdams, Randy Acklin, Terry Blake, Xiao-Hong Du, Jarrod Eliason, John Fong, William F. Kraus, David Liu, Sudhir Madan, Ted Moise, , Sreedhar Natarajan, , Ning Qian, Yunchen Qiu, Keith A. Remack, John Rodriguez, , John Roscher, Anand Seshadri, and Scott R. Summerfelt, 〝A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process〞(Ramtron and TI),IEEE Solid-state circuits 4,667 (2004)
    [1-11] Hans Stork, 〝R&D’s Requirements for 90nm and Beyond 〞, Texas Instruments
    [1-12] Shoichi Masui, 〝Application of FeRAM〞, FED Review, vol.1, No.24, 14 ( 2002)
    [1-13] [www.covatech.com
    [1-14] U.S. patent, No 6734057, Infineon Technologies.
    [1-15] U.S. patent, No 6737694, Samsung Electronic Co.,Ltd.
    [1-16] ] U.S. patent, No 6763248, Hynix Semiconductor Inc.
    [1-17] U.S. patent, No 6713342, Texas Instruments.
    [1-18] patent, No. 6740533, fujitsu limited.
    [1-19] Suk-Kyoung Hong, Chung Won Suh, Chang Goo Lee, Seok Won Lee, Eung Youl Kang, Nam Soo Kang, Cheol Seong Hwanga) and Oh Seong Kwon, 〝Protection of SrBi2Ta2O9 ferroelectric capacitors from hydrogen damage by optimized metallization for memory applications〞, Appl. Phys. Lett. 77, 76 (2000).

    [2-1] M. Lines and A. Glass, 〝Principles and Applications of Ferroelectrics and Related Devices〞, Clarendon Press, Oxford, 87 (1977).
    [2-2] B. Jaffe, W.R. Cook Jr and H. Jaffe, 〝Piezoelectric Ceramics〞, Academic Press, London (1971).
    [2-3] A.E. Feuersanger, 〝Thin Film Dielectrics〞, edited by F. Vratny, 209, Electrochem. Soc., NY (1969)
    [2-4] Miranda, F.A., et al.:〝Tunable Microwave Components for Ku- and K-Band Satellite Communications〞. Integr. Ferroelectr. 22, 789 (1998).
    [2-5] Carlos Paz de Ataujo, Larry McMillan, Vikram Joshi, Narayan Solayappan, Myoungho Lim, Koji Arita’, Nohuyuki Morlwaki’, Hiroshige Hirano’, Takaaki, Yasuliiro Shimadal, Tatsumi Sumil, Eijj Fujiil, and Talsuo Otsuki, 〝The future of ferroelectric memories〞IEEE Solid-State Circuits Conference. Digest of Technical Papers. l 464, 268 (2000)
    [2-6] K. L. Saenger, A. Grill, and D. E. Kotecki, 〝Buried, self-aligned barrier layer structures for perovskite-based memory devices comprising Pt or Ir bottom electrodes on silicon-contributing substrates〞, J. Appl. Phys. 83, 802 (1998)
    [2-7] Hom, C.L., Pilgrim, S.M., Shankar, N., Bridger, K., Massuda, M., Winzer, S.R., 〝Calculation of quasi-static electromechanical coupling coefficients for electrostrictive ceramic materials〞,IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control 41, 542 (1994).
    [2-8] R. Takayama, Y. Tomita, K. Lijima and I. Ueda, J. Appl. Phys., 61, 411 (1987)
    [2-9] Subramanyam, G.; Van Keuls, F.; and Miranda, F.A.〝A K-Band Tunable Microstrip Bandpass Filter Using a Thin Film Conductor/Ferroelectric/Dielectric Multilayer Configuration〞, IEEE Microwave Guided Wave Letters, vol. 8, no. 2, 1998, pp. 78-80.
    [2-10] Keiko Kushida-Abdelghafar, Hiroshi Miki, Kazuyoshi Torii, and Yoshihisa Fujisaki, 〝Electrode-induced degradation of Pb(ZrxTi1 – x)O3 (PZT) polarization hysteresis characteristics in Pt/PZT/Pt ferroelectric thin-film capacitors〞, Appl. Phys. Lett. 69, 3188 (1996).
    [2-11] J. J. Lee, C. L. Thio, and S. B. Desu,〝Electrode contacts on ferroelectric Pb(ZrxTi1–x)O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties〞, J. Appl. Phys. 78, 5073 (1995).
    [2-12] T. D. Hadnagy and D. J. Sheldon, 〝Retention and endurance effects of 4K and 64K FRAM memories〞, Integr. Ferroelectr. 4, 217 (1994).
    [2-13] Di Wu, Aidong Li, Huiqin Ling, Tao Yu, Zhiguo Liu, and Naiben Ming〝Room temperature aging behavior of thermally imprinted Pt/SrBi2Ta2O9/Pt ferroelectric thin film capacitors〞, J. Appl. Phys. 90, 4130 (2001)
    [2-14] Sung-Tae Kim, Hyun-Ho Kim, Moon-Yong Lee, and Won-Jong Lee,〝Investigation of Pt/Ti Bottom Electrodes for Pb(Zr,Ti)O[sub 3] Films〞, Jpn. J. Appl. Phys., Part 1 36, 294 (1997)
    [2-15] Jin-Ping Han and T. P. Ma,〝Electrode dependence of hydrogen-induced degradation in ferroelectric Pb(Zr,Ti)O3 and SrBi2Ta2O9 thin films〞, Appl. Phys. Lett. 71, 1267 (1997)
    [2-16] [Takashi Nakamura, Yuichi Nakao, Akira Kamisawa and Hidemi Takasu, 〝Preparation of Pb(Zr,Ti)O3 Thin films on Ir and IrO2 electrodes〞, Jpn. J. Appl. Phys.,Part133, 5207 (1994).
    [2-17] Takashi Nakamura, Yuichi Nakao, Akira Kamisawa, and Hidemi Takasu, 〝Preparation of Pb(Zr,Ti)O3 thin films on electrodes including IrO2〞, Appl. Phys. Lett. 65, 1522 (1994).
    [2-18] Hsiang-Lan Lung; Lai, S.C.; Lee, H.Y.; Tai-Bor Wu; Liu, R.; Chih-Yuan Lu; 〝Low-temperature capacitor-over-interconnect (COI) modular FeRAM for SOC application〞, IEEE Trans. Electron Devices 51, 91 (2004).
    [2-19] M. S. Chen, T. B. Wu, and J. M. Wu, 〝Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films〞, Appl. Phys. Lett. 68, 1432 (1996).
    [2-20] Ching-Chyuan Yang, Ming-Sen Chen, Tian-Jue Hong, Chii-Ming Wu, Jenn-Ming Wu, and Tai-Bor Wu, 〝Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3〞, Appl. Phys. Lett. 66, 2643 (1995)
    [2-21] S. Aggarwal, T. K. Song, A. M. Dhote, A. S. Prakash, R. Ramesh, N. Velasquez, L. Boyer, and J. T. Evans, Jr.〝Influence of cationic stoichiometry of La1 – xSrxCoO3 electrodes on the ferroelectric properties of lead based thin film memory elements〞, J. Appl. Phys. 83, 1617 (1998).
    [2-22] C. B. Eom, R. B. Van Dover, Julia M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork,〝Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes〞, Appl. Phys. Lett. 63, 2570 (1993).
    [2-23] YoshioAbe, MidoriKawamura and KatsutakaSasaki, 〝Preparation of PtO and α-PtO2 Thin Films by Reactive Sputtering and Their Electrical Properties〞, Jpn. J. Appl. Phys.,Part1 38, 2092 (1999).
    [2-24] K. L. Saenger, C. Cabral, Jr., C. Lavoie, and S. M. Rossnagel, 〝Thermal stability and oxygen-loss characteristics of Pt(O) films prepared by reactive sputtering〞, J. Appl. Phys. 86, 6084 (1999).
    [2-25] Yi-Chan chen, Yu-Ming Sun and Jon-Yiew Gan,〝Improved fatigue properties of lead zirconate titanate films made on oxygen-implanted platinum electrodes〞Thin Sold Films 460, 25 (2004).
    [2-26] Byung Soo Lee and Jeong Young Lee, 〝Role of PtO electrode in fatigue in Pb(Zr, Ti)O3 Films〞, Jpn. J. Appl. Phys., Part 2 38, L870 (1999).
    [2-27] Kwangbae Lee, Byung Roh Rhee, and Chanku Lee, 〝Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barriers〞, Appl. Phys. Lett. 79, 821 (2001).
    [2-28] Chin-Lin Liu, Zhen-Yue Lee, Tai-Bor Wu, Shiang-Lan Lung, and Rich Liu, 〝Polarization Switching Characteristics of Pb(Z0.5Ti0.5)O3 Thin Films Deposited on Vacuum-Annealed PtOx/Pt Electrode〞, Jpn. J. Appl. Phys., Part 1 41, 6054 (2002).
    [2-29] Tzu-Ping Liu, Wei-Pang Huang, Tai-Bor Wu, 〝Enhanced deposition and dielectric property of Ta2O5 thin films on a rugged PtO electrode〞, Electron Devices, IEEE Transactions on 50 1425( 2003 ).
    [2-30] Tzu-Ping Liu, Wei-Pang Huang, and Tai-Bor Wu, 〝Enhanced chemical vapor deposition of tantalum oxide thin films from in-situ reduction of PtOx electrode〞, J. Vac. Sci. Technol. A 21, 502 (2003).
    [2-31] O. Auciello, J. F. Scott and R. Ramesh, Phys. Today July. 22 (1998).
    [2-32] C. A.P. de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, J. F. Scott, 〝Fatigue-free ferroelectric capacitors with platinum-electrodes〞Nature 374, 627 (1995)
    [2-33] Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, J. & Jo, W.〝Lanthanum-substituted bismuth titanate for use in non-volatile memories〞 Nature 401 682-684 (1999).
    [2-34] H. Hada, 〝Process Technology for ferroelectric random access memory ((FeRAM))〞FED Review, vol.1 22, 14 ( 2002)
    [2-35] J. K. Lee, T. K. Song, H. J. Jung, “Characteristics of SrBi2Ta2O9 Thin Films Fabricated by The R.F. Magnetron Sputtering Technique”, Integrated Ferroelectrics 15 (1997) 115.
    [2-36] S. B. Krupanidhi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films”, 71 (1992) 376.
    [2-37] J. Dieleman, E. van de Riet, and J. C. S. Kools, "Laser Ablation Deposition: Mechanism and Application", Jpn. J. Appl. Phys., 31(6B) (1992) 1964.
    [2-38] G. Yi and M. Sayer, "sol-gel Processing of Complex Oxide Films", Ceramic Bulletin, 70(7) (1991) 1173.
    [2-39] C. Soyer, E. Cattan, D. Rèmiens, and M. Guilloux-Viry 〝Ion beam etching of lead–zirconate–titanate thin films: Correlation between etching parameters and electrical properties evolution〞, J. Appl. Phys. 92, 1048 (2002).
    [2-40] M. C. Chiang, F. M. Pan, H. C. Cheng, J. S. Liu, S. H. Chan, and T. C. Wei, 〝Dry etching of platinum films with TiN masks〞 J. Vac. Sci. Technol. A 18, 181 (2000).
    [2-41] Seiichi Yokoyama, Yasuyuki Ito, Kazuya Ishihara, Kazuyuki Hamada, Shigeo Ohnishi, Jun Kudo and Keizo Sakiyama, 〝High-Temperature Etching of PZT/Pt/TiN Structure by High-Density ECR Plasma〞, Jpn. J. Appl. Phys., Part 1 34, 767 (1995).
    [2-42] Chung Chee Won, Byun, Yo Han and Kim, Hye In, 〝Inductively coupled plasma etching of a Pb(ZrxTi1-x)O3 thin film in a HBr/Ar plasma〞, Microelectronic Engineering 63, 353 (2002).
    [2-43] K. R. Milkove and C. X. Wang, 〝Insight into the dry etching of fence-free patterned platinum structures〞, J. Vac. Sci. Technol. A 15, 596 (1997).
    [2-44] Li-Hsin Chang, Elizabeth Apen, Mike Kottke, and Clarence Tracy〝A study of platinum electrode patterning in a reactive ion etcher〞J. Vac. Sci. Technol. A 16,1489 (1998).
    [2-45] Takashi Yunogami and Takao Kumihashi, 〝Sub-Quarter-Micron Pt Etching Technology Using Electron Beam Resist with Round-Head〞, Jpn. J. Appl. Phys., Part 1 37, 6934 (1998).
    [2-46] Kwang-Ho Kwon, Chang-Il Kim, Sun Jin Yun, and Geun-Young Yeom, 〝Etching properties of Pt thin films by inductively coupled plasma〞, J. Vac. Sci. Technol. A 16, 2772 (1998).
    [2-47] Kwang-Ho Kwon, Chang-Il Kim, Sun Jin Yun, and Geun-Young Yeom, 〝Etching properties of Pt thin films by inductively coupled plasma〞, J. Vac. Sci. Technol. A 16, 2772 (1998).
    [2-48] Martin U. Gutsche, Satish D. Athavale, Kurt Williams, and Danielle Hines, 〝Patterning of 0.175 μm platinum features using Ar/O2 chemically assisted ion-beam etching〞, J. Vac. Sci. Technol. B 18, 765 (2000).
    [2-49] Chee Won Chung and Ilsub Chung, 〝Platinum etching using a TiO2 hard mask in an O2/C2/Ar plasma〞, J. Vac. Sci. Technol. A 18, 835 (2000).
    [2-50] Jin Hong Kim, Ki Woong Kim, and Seong Ihl Woo, 〝Etching characteristics of platinum in inductively coupled plasma using Cl2/CO〞, J. Vac. Sci. Technol. B 22, 1662 (2004).
    [2-51] Kim, Kyoung-Tae, Kang, Myoung-Gu and Kim, Chang-Il, 〝Study on the etching damage characteristics of PZT thin films after etching in Cl-based plasma〞, Microelectronic Engineering 71, 294 (2004).
    [2-52] Jin-Ki Jung and Won-Jong Lee, 〝Dry Etching Characteristics of Pb(Zr,Ti)O3 Films in CF4 and Cl2/CF4 Inductively Coupled Plasmas〞, Jpn. J. Appl. Phys., Part 1 40, 1408 (2001).
    [2-53] June Key Lee, Tae-Young Kim, Ilsub Chung and Seshu B. Desu 〝Characterization and elimination of dry etching damaged layer in Pt/Pb(Zr0.53Ti0.47)O3/Pt ferroelectric capacitor〞, Appl. Phys. Lett. 75, 334 (1999).
    [2-54] Naokatsu Ikegami, Takayuki Matsui and Jun Kanamori, 〝Dry-Etching Mechanism of Sputtered Pb(Zr1- xTi x)O3 Film 〞, Jpn. J. Appl. Phys., Part 1 35, 2505 (1996).
    [2-55] Kang, Myoung-Gu; Kim, Kyoung-Tae and Kim, Chang-Il, 〝Recovery of plasma-induced damage in PZT thin film with O2 gas annealing〞, Thin Solid Films 398-399, 448 (2001).
    [2-56] K.Torii, H. Kawakami, H. Miki, K. Kushida, T. Ittiga, Y. Goto, T. Kumihashi, N. Yokoyama, M. Moinwa, K. Shoji, T. Kaga, and Y. Fujisaki, Integr. Ferroelectric. 16, 21 (1997).
    [2-57] June Key Lee, Youngsoo Park, Ilsub Chung, Sang Jeong Oh, Dong Jin Jung, Yoon Jong Song, Bon Jae Koo, Sung Yung Lee, Kinam Kim and Seshu B. Desu〝mprovement in the electrical properties in Pt/Pb(Zr0.52Ti0.48)O3 /Pt ferroelectric capacitors using a wet cleaning method〞, J. Appl. Phys. 86, 6376 (1999).
    [2-58] Shoji, K.; Moniwa, M.; Yamashita, H.; Kisu, T.; Kaga, T.; Torri, K.; Kumihashi, T.; Morimoto, T.; Kawakami, H.; Gotoh, Y.; Itoga, T.; Tanaka, T.; Yokoyama, N.; Kure, T.; Ohkura, M.; Fujisaki, Y.; Sakata, K.; Kimura, K.;〝A 7.03-μm2 Vcc/2-plate nonvolatile DRAM cell with a Pt/PZT/Pt/TiN capacitor patterned by one-mask dry etching〞, VLSI Tech. Dig., 28 (1996).
    [2-59] Sang-Woo Lee, Suk-Ho Joo, Sung Lae Cho, Yoon-Ho Son, Kyu-Mann Lee, Sang-Don Nam, Kun-Sang Park, Yong-Tak Lee, Jung-Suk Seo, Young-Dae Kim, Hyeong-Geun An, Hyoung-Joon Kim, Yong-Ju Jung, Jang-Eun Heo, Moon-Sook Lee, Soon-Oh Park, U-In Chung and Joo-Tae Moon, 〝Plasma-Assisted Dry Etching of Ferroelectric Capacitor Modules and Application to a 32M Ferroelectric Random Access Memory Devices with Submicron Feature Sizes〞, Jpn. J. Appl. Phys., Part 1 41, 6749 (2002).
    [2-60] Wenhui Ma and Dietrich Hesse,〝Polarization imprint in ordered arrays of epitaxial ferroelectric nanostructures〞, Appl. Phys. Lett. 84, 2871 (2004)
    [2-61] Masahiko Hiratani, Choichiro Okazaki, Haruhiro Hasegawa, Nobuyuki Sugii, Yoshinobu Tarutani and Kazumasa Takagi, 〝Fabrication of Pb(Zr, Ti)O3 Microscopic Capacitors by Electron Beam Lithography 〞, Jpn. J. Appl. Phys.part1.36, 5219 (1997)
    [2-62] M. Alexe, C. Harnagea, D. Hesse, and U. Gösele,〝Patterning and switching of nanosize ferroelectric memory cells〞, Appl. Phys. Lett. 75, 1793 (1999)
    [2-63] C. S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngailis, E. Williams, and R. Ramesh, 〝Scaling of ferroelectric properties in thin films〞, Appl. Phys. Lett. 75, 409 (1999)
    [2-64] [2-64] C. S. Ganpule, A. Stanishevsky, S. Aggarwal, J. Melngailis, E. Williams, R. Ramesh, V. Joshi, and Carlos Paz de Araujo,〝Scaling of ferroelectric and piezoelectric properties in Pt/SrB2Ta2O9/Pt thin films〞, Appl. Phys. Lett. 75, 3874 (1999)
    [2-65] Neumark, G. F.New model for interface charge-carrier mobility, 〝The role of misfit dislocations.〞 Phys. Rev. Lett. 21, 1252–1256 (1968).
    [2-66] Chu ming-wen, Izabela Szafranik, Roland Scholz, Catalin HanageaA, Dietrich Hesse, Marin Alexe and Ulrich GÖsele, 〝Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites 〞, Appl. Phys. Lett. 75, 3874
    [2-67] Ashok. Sharma, 〝Semiconductor memories〞, IEEE Press (1997)
    [2-68] J. J. Lee, C. L. Thio, M. Bhattacharya, and S. B. Desu, "Electrode Contacts on PZT Thin Films and their Influence on Fatigue Properties", Mat. Res. Soc. Symp. Proc.361 (1995) 241.
    [2-69] C. K. Kwok and S. B. Desu, “Role of Oxygen Vacancies on the Ferroelectric Properties of PZT Thin Films”, Mat. Res. Soc. Symp. Proc. Vol. 243, (1992) 393.
    [2-70] M.Alexe and A.Gruverman Eds., 〝Nanoscale characterisation of ferroelectric materials〞chapter 3, by Springer press (2004)
    [2-71] J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, and R.Zuleeg ,”Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys., 70 (1991) 382.
    [2-72] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys. Lett., 65 (1994) 1018.
    [2-73] J. F. Scott, Matthew Dawber,“A model for fatigue in ferroelectric perovskite thin films”, Appl. Phys. Lett. 76(8) (2000) 1060.
    [2-74] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys. Lett., 65 (1994) 1018.
    [2-75] W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. McIntyre, “Polarization suppression in Pb(Zr,Ti)O3 thin films”, J. Appl. Phys. 77 (1995) 6695.
    [2-76] J. J. Lee, C. L. Thio, M. Bhattacharya, and S. B. Desu, "Electrode Contacts on PZT Thin Films and their Influence on Fatigue Properties", Mat. Res. Soc. Symp. Proc.361 (1995) 241.
    [2-77] H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, 〝Influence of platinum interlayers on the electrical properties of RuO2/Pb(Zr0.53Ti0.47)O3/RuO2 capacitor heterostructures〞, Appl. Phys. Lett. 66, 239 (1995)
    [2-78] J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee, and J. U. Bu, 〝Nanoscale investigation of domain retention in preferentially oriented PbZr0.53Ti0.47O3 thin films on Pt and on LaNiO3〞, Appl. Phys. Lett. 75, 3183 (1999).
    [2-79] J. S. Lee and S. K. Joo, “Enhanced Fatigue and Data Retention Characteristics of Pb(Zr,Ti)O3 Thin films by the Selectively Nucleated Lateral Crystallization Method”, Jpn. J. Appl. Phys. 40 (2001) 229.
    [2-80] B. S. Kang, D. J. Kim, J. Y. Jo, T. W. Noh, Jong-Gul Yoon, T. K. Song, Y. K. Lee, J. K. Lee, S. Shin, and Y. S. Park, 〝Polarization retention in Pb(Zr0.4Ti0.6)O3 capacitors with IrO2 top electrodes〞, Appl. Phys. Lett. 84, 3127 (2004).
    [2-81] N. Inoue and Y. Hayashi, “Effect of Imprint on Operation and Reliability of Ferroelectric Random Access Memory (FeRAM)”, IEEE Trans Electron dev. 48 (2001) 2266.
    [2-82] G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramidas and J. T. Evans, Jr, “Voltage offsets in (Pb,La)(Zr,Ti)O3 Thin Films”, Appl. Phys. Lett. 66 (1995) 484.
    [2-83] Eun Gu Lee, Dirk J. Wouters, Geert Willems, and Herman E. Maes,” Voltage shift and deformation in the hysteresis loop of Pb(Zr,Ti)O3 thin film by defects”, Appl.Phys. Lett. 69 (1996) 1223.
    [2-84] J. Lappalainen, J. Frantti, and V. Lantto, 〝Electrical and mechanical properties of ferroelectric thin films laser ablated from a Pb0.97Nd0.02(Zr0.55Ti0.45)O3 target〞, J. Appl. Phys. 82, 3469 (1997).
    [2-85] T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter, and D. J. Keeble, 〝Vacancy formation in (Pb,La)(Zr,Ti)O3 capacitors with oxygen deficiency and the effect on voltage offset〞, Appl. Phys. Lett. 77, 127 (2000).

    [3-1] eiko Kushida-Abdelghafar, Hiroshi Miki, Kazuyoshi Torii, and Yoshihisa Fujisaki, 〝Electrode-induced degradation of Pb(ZrxTi1 – x)O3 (PZT) polarization hysteresis characteristics in Pt/PZT/Pt ferroelectric thin-film capacitors〞, Appl. Phys. Lett. 69, 3188 (1996).
    [3-2] J. J. Lee, C. L. Thio, and S. B. Desu,〝Electrode contacts on ferroelectric Pb(ZrxTi1–x)O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties〞, J. Appl. Phys. 78, 5073 (1995).
    [3-3] T. D. Hadnagy and D. J. Sheldon, 〝Retention and endurance effects of 4K and 64K FRAM memories〞 Integr. Ferroelectr. 4, 217 (1994).
    [3-4] Sarita Thakoor,〝Enhanced fatigue and retention in ferroelectric thin-film memory capacitors by post-top-electrode anneal treatment〞, J. Appl. Phys. 75, 5409 (1994).
    [3-5] M. S. Chen, T. B. Wu, and J. M. Wu, 〝Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films〞, Appl. Phys. Lett. 68, 1432 (1996).
    [3-6] S. Aggarwal, T. K. Song, A. M. Dhote, A. S. Prakash, R. Ramesh, N. Velasquez, L. Boyer, and J. T. Evans, Jr.〝Influence of cationic stoichiometry of La1 – xSrxCoO3 electrodes on the ferroelectric properties of lead based thin film memory elements〞, J. Appl. Phys. 83, 1617 (1998).
    [3-7] C. B. Eom, R. B. Van Dover, Julia M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork,〝Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes〞, Appl. Phys. Lett. 63, 2570 (1993).
    [3-8] Takashi Nakamura, Yuichi Nakao, Akira Kamisawa and Hidemi Takasu, 〝Preparation of Pb(Zr,Ti)O3 Thin films on Ir and IrO2 electrodes〞, Jpn. J. Appl. Phys.,Part133, 5207 (1994).
    [3-9] S. D. Bernstein, T. Y. Wong, Yanina Kisler, and R. W. Tustison,〝Fatigue of ferroelectric PbZrxTiyO3 capacitors with Ru and RuOx electrodes〞, J. Mater. Res. 8, 12 (1993).
    [3-10] H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, 〝Influence of platinum interlayers on the electrical properties of RuO2/Pb(Zr0.53Ti0.47)O3/RuO2 capacitor heterostructures〞, Appl. Phys. Lett. 66, 239 (1995)
    [3-11] Takashi Nakamura, Yuichi Nakao, Akira Kamisawa, and Hidemi Takasu, 〝Preparation of Pb(Zr,Ti)O3 thin films on electrodes including IrO2〞, Appl. Phys. Lett. 65, 1522 (1994).
    [3-12] YoshioAbe, MidoriKawamura and KatsutakaSasaki, 〝Preparation of PtO and α-PtO2 Thin Films by Reactive Sputtering and Their Electrical Properties〞, Jpn. J. Appl. Phys.,Part1 38, 2092 (1999).
    [3-13] K. L. Saenger, C. Cabral, Jr., C. Lavoie, and S. M. Rossnagel, 〝Thermal stability and oxygen-loss characteristics of Pt(O) films prepared by reactive sputtering〞, J. Appl. Phys. 86, 6084 (1999).
    [3-14] Yi-Chan chen, Yu-Ming Sun and Jon-Yiew Gan,〝Improved fatigue properties of lead zirconate titanate films made on oxygen-implanted platinum electrodes〞Thin Sold Films 460, 25 (2004).
    [3-15] Chun-Kai Huang and Tai-Bor Wu,〝Plasma etching and hydrogen blocking characteristics of PtOx thin films in ferroelectric capacitor fabrication〞, Appl. Phys. Lett. 83, 3147 (2003).
    [3-16] Byung Soo Lee and Jeong Young Lee, 〝Role of PtO electrode in fatigue in Pb(Zr, Ti)O3 Films〞, Jpn. J. Appl. Phys., Part 2 38, L870 (1999).
    [3-17] Kwangbae Lee, Byung Roh Rhee, and Chanku Lee, 〝Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barriers〞, Appl. Phys. Lett. 79, 821 (2001).
    [3-18] Chin-Lin Liu, Zhen-Yue Lee, Tai-Bor Wu, Shiang-Lan Lung, and Rich Liu, 〝Polarization Switching Characteristics of Pb(Z0.5Ti0.5)O3 Thin Films Deposited on Vacuum-Annealed PtOx/Pt Electrode〞, Jpn. J. Appl. Phys., Part 1 41, 6054 (2002).
    [3-19] Jongin Hong, Han Wook Song, Hee Chul Lee, Won Jong Lee, and Kwangsoo No, 〝Structure and electrical properties of Pb(ZxTi1-x)O3 deposited on textured Pt thin films〞, J. Appl. Phys. 90, 1962 (2001).
    [3-20] [3-20] W. L. Warren, G. E. Pike, K. Vanheusden, D. Dimos, B. A. Tuttle, and J. Robertson, 〝Defect-dipole alignment and tetragonal strain in ferroelectrics〞, J. Appl. Phys. 79, 9250 (1996).
    [3-21] T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter, and D. J. Keeble, 〝Vacancy formation in (Pb,La)(Zr,Ti)O3 capacitors with oxygen deficiency and the effect on voltage offset〞, Appl. Phys. Lett. 77, 127 (2000).
    [3-22] Ilsub Chung, I.K. Yoo, W. Lee, C,W. Chung, J.K. Lee, and Seshu B. Desu, 〝Electrode stress effects on electrical properties of PZT thin film capacitors〞, ISAF '94., Proceedings 527(1994).
    [3-23] Tetsuo Kumazawa, Yukihiro Kumagai, Hideo Miura, Makoto Kitano, and Keiko Kushida, 〝Effect of external stress on polarization in ferroelectric thin films〞, Appl. Phys. Lett. 72, 608 (1998).
    [3-24] J. Lappalainen, J. Frantti, and V. Lantto, 〝Electrical and mechanical properties of ferroelectric thin films laser ablated from a Pb0.97Nd0.02(Zr0.55Ti0.45)O3 target〞, J. Appl. Phys. 82, 3469 (1997).
    [3-25] G. A. C. M. Spierings, G. J. M. Dormans, W. G. J. Moors, M. J. E. Ulenaers, and P. K. Larsen, 〝Stresses in Pt/Pb(Zr,Ti)O3/Pt thin-film stacks for integrated ferroelectric capacitors〞, J. Appl. Phys. 78, 1926 (1995).
    [3-26] Min Hong Kim, Tae-Soon Park, Euijoon Yoon, Dong-Su Lee, Dong-Yeon Park, Hyun-Jeong Woo, Dong-II Chun, and Jowoong Ha, 〝Changes in preferred orientation of Pt thin films deposited by a dc magnetron sputtering using Ar/O2 gas mixtures〞, J. Mater. Res. 14, 1255 (1999).
    [3-27] S. Hyun, R. P. Vinci, K. P. Fahey, and B. M. Clemens, 〝Effect of grain structure on the onset of diffusion-controlled stress relaxation in Pt thin films〞, Appl. Phys. Lett. 83, 2769 (2003).
    [3-28] P. M. Alexander and R. W. Hoffman, 〝Effect of impurities on intrinsic stress in thin Ni films〞, J. Vac. Sci. Technol. 13, 96 (1976).
    [3-29] C. U. Pinnow, I. Kasko, N. Nagel, S. Poppa, T. Mikolajick, W. Hösler, 29] F. Bleyl, F. Jahnel, M. Seibt, U. Geyer and K. Samwer, 〝Influence of deposition conditions on Ir/IrO2 oxygen barrier effectiveness〞, J. Appl. Phys. 91, 9591 (2002).
    [3-30] Wen Gong, Jing-Feng Li, Xiangcheng Chu, Zhilun Gui, and Longtu Li, 〝Combined effect of preferential orientation and Zr/Ti atomic ratio on electrical properties of Pb(ZrxTi1–x)O3 thin films〞, J. Appl. Phys. 96, 590 (2004).
    [3-31] M. H. Lente, A. Picinin, J. P. Rino, and J. A. Eiras, 〝90° domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process〞, J. Appl. Phys. 95, 2646 (2004).
    [3-32] A. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, 〝Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features〞, J. Appl. Phys. 90, 1387 (2001).
    [3-33] S. Pöykkö and D. J. Chadi, 〝Dipolar Defect Model for Fatigue in Ferroelectric Perovskites〞, Phys. Rev. Lett. 83, 1231 (1999).
    [3-34] B. S. Kang, D. J. Kim, J. Y. Jo, T. W. Noh, Jong-Gul Yoon, T. K. Song, Y. K. Lee, J. K. Lee, S. Shin, and Y. S. Park, 〝Polarization retention in Pb(Zr0.4Ti0.6)O3 capacitors with IrO2 top electrodes〞, Appl. Phys. Lett. 84, 3127 (2004).
    [3-35] J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee, and J. U. Bu, 〝Nanoscale investigation of domain retention in preferentially oriented PbZr0.53Ti0.47O3 thin films on Pt and on LaNiO3〞, Appl. Phys. Lett. 75, 3183 (1999).
    [3-36] J. Kakalios, R. A. Street, and W. B. Jackson, 〝Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon〞, Phys. Rev. Lett. 59, 1037 (1987).

    [4-1] J. F. Scott, C. A. Paz de Araujo, L.D. McMillan, H. Yoshimori, H. Watanabe,T. Mihara, M. Azuma,T. Ueda, Tetsuk Ueda, and G.Kano,〝Ferroelectric Thin films in intergrated microelectronic devices〞, Ferroelectric, Vol. 133,47 (1992).
    [4-2] K. Takemura, T. Sakuma, and Y. Miyasaka, 〝High dielectric constant (Ba,Sr)TiO3 thin films prepared on RuO2/sapphire〞 Appl. Phys. Lett. 64, 2967 (1994).
    [4-3] P. C. Joshi, and S. B. Krupanidhi, 〝Strontium titanate thin films by rapid thermal processing〞, Appl. Phys. Lett. 61, 1525 (1992).
    [4-4] M. S. Chen, T. B. Wu, and J. M. Wu, 〝Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films〞, Appl. Phys. Lett. 68, 1432 (1996).
    [4-5] [4-5] Li-Hsin Chang, Elizabeth Apen, Mike Kottke, and Clarence Tracy〝A study of platinum electrode patterning in a reactive ion etcher〞J. Vac. Sci. Technol. A 16,1489 (1998).
    [4-6] M. C. Chiang, F. M. Pan, H. C. Cheng, J. S. Liu, S. H. Chan, and T. C. Wei, 〝Dry etching of platinum films with TiN masks〞 J. Vac. Sci. Technol. A 18, 181 (2000).
    [4-7] Takashi Yunogami and Takao Kumihashi, 〝Sub-Quarter-Micron Pt Etching Technology Using Electron Beam Resist with Round-Head〞, Jpn. J. Appl. Phys., Part 1 37, 6934 (1998).
    [4-8] K. R. Milkove and C. X. Wang, 〝Insight into the dry etching of fence-free patterned platinum structures〞, J. Vac. Sci. Technol. A 15, 596 (1997).
    [4-9] Kwang-Ho Kwon, Chang-Il Kim, Sun Jin Yun, and Geun-Young Yeom, 〝Etching properties of Pt thin films by inductively coupled plasma〞, J. Vac. Sci. Technol. A 16, 2772 (1998).
    [4-10] ] Hyoun-woo Kim, Byong-Sun Ju, Byeong-Yun Nam, Won-Jong Yoo, Chang-Jin Kang, Tae-Hyuk Ahn, Joo-Tae Moon, and Moon-Yong Lee, 〝High temperature platinum etching using Ti mask layer〞, J. Vac. Sci. Technol. A 17, 2151 (1999).
    [4-11] Martin U. Gutsche, Satish D. Athavale, Kurt Williams, and Danielle Hines, 〝Patterning of 0.175 μm platinum features using Ar/O2 chemically assisted ion-beam etching〞, J. Vac. Sci. Technol. B 18, 765 (2000).
    [4-12] ] Chee Won Chung and Ilsub Chung, 〝Platinum etching using a TiO2 hard mask in an O2/C2/Ar plasma〞, J. Vac. Sci. Technol. A 18, 835 (2000).
    [4-13] Jin Hong Kim, Ki Woong Kim, and Seong Ihl Woo, 〝Etching characteristics of platinum in inductively coupled plasma using Cl2/CO〞, J. Vac. Sci. Technol. B 22, 1662 (2004).
    [4-14] Shoji, K.; Moniwa, M.; Yamashita, H.; Kisu, T.; Kaga, T.; Torri, K.; Kumihashi, T.; Morimoto, T.; Kawakami, H.; Gotoh, Y.; Itoga, T.; Tanaka, T.; Yokoyama, N.; Kure, T.; Ohkura, M.; Fujisaki, Y.; Sakata, K.; Kimura, K.;〝A 7.03-μm2 Vcc/2-plate nonvolatile DRAM cell with a Pt/PZT/Pt/TiN capacitor patterned by one-mask dry etching〞, VLSI Tech. Dig., 28 (1996).
    [4-15] Sang-Woo Lee, Suk-Ho Joo, Sung Lae Cho, Yoon-Ho Son, Kyu-Mann Lee, Sang-Don Nam, Kun-Sang Park, Yong-Tak Lee, Jung-Suk Seo, Young-Dae Kim, Hyeong-Geun An, Hyoung-Joon Kim, Yong-Ju Jung, Jang-Eun Heo, Moon-Sook Lee, Soon-Oh Park, U-In Chung and Joo-Tae Moon, 〝Plasma-Assisted Dry Etching of Ferroelectric Capacitor Modules and Application to a 32M Ferroelectric Random Access Memory Devices with Submicron Feature Sizes〞, Jpn. J. Appl. Phys., Part 1 41, 6749 (2002).
    [4-16] ] Naokatsu Ikegami, Takayuki Matsui and Jun Kanamori, 〝Dry-Etching Mechanism of Sputtered Pb(Zr1- xTi x)O3 Film 〞, Jpn. J. Appl. Phys., Part 1 35, 2505 (1996).
    [4-17] Kim, Kyoung-Tae, Kang, Myoung-Gu and Kim, Chang-Il, 〝Study on the etching damage characteristics of PZT thin films after etching in Cl-based plasma〞, Microelectronic Engineering 71, 294 (2004).
    [4-18] Jin-Ki Jung and Won-Jong Lee, 〝Dry Etching Characteristics of Pb(Zr,Ti)O3 Films in CF4 and Cl2/CF4 Inductively Coupled Plasmas〞, Jpn. J. Appl. Phys., Part 1 40, 1408 (2001).
    [4-19] Kang, Myoung-Gu; Kim, Kyoung-Tae and Kim, Chang-Il, 〝Recovery of plasma-induced damage in PZT thin film with O2 gas annealing〞, Thin Solid Films 398-399, 448 (2001).
    [4-20] K.Torii, H. Kawakami, H. Miki, K. Kushida, T. Ittiga, Y. Goto, T. Kumihashi, N. Yokoyama, M. Moinwa, K. Shoji, T. Kaga, and Y. Fujisaki, Integr. Ferroelectric. 16, 21 (1997).
    [4-21] June Key Lee, Youngsoo Park, Ilsub Chung, Sang Jeong Oh, Dong Jin Jung, Yoon Jong Song, Bon Jae Koo, Sung Yung Lee, Kinam Kim and Seshu B. Desu〝mprovement in the electrical properties in Pt/Pb(Zr0.52Ti0.48)O3 /Pt ferroelectric capacitors using a wet cleaning method〞, J. Appl. Phys. 86, 6376 (1999).
    [4-22] Tzu-Ping Liu, Wei-Pang Huang, Tai-Bor Wu, 〝Enhanced deposition and dielectric property of Ta2O5 thin films on a rugged PtO electrode〞, IEEE Trans. Electron Device 50, 1425( 2003 ).
    [4-23] Tzu-Ping Liu, Wei-Pang Huang, and Tai-Bor Wu, 〝Enhanced chemical vapor deposition of tantalum oxide thin films from in-situ reduction of PtOx electrode〞, J. Vac. Sci. Technol. A 21, 502 (2003).
    [4-24] C. Soyer, E. Cattan, D. Rèmiens, and M. Guilloux-Viry 〝Ion beam etching of lead–zirconate–titanate thin films: Correlation between etching parameters and electrical properties evolution〞, J. Appl. Phys. 92, 1048 (2002).
    [4-25] Seiichi Yokoyama, Yasuyuki Ito, Kazuya Ishihara, Kazuyuki Hamada, Shigeo Ohnishi, Jun Kudo and Keizo Sakiyama, 〝High-Temperature Etching of PZT/Pt/TiN Structure by High-Density ECR Plasma〞, Jpn. J. Appl. Phys., Part 1 34, 767 (1995).
    [4-26] Chung Chee Won, Byun, Yo Han and Kim, Hye In, 〝Inductively coupled plasma etching of a Pb(ZrxTi1-x)O3 thin film in a HBr/Ar plasma〞, Microelectronic Engineering 63, 353 (2002).
    [4-27] Sang Hoon Kim, Sup-Youl Ju, Jae Hee Hwang and Jinho Ahn, 〝Chemical Reaction During Pt Etching with SF6/Ar and Cl2/Ar Plasma Chemistries〞, Jpn. J. Appl. Phys., Part 1 42, 1581 (2003).
    [4-28] Won Jong Yoo, Jin Hwan Hahm, Hyoun Woo Kim, Chan Ouk Jung, Young Bum Koh and Moon Yong Lee, 〝Control of Etch Slope during Etching of Pt in Ar/Cl2/O2 Plasmas 〞, Jpn. J. Appl. Phys., Part 1 35, 2501 (1996).
    [4-29] YoshioAbe, Hideto Yanagisawa and Katsutaka Sasaki, 〝Preparation of Oxygen-Containing Pt and Pt Oxide Thin Films by Reactive Sputtering and Their Characterization〞, Jpn. J. Appl. Phys., Part 1 37, 4482 (1998).
    [4-30] Kwang-Ho Kwon, Seung-Youl Kang, Geun-Young Yeom, Nam-Kwan Hong, and Jin Ho Lee, 〝Etch Characteristics of Pt Using Cl2/Ar/O2 Gas Mixtures〞, J. Electrochem. Soc. 147, 1807 (2000).
    [4-31] Chun-Kai Huang and Tai-Bor Wu, 〝Plasma etching and hydrogen blocking characteristics of PtOx thin films in ferroelectric capacitor fabrication〞, Appl. Phys. Lett. 83 3147 (2003).
    [4-32] Jae-Whan Kim, Yong-Chun Kim, and Won-Jong Lee,〝Reactive ion etching mechanism of plasma enhanced chemically vapor deposited aluminum oxide film in CF4/O2 plasma〞 J. Appl. Phys. 78, 2045 (1995)
    [4-33] Alfred Grill , 〝Cold plasma in materials fabrication〞chapter 8,by IEEE Press (1994).
    [4-34] Chee Won Chung and Chang Jung Kim, 〝Etching Effects on Ferroelectric Capacitors with Multilayered Electrodes〞, Jpn. J. Appl. Phys., Part 1 36, 2747 (1997).
    [4-35] Eun Gu Lee, Dirk J. Wouters, Geert Willems, and Herman E. Maes, 〝Voltage shift and deformation in the hysteresis loop of Pb(Zr,Ti)O3 thin film by defects〞, Appl. Phys. Lett. 69, 1223 (1996).
    [4-36] June Key Lee, Tae-Young Kim, Ilsub Chung and Seshu B. Desu 〝Characterization and elimination of dry etching damaged layer in Pt/Pb(Zr0.53Ti0.47)O3/Pt ferroelectric capacitor〞, Appl. Phys. Lett. 75, 334 (1999).
    [4-37] Lin, Yin-yin, Liu, Qin, Tang, Ting-ao; and Yao, Xi, 〝XPS analysis of Pb(Zr0.52Ti0.48)O3 thin film after dry-etching by CHF3 plasma〞,Appl. Surface. Sci 165, 34 (2000)
    [4-38] H. K. Jang, S. K. Lee, Cheol Eui Lee, S. J. Noh, and W. I. Lee, 〝Oxygen plasma effects on sol-gel-derived lead-zirconate-titanate thin films〞, Appl. Phys. Lett. 76, 882 (2000)

    [5-1] O. Auciello, J. F. Scott and R. Ramesh, Phys. Today July. 22 (1998).
    [5-2] Dong-Jin Jung, Sung-Yung Lee, Bon-Jae Koo, Yoo-Sang Hwang, Dong-Won Shin, Jin-Woo Lee, Yoon-Soo Chun, Soo-Ho Shin, Mi-Hyang Lee, Hong-Bae Park, Sang-In Lee, Kinam Kim, and Jong-Gil Lee, 〝A Highly Reliable 1T/1C Ferroelectric Memory〞, VLSI Tech. Dig. 122 (1998).
    [5-3] T. Kachi, K. Shoji, H. Yamashita, T. Kisu, K. Torii, T. Kumihashi, Y. Fujisaki and N. Yokoyama, 〝A scalable single-t ransist or /single-capacit or memory cell structure characterized by an angled-capacitor layout for megabit FeRAMs〞, Symp. VLSI Tech. Dig. 126 (1998).
    [5-4] Hsiang-Lan Lung; Lai, S.C.; Lee, H.Y.; Tai-Bor Wu; Liu, R.; Chih-Yuan Lu; 〝Low-temperature capacitor-over-interconnect (COI) modular FeRAM for SOC application〞, IEEE Trans. Electron Devices 51, 91 (2004).
    [5-5] Naoya Inoue, Tsuneo Takeuchi, and Yoshihiro Hayashi, 〝Compositional design of Pb(Zr, Ti)O3 for highly reliable ferroelectric memories〞, IEEE Trans. Electron Devices 49, 1572 (2002).
    [5-6] Tomoyuki Sakoda, Theodore S. Moise, Scott R. Summerfelt, Luigi Colombo, Guoqiang Xing, Stephen R. Gilbert , Alvin L. S. Loke , Shawming Ma , Rahim Kavari , Laura A. Wills and Jun Amano, 〝Hydrogen-robust submicron IrOx/Pb(Zr, Ti)O3/Ir capacitors for embedded ferroelectric memory〞, Jpn. J. Appl. Phys.part1.40, 2911 (2001).
    [5-7] Jin-Ping Han and T. P. Ma,〝Electrode dependence of hydrogen-induced degradation in ferroelectric Pb(Zr,Ti)O3 and SrBi2Ta2O9 thin films〞, Appl. Phys. Lett. 71, 1267 (1997).
    [5-8] Soon-Gil Yoon, Dwi Wicaksana, Dong-Joo Kim, Seung-Hyun Kim,and A.I. Kingon, 〝Effect of hydrogen on true leakage current characteristics of (Pb,La)(Zr,Ti)O3 thin-film capacitors with Pt- or Ir-based top electrodes〞 , J. Mater. Res. 16, 1185 (2001).
    [5-9] Keiko Kushida-Abdelghafar, Hiroshi Miki, Kazuyoshi Torii, and Yoshihisa Fujisaki, 〝Electrode-induced degradation of Pb(ZrxTi1 – x)O3 (PZT) polarization hysteresis characteristics in Pt/PZT/Pt ferroelectric thin-film capacitors〞, Appl. Phys. Lett. 69, 3188 (1996).
    [5-10] Y. Shimamoto, K. Kushida-Abdelghafar, H. Miki, and Y. Fujisaki, 〝H2 damage of ferroelectric Pb(Zr,Ti)O3 thin-film capacitors—The role of catalytic and adsorptive activity of the top electrode〞, Appl. Phys. Lett. 70, 3096 (1997).
    [5-11] S. Aggarwal, S. R. Perusse, C. W. Tipton, R. Ramesh, H. D. Drew, T. Venkatesan, D. B. Romero, V. B. Podobedov, and A. Weber, 〝Effect of hydrogen on Pb(Zr,Ti)O3-based ferroelectric capacitors〞, Appl. Phys. Lett. 73, 1973 (1998).
    [5-12] S. Aggarwal, S. R. Perusse, B. Nagaraj, and R. Ramesh, 〝Oxide electrodes as barriers to hydrogen damage of Pb(Zr,Ti)O3-based ferroelectric capacitors〞, Appl. Phys. Lett. 74, 3023 (1999).
    [5-13] ] Jun Lin, Katsuaki Natori, Yoshiaki Fukuzumi, Mitsuaki Izuha, Kohji Tsunoda, Kazuhiro Eguchi, Katsuhiko Hieda, and Daisuke Matsunaga, 〝SrRuO3/(Ba, Sr)TiO3/SrRuO3 capacitor annealed in the forming gas with and without oxygen addition〞, Appl. Phys. Lett. 76, 2430 (2000).
    [5-14] Eun-Suck Choi and Soon-Gil Yoon,〝Structural Stability of hydrogen forming gas annealed (Ba, Sr)RuO3 oxide electrodes〞, Electrochem. Solid-State Lett. 5, F1 (2002).
    [5-15] K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, 〝Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features〞, J. Appl. Phys. 90 ,1387 (2001).
    [5-16] Kwangbae Lee, Byung Roh Rhee, and Chanku Lee, 〝Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barriers〞, Appl. Phys. Lett. 79, 821 (2001).
    [5-17] Chin-Lin Liu, Zhen-Yue Lee, Tai-Bor Wu, Shiang-Lan Lung, and Rich Liu, 〝Polarization Switching Characteristics of Pb(Z0.5Ti0.5)O3 Thin Films Deposited on Vacuum-Annealed PtOx/Pt Electrode〞, Jpn. J. Appl. Phys., Part 1 41, 6054 (2002).
    [5-18] Yi-Chan chen, Yu-Ming Sun and Jon-Yiew Gan,〝Improved fatigue properties of lead zirconate titanate films made on oxygen-implanted platinum electrodes〞Thin Sold Films 460, 25 (2004).
    [5-19] Chun-Kai Huang and Tai-Bor Wu,〝Plasma etching and hydrogen blocking characteristics of PtOx thin films in ferroelectric capacitor fabrication〞, Appl. Phys. Lett. 83, 3147 (2003).
    [5-20] Tzu-Ping Liu, Wei-Pang Huang, Tai-Bor Wu, 〝Enhanced deposition and dielectric property of Ta/sub 2/O/sub 5/ thin films on a rugged PtO electrode〞, Electron Devices, IEEE Transactions on 50 1425( 2003 ).
    [5-21] Yoshihisa Fujisaki, Keiko Kushida-Abdelghafar, Yasuhiro Shimamoto, and Hiroshi Miki, 〝The effects of the catalytic nature of capacitor electrodes on the degradation of ferroelectric Pb(Zr,Ti)O3 thin films during reductive ambient annealing〞, J. Appl. Phys. 82, 341 (1997).
    [5-22] Sunae Seo, Jong-Gul Yoon, T. K. Song, B. S. Kang, and T. W. Noh, 〝Mechanism of low temperature hydrogen-annealing-induced degradation in Pb(Zr0.4Ti0.6)O3 capacitors〞, Appl. Phys. Lett. 81, 697 (2002).
    [5-23] June Key Lee, Youngsoo Park, and Ilsub Chung, 〝Investigation of hydrogen-induced degradation in Pb(ZrxTi1–x)O3 thin film capacitors for the application of memory devices〞, J. Appl. Phys. 92, 2724 (2002).
    [5-24] C. H. Park and D. J. Chadi, 〝Effect of interstitial hydrogen impurities on ferroelectric polarization in PbTiO3〞, Phys. Rev. Lett. 84, 4717 (2000).
    [5-25] J. D. Baniecki, R. B. Laibowitz, T. M. Shaw, C. Parks, J. Lian, H. Xu, and Q. Y. Ma, 〝Hydrogen induced tunnel emission in Pt/(BaxSr1–x)Ti1 + yO3 + z/Pt thin film capacitors〞, J. Appl. Phys. 89, 2873 (2001).
    [5-26] Jang-Sik Lee and Seung-Ki Joo, 〝Role of grain boundaries on hydrogen-induced degradation in lead zirconate titanate thin films〞, Appl. Phys. Lett. 81, 3230 (2002).
    [5-27] Nobuyuki Ikarashi and Nobuki Hosoi, 〝Ti-O coordination at a Pb(Zr,Ti)O3/Pt interface annealined in a hydrogen-contaung ambient analyzed using spatially resolved electron energy-loss spectroscopy〞, J. Appl. Phys. 85, 7874 (1999).
    [5-28] Y. Abe, H. Yanagisawa, and K. Sasaki,〝Preparation of oxygen-containing Pt and Pt oxide thin films by reactive sputtering and their characterization〞 Jpn. J. Appl. Phys.,Part 1 37, 4482 (1998).
    [5-29] J. Nowotny and N. Sloma eds., 〝Surface and near-surface chemistry of oxide ceramic materials〞, (Elsevier, Amsterdam, 1988).
    [5-30] Martin C. Steele, John W. Hile, and Bernard A. MacIver, 〝Hydrogen-sensitive palladium gate MOS capacitors〞, J. Appl. Phys. 47, 2537 (1976).
    [5-31] Jihyun Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, 〝Reversible barrier height changes in hydrogen-sensitive Pd/GaN and Pt/GaN diodes〞, Appl. Phys. Lett. 82, 739 (2003).
    [5-32] E. H. Rhoderick and R. H. Williams, 〝Metal semiconductor contacts〞, (Oxford university, New York, 1988).
    [5-33] Shinichiro Takatani, Hiroshi Miki, Keiko Kushida-Abdelghafar, and Kazuyoshi Torii, 〝Pt/PbZrxTi1 – xO3 interfacial reaction and Schottky barrier formation studied by x-ray photoelectron spectroscopy: Effect of H2 and O2 annealing〞, J. Appl. Phys. 85, 7784 (1999).
    [5-34] I. Stolichnov and A. Tagantsev, 〝Space-charge influenced-injection model for conduction in Pb(ZrxTi1 – x)O3 thin films〞 ,J. Appl. Phys. 84, 3216 (1998).
    [5-35] Ju Cheol Shin, Cheol Seong Hwang, Hyeong Joon Kim, and Soon Oh Park, 〝Leakage current of sol-gel derived Pb(Zr, Ti)O3 thin films having Pt electrodes〞 , Appl. Phys. Lett. 75, 3411 (1999).
    [5-36] Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, 〝Schottky barrier effects in the electronic conduction of sol--gel derived lead zirconate titanate thin film capacitors〞, J. Appl. Phys. 84, 5005 (1998).
    [5-37] J. F. Scott, K. Watanabe, A. H. Hartmann, and R. N. Lamb, Ferroelectrics 225, 83 (1999).
    [5-38] J. D. Baniecki, R. B. Laibowitz, T. M. Shaw, K. L. Saenger, P. R. Duncombe, C. Cabral, D. E. Kotecki, H. Shen, J. Lian and Q. Y. Ma, 〝Effcts of annealing conditions on charge loss mechanisms in MOCVD Ba0.7Sr0.3TiO3 thin film capacitors〞, J. Eur. Ceram. Soc. 19, 1457 (1999).
    [5-39] A. M. Cowley and S. M. Sze, 〝Surface States and Barrier Height of Metal-Semiconductor Systems〞, J. Appl. Phys. 36, 3212 (1965).
    [5-40] J. Robertson and C. W. Chen, 〝Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate〞, Appl. Phys. Lett. 74, 1168 (1999).
    [5-41] Matthew Dawber and J. F. Scott, 〝Calculation of Schottky barrier height of platinum/lead zirconate titante interface 〞, Integr. Ferroelec. 38, 161 (2001).

    [6-1] Tanabe, N.; Kobayashi, S.; Miwa, T.; Amamuma, K.; Mori, H.; Inoue, N.; Takeuchi, T.; Saitoh, S.; Hayashi, Y.; Yamada, J.; Koike, H.; Hada, H.; Hunio, T.; 〝High tolerance operation of 1T/2C FeRAMs for the variation of cell capacitors characteristics〞, Symp. VLSI Tech. Dig. , 124 (1998).
    [6-2] Shiratake, S.; Miyakawa, T.; Takeuchi, Y.; Ogiwara, R.; Kamoshida, M.; Hoya, K.; Oikawa, K.; Ozaki, T.; Kunishima, I.; Yamakawa, K.; Sugimoto, S.; Takashima, D.; Joachim, H.-O.; Rehm, N.; Wohlfahrt, J.; Nagel, N.; Beitel, G.; Jacob, M.; Roehr, T.; 〝A 32-Mb chain FeRAM with segment/stitch array architecture〞IEEE, Solid-State Circuits 38, 1911 (2003).
    [6-3] S. R. Summerfelt, T. S. Moise, G. Xing, L. Colombo, T. Sakoda, S. R. Gilbert, A. L. S. Loke, S. Ma, L. A. Wills, R. Kavari, T. Hsu, J. Amano, S. T. Johnson, D. J. Vestcyk, M. W. Russell, S. M. Bilodeau, and P. van Buskirk,〝Demonstration of scaled ( 0.12 µm2) Pb(Zr,Ti)O3 capacitors on W plugs with Al interconnect〞, Appl. Phys. Lett. 66, 2975 (1995).
    [6-4] Hsiang-Lan Lung; Lai, S.C.; Lee, H.Y.; Tai-Bor Wu; Liu, R.; Chih-Yuan Lu; 〝Low-temperature capacitor-over-interconnect (COI) Modular FeRAM for SOC application〞, IEEE Electron Devices, Transactions on 51, 91 (2004).
    [6-5] Wenhui Ma and Dietrich Hesse,〝Polarization imprint in ordered arrays of epitaxial ferroelectric nanostructures〞, Appl. Phys. Lett. 84, 2871 (2004).
    [6-6] Masahiko Hiratani, Choichiro Okazaki, Haruhiro Hasegawa, Nobuyuki Sugii, Yoshinobu Tarutani and Kazumasa Takagi, 〝Fabrication of Pb(Zr, Ti)O3 Microscopic Capacitors by Electron Beam Lithography 〞, Jpn. J. Appl. Phys.part1.36, 5219 (1997).
    [6-7] M. Alexe, C. Harnagea, D. Hesse, and U. Gösele,〝Patterning and switching of nanosize ferroelectric memory cells〞, Appl. Phys. Lett. 75, 1793 (1999).
    [6-8] Takashi Ito, Shinji Okazaki,〝Pushing the limits of lithography〞,Nature 406, 1027(2000).
    [6-9] C. S. Ganpule, A. Stanishevsky, S. Aggarwal, J. Melngailis, E. Williams, R. Ramesh, V. Joshi, and Carlos Paz de Araujo,〝Scaling of ferroelectric and piezoelectric properties in Pt/SrB2Ta2O9/Pt thin films〞, Appl. Phys. Lett. 75, 3874 (1999).
    [6-10] Kishii, S.; Miyazawa, H.; Katoh, Y.; Misawa, N.; Eshita, T.; Arimoto, Y.; 〝Al-interconnect/Cu-plug structure for FeRAM multilevel interconnect〞, VLSI Technology Dig. 19, 143 (1999).
    [6-11] C. S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngailis, E. Williams, and R. Ramesh, 〝Scaling of ferroelectric properties in thin films〞, Appl. Phys. Lett. 75, 409 (1999).
    [6-12] Igor Stolichnov, Enrico Colla, Alexander Tagantsev, S. S. N. Bharadwaja, Seungbum Hong, Nava Setter, Jeffrey S. Cross, and Mineharu Tsukada,〝Unusual size effect on the polarization patterns in micron-size Pb(Zr,Ti)O3 film capacitors〞, Appl. Phys. Lett. 80, 4804 (2002).
    [6-13] S. Prasertchoung, V. Nagarajan, Z. Ma, R. Ramesh, J. S. Cross, and M. Tsukada,〝Polarization switching of submicron ferroelectric capacitors using an atomic force microscope〞, Appl. Phys. Lett. 84, 3130 (2004).
    [6-14] S. Bühlmann, B. Dwir, J. Baborowski, and P. Muralt, 〝Size effect in mesoscopic epitaxial ferroelectric structures: Increase of piezoelectric response with decreasing feature size〞, Appl. Phys. Lett. 80, 3195 (2002).
    [6-15] C. Soyer, E. Cattan, D. Rèmiens, and M. Guilloux-Viry 〝Ion beam etching of lead–zirconate–titanate thin films: Correlation between etching parameters and electrical properties evolution〞, J. Appl. Phys. 92, 1048 (2002).
    [6-16] Sang-Woo Lee, Suk-Ho Joo, Sung Lae Cho, Yoon-Ho Son, Kyu-Mann Lee, Sang-Don Nam, Kun-Sang Park, Yong-Tak Lee, Jung-Suk Seo, Young-Dae Kim, Hyeong-Geun An, Hyoung-Joon Kim, Yong-Ju Jung, Jang-Eun Heo, Moon-Sook Lee, Soon-Oh Park, U-In Chung and Joo-Tae Moon, 〝Plasma-Assisted Dry Etching of Ferroelectric Capacitor Modules and Application to a 32M Ferroelectric Random Access Memory Devices with Submicron Feature Sizes〞, Jpn. J. Appl. Phys., Part 1 41, 6749 (2002).
    [6-17] S. Tiedke, T. Schmitz, K. Prume, A. Roelofs, T. Schneller, U. Kall, R. Waser, C. S. Ganpule, V. Nagarajan, A. Stanishevsky, and R. Ramesh,〝Direct hysteresis measurements of single nanosized ferroelectric capacitors contacted with an atomic force microscope〞, Appl. Phys. Lett. 79, 3678 (2001).
    [6-18] Klaus Prume, Andreas Roelofs, Thorsten Schmitz, Bernd Reichenberg, Stephan Tiedke, and Rainer Waser, 〝Compensation of the Parasitic Capacitance of a Scanning Force Microscope Cantilever Used for Measurements on Ferroelectric Capacitors of Submicron Size by Means of Finite Element Simulations〞, Jpn. J. Appl. Phys., Part 1 41, 7198 (2002).
    [6-19] Chun-Kai Huang and Tai-Bor Wu,〝Plasma etching and hydrogen blocking characteristics of PtOx thin films in ferroelectric capacitor fabrication〞, Appl. Phys. Lett. 83, 3147 (2003).
    [6-20] Kwangbae Lee, Byung Roh Rhee, and Chanku Lee, 〝Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barriers〞, Appl. Phys. Lett. 79, 821 (2001).
    [6-21] Chin-Lin Liu, Zhen-Yue Lee, Tai-Bor Wu, Shiang-Lan Lung, and Rich Liu, 〝Polarization Switching Characteristics of Pb(Z0.5Ti0.5)O3 Thin Films Deposited on Vacuum-Annealed PtOx/Pt Electrode〞, Jpn. J. Appl. Phys., Part 1 41, 6054 (2002).
    [6-22] Yi-Chan chen, Yu-Ming Sun and Jon-Yiew Gan,〝Improved fatigue properties of lead zirconate titanate films made on oxygen-implanted platinum electrodes〞Thin Sold Films 460, 25 (2004).
    [6-23] Jang-Sik Lee and Seung-Ki Joo,〝Analysis of grain-boundary effects on the electrical properties of Pb(Zr,Ti)O3 thin films〞, Appl. Phys. Lett. 81, 2602 (2002).
    [6-24] K. L. Saenger, C. Cabral, Jr., C. Lavoie, and S. M. Rossnagel, 〝Thermal stability and oxygen-loss characteristics of Pt(O) films prepared by reactive sputtering〞, J. Appl. Phys. 86, 6084 (1999).
    [6-25] V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello, R. Ramesh, 〝Dynamics of ferroelastic domains in ferroelectric thin films〞, Nature Materials 2, 43 (2003).
    [6-26] Hiroshi Maiwa, Seung-Hyun Kim, and Noboru Ichinose, 〝Temperature dependence of the electrical and electromechanical properties of lead zirconate titanate thin films〞, Appl. Phys. Lett. 83, 4396 (2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE