研究生: |
謝旻哲 Hsieh, Min-Che |
---|---|
論文名稱: |
高密度三維通孔電阻式隨機存取記憶體元件之研究 Study of High-density 3D Via Resistive Random Access Memory in Nanoscale CMOS Technologies |
指導教授: |
金雅琴
King, Ya-Chin |
口試委員: |
侯拓宏
Hou, Tuo-Hung 葉鳳生 Yeh, Fon-Shan 張宗生 Chang, Tzong-Sheng 林泓均 Lin, Hong-Chin |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 互補式金氧半導體 、非揮發性記憶體 、後段製程 、電阻式隨機存取記憶體 |
外文關鍵詞: | CMOS, NVM, BEOL, RRAM |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著近年來互聯網相關應用以及手持式電子產品的蓬勃發展,對於內嵌於互補式金氧半導體(CMOS)積體電路之記憶體模組的需求亦是逐年增加。為了應付龐大的數位資訊處理與保存,具有高儲存密度、高可靠度的優勢並且能夠高速寫入/讀取的新興記憶體元件包括相轉式隨機存取記憶體(PCRAM)、磁阻式隨機存取記憶體(MRAM)以及電阻式隨機存取記憶體(RRAM)都具有成為下一世代下非揮發性記憶體(NVM)的潛力。本論文中首先將展示可完全相容於CMOS邏輯製程之鋁後段製程(BEOL)的新型高密度通孔電阻式隨機存取記憶體元件,此一元件可透過簡單的光罩設計製作,除了具備優秀的元件特性外,亦可透過後段製程的連續堆疊來生產三維度儲存陣列以實現超高密度儲存陣列。然而,隨著製程技術不斷微縮並發展至高介電係數金屬閘極(HKMG)互補式金氧半導體先進製程,其後段製程技術中的通孔製造方式從傳統使用的單鑲嵌式演進至雙鑲嵌式,且接點使用的金屬材質亦從銅鋁合金改成銅。此外,為了穩定三維度儲存陣列的操作特性,一個可搭配通孔電阻式隨機存取記憶體元件使用的選擇元件將可堆疊於記憶體元件之上來實現一二極體一電阻(1D1R)的交叉點式儲存陣列。最後,一種新型雙位元通孔電阻式隨機存取記憶體也將於本論文中討論。除了同樣採用先進銅製程進行製造之外,此一元件更具備雙位元儲存能力以及自我整流之特性。以上三種不同的通孔電阻式隨機存取記憶體元件皆具備微小的元件尺寸、容易製造、可三維堆疊、高速切換組態、高阻態比以及優異的可靠度特性等優點,將可望成為下一世代高密度非揮發性記憶體陣列的解決方案之一。
Due to the fast development of internet applications and handheld electronic products, demands of various memory modules in ultra-large scale integration (ULSI) circuits increase every year. For non-volatile data storage applications, emerging memories such as phase change random access memory (PCRAM), magetoresistive random access memory (MRAM) and resistive random access memory (RRAM) were investigated. These next-generation nonvolatile memories (NVM) have the advantages of high storage density, excellent reliability and high write/read speed.
In this dissertation, a new high-density via RRAM which is fully compatible with aluminum-based complimentary metal-oxide-silicon (CMOS) logic back-end-of-line (BEOL) process are proposed and studied first. This device can be easily implemented through special design in the single mask layer layout. This device exhibits excellent electrical characteristics and has the feature to achieve ultra-high storage density array in a repeatable pattern in standard BEOL layers.
As CMOS technologies push forward, the fabrication method of via in BEOL evolves from the traditional single-damascene method to dual-damascene method and the material of via also change from aluminum to copper. In addition, a back-end selector, which compatible with this copper-based via RRAM, is developed to be stacked above the via RRAM to achieve 1D1R cross-point memory array, making 3D-stackable memory array possible.
Finally, a novel twin-bit via RRAM is also demonstrated in this dissertation. The novel memory cell not only can be fabricated in advanced copper-based technology, but also enable the capacity of two bits storage and self-rectifying characteristic. These different via RRAMs all possess advantages such as small cell size, CMOS compatibility, 3D stacking ability, high switching speed, good reliability. Therefore, via RRAM is expected to become available solution for next-generation high-density NVM.
Chapter 1
[1] C.-H. Jan, M. Agostinelli, M. Buehler, Z.-P. Chen, S.-J. Choi, G. Curello, H. Deshpande, S. Gannavaram, W. Hafez, U. Jalan, M. Kang, P. Kolar, K. Komeyli, B. Landau, A. Lake, N. Lazo, S.-H. Lee, T. Leo, J. Lin, N. Lindert, S. Ma, L. McGill, C. Meining, A. Paliwal, J. Park, K. Phoa, I. Post, N. Pradhan, M. Prince, A. Rahman, J. Rizk, L. Rockford, G. Sacks, A. Schmitz, H. Tashiro, C. Tsai, P. Vandervoorn, J. Xu, L. Yang, J.-Y. Yeh, J. Yip, K. Zhang, Y. Zhang, P. Bai, “A 32nm SoC Platform Technology with 2nd Generation High-k/Metal Gate Transistors Optimized for Ultra Low Power, High Performance, and High Density Product Applications,” in Electron Devices Meeting (IEDM), 2009 IEEE International, Dec. 2009, pp. 647-650.
[2] S. Ohbayashi, M. Yabuuchi, K. Kono, Y. Oda, S. Imaoka, K. Usui, T. Yonezu, T. Iwamoto, K. Nii, Y. Tsukamoto, M. Arakawa, T. Uchida, M. Okada, A. Ishii, H. Makino, K. Ishibashi, and H. Shinohara, “A 65nm Embedded SRAM with Wafer-level Burn-in Mode, Leak-bit Redundancy and E-trim Fuse for Known Good Die,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2007 IEEE International, Feb. 2007, pp. 488-617.
[3] M. R. Ouellette, D. L. Anand, and P. Jakobsen, “Shared Fuse Macro for Multiple Embedded Memory Devices with Redundancy,” in IEEE 2001 Customintegrated Circuits Conf., May 2001, pp. 191-194.
[4] T.-Y. Liu, T. H. Yan, R. Scheuerlein, Y. C. Chen, J. K. Lee, G. Balakrishnan, G. Yee, H. Zhang, A. Yap, J. Ouyang, T. Sasaki, S. Addepalli, A. Al-Shamma, C.-Y. Chen, M. Gupta, G. Hilton, S. Joshi, A. Kathuria, V. Lai, D. Masiwal, M. Matsumoto, A. Nigam, A. Pai, J. Pakhale, C. H. Siau, X. Wu, R. Yin, L. Peng, J. Y. Kang, S. Huynh, H. Wang, N. Nagel, Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla, T. Tsukamoto, T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, T. Hara, H. Inoue, L. Fasoli, M. Mofidi, R Shrivastava, and K. Quader, “A 130.7mm2 2-layer 32Gb ReRAM Memory Device in 24nm Technology,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, Feb. 2013, pp. 210-211.
[5] J. M. Slaughter, N. D. Rizzo, J. Janesky, R. Whig, F. B. Mancoff, D. Houssameddine, J. J. Sun, S. Aggarwal, K. Nagel, S. Deshpande, S. M. Alam, T. Andre and P. LoPresti, “High Density ST-MRAM Technology (Invited),” in Electron Devices Meeting (IEDM), 2012 IEEE International, Dec. 2012, pp. 29.3.1-29.3.4.
[6] K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, T. Shimizu, Y. Asao, T. Kajiyama, M. Iwayama, K. Sugiura, S. Ikegawa, T. Kishi, T. Kai, M. Amano, N. Shimomura, H. Yoda, and Y. Watanabe, “A 64Mb MRAM with Clamped-reference and Adequate-reference Schemes,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, Feb. 2010, pp. 258-259.
[7] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang, J. Lee, Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee, J. Yoo, and G. Jeong, “A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, Feb. 2012, pp. 46-48.
[8] K.-T. Park, J.-M. Han, D. Kim, S. Nam, K. Choi, M.-S. Kim, P. Kwak, D. Lee, Y.-H. Choi, K.-M. Kang, M.-H. Choi, D.-H. Kwak, H.-W. Park, S.-W. Shim, H.-J. Yoon, D. Kim, S.-W. Park, K. Lee, K. Ko, D.-K. Shim, Y.-L. Ahn, J. Park, J. Ryu, D. Kim, K. Yun, J. Kwon, S. Shin, D. Youn, W.-T. Kim, T. Kim, S.-J. Kim, S. Seo, H.-G. Kim, D.-S. Byeon, H.-J. Yang, M. Kim, M.-S. Kim, J. Yeon, J. Jang, H.-S. Kim, W. Lee, D. Song, S. Lee, K.-H. Kyung, and J.-H. Choi, “Three-dimensional 128Gb MLC Vertical NAND Flash-memory with 24-WL Stacked Layers and 50MB/s High-speed Programming,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, Feb. 2014, pp. 334-335.
[9] G. Naso, L. Botticchio, M. Castelli, C. Cerafogli, M. Cichocki, P. Conenna, A. D’Alessandro, L. De Santis, D. Di Cicco, W. Di Francesco, M. L. Gallese, G. Gallo, M. Incarnati, C. Lattaro, A. Macerola, G. Marotta, V. Moschiano, D. Orlandi, F. Paolini, S. Perugini, L. Pilolli, P. Pistilli, G. Rizzo, F. Rori, M. Rossini, G. Santin, E. Sirizotti, A. Smaniotto, U. Siciliani, M. Tiburzi, R. Meyer, A. Goda, B. Filipiak, T. Vali, M. Helm, and R. Ghodsi, “A 128Gb 3b/cell NAND Flash Design Using 20nm Planar-Cell Technology,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, Feb. 2013, pp. 218-219.
[10] M. Helm, J.-K. Park, A. Ghalam, J. Guo, C. W. Ha, C. Hu, H. Kim, K. Kavalipurapu, E. Lee, A. Mohammadzadeh, D. Nguyen, V. Patel, T. Pekny, B. Saiki, D. Song, J. Tsai, V. Viajedor, L. Vu, T. Wong, J. H. Yun, R. Ghodsi, A. D’Alessandro, D. D. Cicco, and V. Moschiano, “A 128Gb MLC NAND-flash Device Using 16nm Planar Cell,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, Feb. 2014, pp. 326-327.
[11] S. G. Narendra, Laura C. Fujino, and Kenneth C. Smith, “Through the Looking Glass— The 2015 Edition: Trends in Solid-state Circuits from ISSCC,” Solid-State Circuits Magazine, IEEE, vol. 7, no. 1, pp.14-24, 2015.
[12] S.-M. Jung, J. Jang, W. Cho, H. Cho, J. Jeong, Y. Chang, J. Kim, Y. Rah, Y. Son, J. Park, M.-S. Song, K.-H. Kim, J.-S. Lim and K. Kim, “Three Dimensionally Stacked NAND Flash Memory Technology Using Stacking Single Crystal Si Layers on ILD and TANOS Structure for Beyond 30nm Node,” in Electron Devices Meeting (IEDM), 2006 IEEE International, Dec. 2006, pp. 1-4.
[13] E.-K. Lai, H.-T. Lue, Y.-H. Hsiao, J.-Y. Hsieh, C.-P. Lu, S.-Y. Wang, L.-W. Yang, T. Yang, K.-C. Chen, J. Gong, K.-Y. Hsieh, R. Liu, and C.-Y. Lu, “A Multi-layer Stackable Thin-film Transistor (TFT) NAND-type Flash Memory,” in Electron Devices Meeting (IEDM), 2006 IEEE International, Dec. 2006, pp. 1-4.
[14] A. Nitayama, and H. Aochi “Bit Cost Scalable (BiCS) Technology for Future Ultra High Density Storage Memories (Invited),” in VLSI Technology (VLSIT), 2013 Symposium on, June 2013, pp. T60-T61
[15] J. Kim, A. J. Hong, S. M. Kim, E. B. Song, J. H. Park, J. Han, S. Choi, D. Jang, J. –T. Moon, and K. L. Wang, “Novel Vertical-stacked-array-transistor (VSAT) for Ultra-high-density and Xost-effective NAND Flash Memory Devices and SSD (Solid State Drive),” in VLSI Technology (VLSIT), 2009 Symposium on, June 2009, pp. 186-187
[16] W. Kim, S. Choi, J. Sung, T. Lee, C. Park, H. Ko, J. Jung, I. Yoo, and Y. Park, “Multi-layered Vertical Gate NAND Flash Overcoming Stacking Limit for Terabit Density Storage,” in VLSI Technology (VLSIT), 2009 Symposium on, June 2009, pp. 188-189
[17] R. Katsumata, M. Kito, Y. Fukuzumi, M. Kido, H. Tanaka, Y. Komori, M. Ishiduki, J. Matsunami, T. Fujiwara, Y. Nagata, L. Zhang, Y. Iwata, R. Kirisawa, H. Aochi and A. Nitayama, “Pipe-shaped BiCS Flash Memory with 16 Stacked Layers and Multi-level-cell Operation for Ultra High Density Storage Devices,” in VLSI Technology (VLSIT), 2009 Symposium on, June 2009, pp. 136-137
[18] H.-T. Lue, T.-H. Hsu, Y.-H. Hsiao, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, S.-Y. Wang, J.-Y. Hsieh, L.-W. Yang, T. Yang, K.-C. Chen, K.-Y. Hsieh, and C.-Y. Lu, “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-free Buried Channel BE-SONOS Device,” in VLSI Technology (VLSIT), 2010 Symposium on, June 2010, pp. 131-132
[19] E.-S. Choi and S.-K. Park, “Device Considerations for High Density and Highly Reliable 3D NAND Flash Cell in Near Future,” in Electron Devices Meeting (IEDM), 2012 IEEE International, Dec. 2012, pp. 9.4.1-9.4.4.
[20] K.-T. Park, S. Nam, D. Kim, P. Kwak, D. Lee, Y.-H. Choi, M.-H. Choi, D.-H. Kwak, D.-H. Kim, M.-S. Kim, H.-W. Park, S.-W. Shim, K.-M. Kang, S.-W. Park, K. Lee, H.-J. Yoon, K. Ko, D.-K. Shim, Y.-L. Ahn, J. Ryu, D. Kim, K. Yun, J. Kwon, S. Shin, D.-S. Byeon, K. Choi, J.-M. Han, K.-H. Kyung, J.-H. Choi, and K. Kim, “Three-dimensional 128 Gb MLC Vertical NAND Flash Memory with 24-WL Stacked Layers and 50 MB/s High-speed Programming,” Solid-State Circuits, IEEE Journal of, vol. 50, no. 1, pp.204-213, 2015.
Chapter 2
[1] H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito, Y. Fukuzumi, M. Sato, Y. Nagata, Y. Matsuoka, Y. Iwata, H. Aochi and A. Nitayama, “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory,” in VLSI Technology (VLSIT), 2007 Symposium on, June 2007, pp. 14-15
[2] M. H. Lee, R. Cheek, C. F. Chen, Y. Zhu, J. Bruley, F. H. Baumann, Y. H. Shih, E. K. Lai, M. Breitwisch, A. Schrott, S. Raoux, E. A. Joseph, H. Y. Cheng, J. Y. Wu, H. L. Lung, and C. Lam, “The Impact of Hole-induced Electromigration on the Cycling Endurance of Phase Change Memory,” in Electron Devices Meeting (IEDM), 2010 IEEE International, Dec. 2010, pp. 28.6.1-28.6.4.
[3] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang, J. Lee, Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee, J. Yoo, and G. Jeong, “A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, Feb. 2012, pp. 46-48.
[4] W. J. Wang, D. Loke, L. T. Law, L. P. Shi, R. Zhao, M. H. Li, L. L. Chen, H. X. Yang, Y. C. Yeo, A. O. Adeyeye, T. C. Chong, and A. L. Lacaita, “Engineering Grains of Ge2Sb2Te5 for Realizing Fast-speed, Low-power, and Low-drift Phase-change Memories with Further Multilevel Capabilities,” in Electron Devices Meeting (IEDM), 2012 IEEE International, Dec. 2012, pp. 31.3.1-31.3.4.
[5] Q. Hubert, C. Jahan, A. Toffoli, V. Delaye, D. Lafond, H. Grampeix, and B. de Salvo, “Detailed Analysis of the Role of Thin-HfO2 Interfacial Layer in Ge2Sb2Te5-based PCM,” Electron Devices, IEEE Transactions on, vol. 60, no. 7, pp.2268-2275, 2013.
[6] A. Faraclas, G. Bakan, L. Adnane, F. Dirisaglik, N. E. Williams, A. Gokirmak, and H. Silva, “Modeling of Thermoelectric Effects in Phase Change Memory Cells,” Electron Devices, IEEE Transactions on, vol. 61, no. 2, pp.372-378, 2014.
[7] I.-C. Lin, and J.-N. Chiou, “High-endurance Hybrid Cache Design in CMP Architecture with Cache Partitioning and Access-aware Policies,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, no. 99, pp.1, 2014. (accepted)
[8] N. Ciocchini, and D. Ielmini, “Pulse-induced Crystallization in Phase-change Memories under Set and Disturb Conditions,” Electron Devices, IEEE Transactions on, vol. 62, no. 3, pp.847-854, 2015.
[9] S. Souiki-Figuigui, V. Sousa, G. Ghigaudo, G. Navarro, M. Coué, L. Perniola, P. Zulianu, and R. Annunziata, “Analysis of he SET and RESET States Drift of Phase-change Memories by Low Frequency Noise Measurements,” in Reliability Physics Symposium (IRPS), 2015 IEEE International, April 2015, pp. MY.1.1-MY.1.5.
[10] H. Pozidis, T. Mittelholzer, N. Papandreou, T. Parnell, and M. Stanisavljevic, “Phase Change Memory Reliability: A Signal Processing and Coding Perspective” Magnetics, IEEE Transactions on, vol. 51, no. 4, Article# 3500107, 2015.
[11] M. Zhao, Y. Xuey, C. Yangy, and C. J. Xue, “Minimizing MLC PCM Write Energy for Free Through Profiling-based State Remapping,” in Design Automation Conference (ASP-DAC), 2015 20th Asia and South Pacific, Jan. 2015, pp. 502-507.
[12] A. V. Pohm, J. S. T. Huang, J. M. Daughton, D. R. Krahn, and V. Mehra, “The Design of A One Megabit Non-volatile M-R memory Chip Using 1.5×5 μm Cells,” Magnetics, IEEE Transactions on, vol. 24, no. 6, pp.3117-3119, 1988.
[13] S. Tehrani, J. M. Slaughter, M. Deherrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive Random Access Memory Using Magnetic Tunnel Junctions (Invited Paper),” Proceedings of the IEEE, vol. 91, no. 5, pp.703-714, 2003.
[14] Y. Huai, “Spin-transfer Torque MRAM (STT-MRAM): Challenges and Prospects,” AAPPS Bulletin, vol. 18, no. 6, pp.33-40, 2008.
[15] K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, T. Shimizu, Y. Asao, T. Kajiyama, M. Iwayama, K. Sugiura, S. Ikegawa, T. Kishi, T. Kai, M. Amano, N. Shimomura, H. Yoda, and Y. Watanabe, “A 64Mb MRAM with Clamped-reference and Adequate-reference Schemes,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, Feb. 2010, pp. 258-259.
[16] H. Noguchi, K. Ikegami, K. Kushida, K. Abe, S. Itai, S. Takaya, N. Shimomura, J. Ito, A. Kawasumi, H. Hara, and S. Fujita, “A 3.3ns-access-time 71.2μW/MHz 1Mb Embedded STT-MRAM Using Physically Eliminated Read-disturb Scheme and Normally-off memory Architecture,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2015 IEEE International, Feb. 2015, pp. 136-138.
[17] C. J. Lin, S. H. Kang, Y. J. Wang, K. Lee, X. Zhu, W. C. Chen, X. Li, W. N. Hsu, Y. C. Kao, M. T. Liu, W. C. Chen, Y. Lin, M. Nowak, N. Yu , and L. Tran, “45nm Low Power CMOS Logic Compatible Embedded STT MRAM Utilizing A Reverse-connection 1T/1MTJ Cell,” in Electron Devices Meeting (IEDM), 2009 IEEE International, Dec. 2009, pp. 279-282.
[18] S. Yuasa, A. Fukushima, K. Yakushiji, T. Nozaki, M. Konoto, H. Maehara, H. Kubota, T. Taniguchi, H. Arai, H. Imamura, K. Ando, Y. Shiota, F. Bonell, Y. Suzuki, N. Shimomura, E. Kitagawa, J. Ito, S. Fujita, K. Abe, K. Nomura, H. Noguchi, and H. Yoda, “Future Prospects of MRAM Technologies (Invited),” in Electron Devices Meeting (IEDM), 2013 IEEE International, Dec. 2013, pp. 3.1.1-3.1.4.
[19] K. Ikegami, H. Noguchi, C. Kamata, M. Amano, K. Abe, K. Kushida, E. Kitagawa, T. Ochiai, N. Shimomura, S. Itai, D. Saida, C. Tanaka, A. Kawasumi, H. Hara, J. Ito, S. Fujita, “Low Power and High Density STT-MRAM for Embedded Cache Memory Using Advanced Perpendicular MTJ Integrations and Asymmetric Compensation Techniques,” in Electron Devices Meeting (IEDM), 2014 IEEE International, Dec. 2014, pp. 28.1.1-28.1.4.
[20] W. H. Choi, Y. Lv, J. Kim, A. Deshpande, G. Kang, J.-P. Wang, and C. H. Kim, “Magnetic Tunnel Junction Based True Random Number Generator with Conditional Perturb and Real-time Output Probability Tracking,” in Electron Devices Meeting (IEDM), 2014 IEEE International, Dec. 2014, pp. 12.5.1-12.5.4.
[21] C.-H. Wang, K.-Y. Dai, K.-H. Shen, Y.-H. Wang, M.-J. Tsai, C. J. Lin and Y.-C. King, “Magnetic Wireless Interlayer Transmission through Perpendicular MTJ for 3D-IC Applications,” in Electron Devices Meeting (IEDM), 2013 IEEE International, Dec. 2013, pp. 25.3.1-25.3.4.
[22] L.-S. Chang, C.-H. Wang, K.-Y. Dai, K.-H. Shen, M.-J. Tsai, C. J. Lin and Y.-C. King, “Magnetic Wireless Interlayer Transmission through Perpendicular MTJ for 3-D IC Applications,” Electron Devices, IEEE Transactions on, vol. 61, no. 7, pp.2480-2485, 2014.
[23] H. Sato, M. Yamanouchi, S. Ikeda, S. Fukami, F. Matsukura, and H. Ohno, “Perpendicular-anisotropy CoFeB-MgO Magnetic Tunnel Junctions with A MgO/CoFeB/Ta/CoFeB/MgO Recording Structure,” Applied Physics Letters, vol. 101, no. 2, #022414, 2012.
[24] H. Sato, M. Yamanouchi, K. Miura, S. Ikeda, H. D. Gan, K. Mizunuma, R. Koizumi, F. Matsukura, and H. Ohno, “Junction Size Effect on Switching Current and Thermal Stability in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions,” Applied Physics Letters, vol. 99, no. 4, #042501, 2011.
[25] K. Hofmann, K. Knobloch, C. Peters, and R. Allinger, “Comprehensive Statistical Investigation of STT-MRAM Thermal Stability,” in VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on, June 2014, pp. 1-2.
[26] W. Kang, L. Zhang, J.-O. Klein, Y. Zhang, D. Ravelosona, and W. Zhao, “Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology,” Electron Devices, IEEE Transactions on, vol. 62, no. 6, pp.1769-1777, 2015.
[27] T. W. Hickmott, “Low‐Frequency Negative Resistance in Thin Anodic Oxide Films,” Journal of Applied Physics, vol. 33, pp. 2669, 1962.
[28] J. F. Gibbons, and W. E. Beadle, “Switching Properties of Thin Nio Films,” Solid-State Electronics, vol. 7, no. 11, pp. 785-790, 1964.
[29] J. G. Simmons, and R. R. Verderber, “New Conduction and Reversible Memory Phenomena in Thin Insulating Films,” Philosophical Transactions of the Royal Society, Series A, vol. 301, no. 1464, 1967.
[30] D. R. Lamb, and P. C. Rundle, “Non-filamentary Switching Action in Thermally Grown Silicon Dioxide Films,” Applied Physics Letters, vol. 18, pp. 29, 1967
[31] U. Russo, D. Jelmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego and M. Fanciulli, “Conductive-filament Switching Analysis and Self-accelerated Thermal Dissolution Model for Reset in NiO-based RRAM,” in Electron Devices Meeting (IEDM), 2007 IEEE International, Dec. 2007, pp. 775-778.
[32] Transforming Business. (2015, July 28). Intel Micron Webcast [Online]. https://youtu.be/VsioS35D-HY
[33] H.-S. Philip Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, “Metal-oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012
[34] I.-S. Park, K.-R. Kim, S. Lee and J. Ahn, “Resistance Switching Characteristics for Nonvolatile Memory Operation of Binary Metal Oxides,” Japanese Journal of Applied Physics (JJAP), Vol. 46, No. 4B, pp. 2172–2174, 2007.
[35] K.-C. Chang, T.-M. Tsai, T.-C. Chang, H.-H. Wu, J.-H. Chen, Y.-E. Syu, G.-W. Chang, T.-J. Chu, G.-R. Liu, Y.-T. Su, M.-C. Chen, J.-H. Pan, J.-Y. Chen, C.-W. Tung, H.-C. Huang, Y.-H. Tai, D.-S. Gan, and S. M. Sze, “Characteristics and Mechanisms of Silicon-oxide-based Resistance Random Access Memory,” Electron Device Letters, IEEE, vol. 34, no. 3, pp.339-401, 2013.
[36] K.-C. Chang, T.-M. Tsai, T.-C. Chang, R. Zhang, K.-H. Chen, J.-H. Chen, M.-C. Chen, H.-C. Huang, W. Zhang, C.-Y. Lin, Y.-T. Tseng, H.-C. Lin, J.-C.-Zheng and S. M. Sze, “Improvement of Resistive Switching Characteristic in Silicon Oxide-based RRAM through Hydride-oxidation on Indium Tin Oxide Electrode by Supercritical CO2 Fluid,” Electron Device Letters, IEEE, vol. 36, no. 6, pp.558-560, 2015.
[37] Z. Zhang, Y. Wu, H.-S. Philip Wong, and S. S. Wong, “Nanometer-scale HfOx RRAM,” Electron Device Letters, IEEE, vol. 34, no. 8, pp.1005-1007, 2013.
[38] L. Larcher, F. M. Puglisi, P. Pavan, A. Padovani, L. Vandelli, and G. Bersuker, “Compact Model of Program Window in HfOx RRAM Devices for Conductive Filament Characteristics Analysis,” Electron Devices, IEEE Transactions on, vol. 61, no. 8, pp.2668-2673, 2014.
[39] B. Traoré, P. Blaise, E. Vianello, H. Grampeix, A. Bonnevialle, E. Jalaguier, G. Molas, S. Jeannot, L. Perniola, B. DeSalvo, and Y. Nishi, “Microscopic Understanding of the Low Resistance State Retention in HfO2 and HfAlO Based RRAM,” in Electron Devices Meeting (IEDM), 2014 IEEE International, Dec. 2014, pp. 21.5.1-21.5.4.
[40] D. Garbin, E. Vianello, O. Bichler, Q. Rafhay, C. Gamrat, G. Ghibaudo, B. DeSalvo, and L. Perniola, “HfO2-based OxRAM Devices as Synapses for Convolutional Neural Networks,” Electron Devices, IEEE Transactions on, vol. 62, no. 8, pp.2494-2501, 2015.
[41] H. K. Li, T. P. Chen, S. G. Hu, P. Liu, Y. Liu, P. S. Lee, X. P. Wang, H. Y. Li, and G. Q. Lo, “Study of Multilevel High-resistance States in HfOx-based Resistive Switching Random Access Memory by Impedance Spectroscopy,” Electron Devices, IEEE Transactions on, vol. 62, no. 8, pp.2684-2688, 2015.
[42] M.-D. Lee, C. Ho, and Y.-D. Yao, “CMOS Fully Compatible Embedded Non-volatile Memory System With TiO2-SiO2 Hybrid Resistive-switching Material,” Magnetics, IEEE Transactions on, vol. 47, no. 3, pp.653-655, 2011.
[43] D. R. Hughart, A. J. Lohn, P. R. Mickel, S. M. Dalton, P. E. Dodd, M. R. Shaneyfelt, A. I. Silva, E. Bielejec, G. Vizkelethy, M. T. Marshall, M. L. McLain, and M. J. Marinella, “A Comparison of the Radiation Response of TaOx and TiO2 Memristors,” Nuclear Science, IEEE Transactions on, vol. 60, no. 6, pp.4512-4519, 2013.
[44] Y.-C. Huang, H.-M. Lin and H.-C. Cheng, “Superior Resistive Switching Characteristics of Cu-TiO2 Based RRAM Cell,” in Nanoelectronics Conference (INEC), 2013 IEEE 5th International, Jan. 2013, pp.236-239.
[45] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang and B. Yu, “ A Unified Physical Model of Switching Behavior in Oxide-based RRAM,” in VLSI Technology, 2008 Symposium on, June 2008, pp.100-101.
[46] B. Gao, S. Yu, N. Xu, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, B. Yu and Y. Wang, “ Oxide-Based RRAM Switching Mechansm: A New Ion-transport-recombination Model,” in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, Dec. 2008, pp.1-4.
[47] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang and B. Yu, “Characteristics and Mechanism of Conduction/Set Process in TiN/ZnO/Pt Resistance Switching Random-access Memories,” Applied Physics Letters, 92, 232112, 2008.
[48] U. Russo, D. Ielmini, C. Cagli and A. L. Lacaita, “Self-accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-swtching Memory (RRAM) Devices,” Electron Devices, IEEE Transactions on, vol. 56, no. 2, pp.193-200, 2009.
[49] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, “Reduction in the Reset Current in A Resistive Random Access Memory Consisting of NiOx Brought About by Reducing A Parasitic Capacitance,” Applied Physics Letters, 93, 033506, 2008.
[50] C.-H. Wang, Y.-H. Tsai, K.-C. Lin, M.-F. Chang, Y.-C. King, and C. J. Lin, S.-S. Sheu, Y.-S. Chen, H.-Y. Lee, F. T. Chen, and M.-J. Tsai, “Three-dimensional 4F2 ReRAM Cell with CMOS Logic Compatible Process,” in Electron Devices Meeting (IEDM), 2010 IEEE International, Dec. 2010, pp. 29.6.1-29.6.4.
[51] Y.-S. Chen, T.-Y. Wu, P.-J. Tzeng, P.-S. Chen, H.-Y. Lee, C.-H. Lin, F. Chen, and M.-J. Tsai, “Forming-free HfO2 Bipolar RRAM Device with Improved Endurance and High Speed Operation,” in VLSI Technology, Systems, and Applications, 2009. VLSI-TSA '09. International Symposium on, April. 2009, pp. 37-38.
[52] Z. Wang, W. G. Zhu, A. Y. Du, L. Wu, Z. Fang, X. A. Tran, W. J. Liu, K. L. Zhang, and H.-Y. Yu, “Highly Uniform, Self-compliance, and Forming-free ALD HfO2-based RRAM with Ge Doping,” Electron Devices, IEEE Transactions on, vol. 59, no. 4, pp.193-200, 2012.
[53] C.-W. Hsu, I.-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang, C.-H. Lin, and T.-H. Hou, “Self-rectifying Bipolar TaOx/TiO2 RRAM with Superior Endurance over 1012 Cycles for 3D High-density Storage-class Memory,” in VLSI Technology (VLSIT), 2013 Symposium on, June 2013, pp. T166-T167.
[54] Y. T. Li, S. B. Long, H. B. Lv, Q. Liu, M. Wang, H. W. Xie, K. W. Zhang , X. Y. Yang , and M. Liu, “Novel Self-compliance Bipolar 1D1R Memory Device for High-density RRAM Application,” in Memory Workshop (IMW), 2013 5th IEEE International, May 2013. pp. 184–187.
[55] W. Liu, X. A. Tran, Z. Fang, H. D. Xiong, and H. Y. Yu, “A Self-compliant One-diode-one-resistor Bipolar Resistive Random Access Memory for Low Power Application,” Electron Device Letters, IEEE, vol. 35, no. 2 pp.196-198, 2014.
[56] M.-C Hsieh, Y.-C. Liao, Y.-W. Chin, C.-H. Lien, T.-S. Chang , Y.-D. Chih, S. Natarajan, M.-J. Tsai, Y.-C. King, and C. J. Lin, ”Ultra High Density 3D Via RRAM in Pure 28nm CMOS Process,” in Electron Devices Meeting (IEDM), 2013 IEEE International, Dec. 2013, pp. 10.3.1-10.3.4.
[57] J. Zhou, K.-H. Kim, and W. Lu, “Crossbar RRAM Arrays: Selector Device Requirements During Read Operation,” Electron Devices, IEEE Transactions on, vol. 61, no. 5, pp.1369-1376, 2014.
[58] S. H. Jo, T. Kumar, S. Narayanan, W. D. Lu and H. Nazarian, “3D-stackable Crossbar Resistive Memory Based on Field Assisted Superlinear Threshold (FAST) Selector,” in Electron Devices Meeting (IEDM), 2014 IEEE International, Dec. 2014, pp.6.7.1-6.7.4.
[59] L. Zhang, B. Govoreanu, A. Redolfi, D. Crotti, H. Hody, V. Paraschiv, S. Cosemans, C. Adelmann, T. Witters, S. Clima, Y.-Y. Chen, P. Hendrickx, D. J. Wouters, G. Groeseneken, M. Jurczak, “High-Drive Current (>1MA/cm2 ) and Highly Nonlinear (>103 ) TiN/AmorphousSilicon/TiN Scalable Bidirectional Selector with Excellent Reliability and Its Variability Impact on the 1S1R Array Performance,” in Electron Devices Meeting (IEDM), 2014 IEEE International, Dec. 2014, pp.6.8.1-6.8.4.
[60] X. A. Tran, B. Gao, J. F. Kang, X. Wu , L. Wu, Z. Fang, Z. R. Wang, K. L. Pey, Y. C. Yeo, A. Y. Du, M. Liu, B. Y. Nguyen, M. F. Li, and H. Y. Yu, “Self-rectifying and Forming-free Nnipolar HfOx Based-high Performance RRAM Built by Fab-avaialbe Materials,” in Electron Devices Meeting (IEDM), 2011 IEEE International, Dec. 2011, pp.31.2.1-31.2.4.
[61] C.-W. Hsu, C.-C. Wan, I.-T. Wang, M.-C. Chen, C.-L. Lo, Y.-J. Lee, W.-Y. Jang, C.-H. Lin, and T.-H. Hou, “3D Vertical TaOx/TiO2 RRAM with over 103 Self-Rectifying Ratio and Sub-μA Operating Current,” in Electron Devices Meeting (IEDM), 2013 IEEE International, Dec. 2013, pp.10.4.1-10.4.4.
[62] D. Lu, Y. Zhao, T. X. Anh, Y. H. Yu, D. Huang, Y. Lin, S.-J. Ding, P.-F. Wang, and M.-F. Li, “Investigations of Conduction Mechanisms of the Self-rectifying n+Si-HfO2-Ni RRAM Devices,” Electron Devices, IEEE Transactions on, vol. 61, no. 5, pp.1369-1376, 2014.
[63] Y.-W. Chin, S.-E. Chen, M.-C. Hsieh, T.-S. Chang, C. J. Lin and Y.-C. King, “Point Twin-bit RRAM in 3D Interweaved Cross-point Array by Cu BEOL Process,” in Electron Devices Meeting (IEDM), 2014 IEEE International, Dec. 2014, pp.6.4.1-6.4.4.
[64] S.-E. Chen, Y.-W. Chin, M.-C. Hsieh, C.-F. Liao, T.-S. Chang, C. J. Lin and Y.-C. King, “Self-rectifying Twin-bit RRAM in 3D Interweaved Cross-point Array,” Electron Devices Society, IEEE Journal of the, vol. 3, no. 4, pp. 336-340, 2015.
[65] D. J. Wouters, L. Zhang, A. Fantini, R. Degraeve, L. Goux, Y. Y. Chen, B. Govoreanu, G. S. Kar, G. V. Groeseneken, and M. Jurczak, “Analysis of Complementary RRAM Switching,” Electron Device Letters, IEEE, vol. 33, no. 8, pp.1186-1188, 2012.
[66] X. Liu, S. Md. Sadaf, S. Park, S. Kim, E. Cha, D. Lee, G.-Y. Jung, and H. Hwang, “Complementary Resistive Switching in Niobium Oxide-Based Resistive Memory Devices,” Electron Device Letters, IEEE, vol. 34, no. 2, pp. 235-237, 2013.
[67] Y.-W. Dai, L. Chen, W. Yang, Q.-Q. Sun, P. Zhou, P.-F. Wang, S.-J. Ding, D. W. Zhang, and F. Xiao, “Complementary Resistive Switching in Flexible RRAM Devices,” Electron Device Letters, IEEE, vol. 35, no. 9, pp. 915-917, 2014.
[68] C. Y. Tsai, K. C. Huang, Y. W. Ting, Y. W. Liao, C. Y. Chang, J. J. Yang, P. Y. Lai, H. W. Chen, B. T. Tang, Y. W. Chang, C. P. Hsieh, W. C. Huang, Y. H. Lin, K. C. Tu, C. Y. Hsu, S. C. Liu, J. J. Chen, W. T. Chu, C. Y. Tsai, F. J. Shiu, C. J. Wang, C. S. Tsai, T. C. Ong, H. Y. Hwang, C. Chang, and L. C. Tran, “Complementary Resistive Switching in Flexible RRAM Devices,” in VLSI Technology, Systems, and Applications (VLSI-TSA), 2013 International Symposium on, April 2013, pp.1-2.
[69] D. Takashima, “Overview of FeRAMs: Trends and Perspectives,” in Non-Volatile Memory Technology Symposium (NVMTS), 2011 11th Annual, Nov. 2011, pp.1-6.
Chapter 3
[1] Y. H. Tseng, C.-E. Huang, C. -H. Kuo, Y. -D. Chih, and C. J. Lin, “High Density and Ultra Small Cell Size of Contact ReRAM (CR-RAM) in 90nm CMOS Logic Technology and Circuits,” in Electron Devices Meeting (IEDM), 2009 IEEE International, Dec. 2009, pp. 5.6.1-5.6.4.
[2] C.-H. Wang, Y.-H. Tsai, K.-C. Lin, M.-F. Chang, Y.-C. King, and C. J. Lin, S.-S. Sheu, Y.-S. Chen, H.-Y. Lee, F. T. Chen, and M.-J. Tsai, “Three-dimensional 4F2 ReRAM Cell with CMOS Logic Compatible Process,” in Electron Devices Meeting (IEDM), 2010 IEEE International, Dec. 2010, pp. 29.6.1-29.6.4.
[3] W. C. Shen, C.-Y. Mei, Y.-D. Chih, S.-S. Sheu, M.-J. Tsai, Y.-C. King, C. J. Lin, “High-k Metal Gate Contact RRAM (CRRAM) in Pure 28nm CMOS Logic Process,” in Electron Devices Meeting (IEDM), 2012 IEEE International, Dec. 2012, pp. 31.6.1-31.6.4.
[4] A. Misaka and K. Harafuji, "Simulation Study of Micro-loading Phenomena in Silicon Dioxide Hole Etching," Electron Devices, IEEE Transactions on, vol. 44, no. 5, pp. 751-760, 1997.
[5] C. Liu and Barbara Abraham-Shrauner, " Plasma-etching Profile Model for SiO2 Contact Holes" Plasma Science, IEEE Transactions on, vol. 30, no. 4, pp. 1579-1587, 2002.
Chapter 4
[1] A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, K. Tanabe, T. Nakamura, Y. Sumimoto, N. Yamada, N. Nakai, S. Sakamoto, Y. Hayakawa, K. Tsuji, S. Yoneda, A. Himeno, K. Origasa, K. Shimakawa, T. Takagi, T. Mikawa, and K. Aono, “An 8 Mb Multilayered Cross-point ReRAM Macro with 443 MB/s Write Throughput,” Solid-State Circuits, IEEE Journal of, vol. 48, no. 1, pp. 178-185, 2013.
[2] M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, “Excellent Selector Characteristics of Nanoscale VO2 for High-density Bipolar ReRAM Applications,” Electron Device Letters, IEEE, vol. 32, no. 11, pp. 1579–1581, 2011.
[3] J. W. Seo, S. J. Baik, S. J. Kang, Y. H. Hong, J. H. Yang, and K. S. Lim, “A ZnO Cross-bar Array Resistive Random Access Memory Stacked with Heterostructure Diodes for Eliminating the Sneak Current Effect,” Applied Physics Letters, vol. 98, no. 23, pp. 233505-1– 233505-3, 2011.
[4] J. J. Huang, Y. M. Tseng, C. W. Hsu, and T. H. Hou, “Bipolar Nonlinear Ni/TiO2/Ni Selector for 1S1R Crossbar Array Applications,” Electron Device Letters, IEEE, vol. 32, no. 10, pp. 1427–1429, 2011.
[5] X. A. Tran, B. Gao, J. F. Kang, X. Wu , L. Wu, Z. Fang, Z. R. Wang, K. L. Pey, Y. C. Yeo, A. Y. Du, M. Liu, B. Y. Nguyen, M. F. Li, and H. Y. Yu, “Self-rectifying and Forming-free Unipolar HfOx Based-high Performance RRAM Built by Fab-avaialbe Materials,” in Electron Devices Meeting (IEDM), 2011 IEEE International, Dec. 2011, pp.31.2.1-31.2.4.
Chapter 5
[1] C.-W. Hsu, C.-C. Wan, I.-T. Wang, M.-C. Chen, C.-L. Lo, Y.-J. Lee, W.-Y. Jang, C.-H. Lin, and T.-H. Hou, “3D Vertical TaOx/TiO2 RRAM with Over 103 Self-Rectifying Ratio and Sub-μA Operating Current,” in Electron Devices Meeting (IEDM), 2013 IEEE International, Dec. 2013, pp.10.4.1-10.4.4.