簡易檢索 / 詳目顯示

研究生: 吳明山
Wu, Ming-Shan
論文名稱: 遭受神經壞死病毒及石斑魚虹彩病毒感染而影響之點帶石斑基因表現分析
Transcriptional analysis of orange-spotted grouper (Epinephelus coioides) either in nervous necrosis virus or grouper iridovirus infection
指導教授: 曾晴賢
Tzeng, Chyng-Shyan
張繼堯
Chang, Chi-Yao
口試委員: 許宗雄
胡清華
周信佑
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 64
中文關鍵詞: 石斑點帶石斑神經壞死病毒虹彩病毒
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石斑魚為台灣地區重要的養殖魚種,近年來飽受神經壞死病毒(nervous necrosis virus,NNV)以及虹彩病毒(iridovirus)侵害,造成大量魚苗及成魚死亡而影響養殖漁業甚鉅。過去二十多年,全世界有許多硬骨魚種遭受一種名為神經壞死病毒的魚類野田病毒危害甚深,該病毒會造成仔魚及稚魚嚴重的病毒性神經壞死、病毒性腦病變以及病毒性視網膜病變。雖然遭 NNV 感染的魚苗死亡率幾近 100%,仍有少數魚隻在此浩劫殘存。為了瞭解這些殘存者在分子生物學上的差異性,我們以在傳統養殖場中歷經 NNV 爆發而倖存的點帶石斑仔魚做為實驗對象,研究其基因上的差異性。藉由一個具備 9600 clones 的點帶石斑仔魚 cDNA 微陣列晶片,比較倖存的仔魚(依所測得的 NNV 含量區分三群)和受感染的仔魚之間基因的差異性,並進一步以定量即時聚合酶鏈鎖反應結果驗證。相較於染病仔魚,在倖存仔魚中表現量較高的基因包括:adenylate kinase 1-2,myosin binding protein H-like,myosin light chain 2,myosin light chain 3,tropomyosin,fast/white muscle troponin T embryonic isoform 以及 parvalbumin 1、2 型;而 apolipoprotein A-I,trypsinogen,pyruvate kinase以及 astacin-like metalloprotease 則在染病仔魚中的表現量較高。此外,雖然多數免疫因子在染病仔魚中的表現量較高,免疫球蛋白 M(immunoglobulin M,IgM)重鏈基因在倖存但有高病毒含量的仔魚中卻有著比染病仔魚更高的表現量,暗示著體液免疫也提供宿主保護而免遭病毒感染的危害。這些結果指出在免疫系統尚未發育完全的仔魚變態階段,部分非免疫相關的基因可能在遭受神經壞死病毒感染後仍可倖存的事件中扮演重要角色。
    在另一方面,石斑魚虹彩病毒(grouper iridovirus,GIV)亦會造成大規模石斑魚死亡而導致嚴重的經濟損失。藉由點帶石斑腎臟 cDNA 微陣列晶片,我們篩選出 38 個在 GIV 感染點帶石斑後表現增加的基因,以及 48 個表現降低的基因。我們挑選其中 24 個基因,並額外加入 7 個免疫相關因子,在頭腎及脾臟中做進一步的定量表現確認。有 30 個基因於 GIV 感染後在脾臟中表現會有顯著性增加;而在頭腎中只有 23 個表現增加的基因,另外有 5 個基因的表現則是降低。我們同時建立這些基因在脂多醣體(LPS)和人工合成雙股核醣核酸類似物(PIC)刺激下的轉錄表現特徵。比較後發現,多數基因在 PIC 處理後的轉錄表現特徵與 GIV 刺激後較為相似。其中有 7 個基因由於表現模式相近而共同被歸類為干擾素相關因子:RNA helicase DHX58,ISG15,viperin,HECT E3 ligase,CD9,urokinase plasminogen activator surface receptor(PLAUR)以及 Mx-1。以不活化 GIV 進行免疫動作,在頭腎與脾臟中可見 DHX58,viperin,IL-1beta,IL-8,COX-2,HECT E3 ligase,PLAUR,IgM,Mx-1,very large inducible GTPase-1及 TNF-alpha表現有被顯著誘發,末列6個基因在追加免疫後更有逐漸增加表現的情形。這些基因或許在適應性抗病毒反應中扮演了重要角色。總結來說,我們獲得了數個病毒反應基因並建立其時間性反應型態,同時確認數個潛在免疫標誌基因以提供未來在魚類抗病毒防禦機制上更深入的研究。


    Groupers (Epinephelus spp.) are important aquaculture fish species in Taiwan, but they are highly susceptible to nervous necrosis virus (NNV) and iridovirus which often cause significant economic losses to grouper aquaculture. NNV, a piscine nodavirus, has caused serious viral nervous necrosis and viral encephalopathy and retinopathy in hatchery-reared larvae and juveniles of a wide range of teleost species worldwide in the last two decades. Although the mortality of NNV-infected larvae is nearly 100%, there are still some larvae that survive this catastrophe. To comprehensively understand the variations of these survivors at the molecular level, we collected orange-spotted grouper (Epinephelus coioides) larvae that survived an NNV outbreak in an indoor hatchery in southern Taiwan to study differential gene expression. Survived larvae with high, medium and low levels of detected NNV were compared with morbid larvae using a 9600-clone-containing grouper larva cDNA microarray, and differential gene expression was further confirmed by a quantitative real-time polymerase chain reaction. Significant gene expression variation exists in survived larvae. The following genes were confirmed that had relative 2-folde higher expression in survived larvae: adenylate kinase 1-2, myosin binding protein H-like, myosin light chain 2, myosin light chain 3, tropomyosin, fast/white muscle troponin T embryonic isoform, and two types of parvalbumin genes. Four genes were confirmed that expressed higher relatively in morbid larvae: apolipoprotein A-I, trypsinogen, pyruvate kinase, and astacin-like metalloprotease. Moreover, although most immune factors had higher expression in morbid larvae, immunoglobulin M (IgM) heavy chain gene transcription was significantly higher in survived larvae that carried high virus levels than morbid larvae, indicating that humoral immunity might protect organisms from viral infection. These results suggest that some non-immune-related genes may have played important roles in the survival event during the immune-immature larval metamorphosis stage after NNV infection.
    In the other hand, disease caused by grouper iridovirus (GIV) also has resulted in economic losses due to high mortality in all stages of grouper culture. Thirty-eight up- and 48 down-regulated known entities have been identified using a GIV-infected grouper kidney cDNA microarray chip. Further quantitative validation was executed in the head-kidney and spleen for 24 candidate genes and 7 immune factors following GIV inoculation. Significant induction with various patterns could be seen in 30 tested genes in the spleen. However, only 23 genes had induction in the head-kidney and meanwhile 5 genes showed reduction. Transcriptional expression profiles of selected genes in response to lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (PIC) were also established to compare with the GIV-stimulated expression. The results indicated that the responses of most genes facing GIV invasion have more similarities to PIC treatment than LPS. Seven genes are thought to be interferon-related factors: RNA helicase DHX58, ISG15, viperin, HECT E3 ligase (HECT), CD9, urokinase plasminogen activator surface receptor (PLAUR) and Mx-1. Following immunization with inactivated GIV, significant induction could be seen in DHX58, viperin, IL-1beta, IL-8, COX-2, HECT, PLAUR, IgM, Mx-1, very large inducible GTPase-1 (VLIG1) and TNF-alpha in the head-kidney or spleen, and the latter 6 genes also had a gradual increasing pattern by a boosting immunization. These factors might play important roles in adaptive antiviral protection. Thus, we have characterized the temporal response patterns of virus responsive genes and have also identified several potential immune markers to further investigate host antiviral defense mechanisms.

    摘要 I Abstract III 誌謝 V Index VI Index of Tables VIII Index of Figures IX Chapter 1. Introduction 1 1.1 Grouper 1 1.2 Nervous Necrosis Virus (NNV) 1 1.3 Grouper Iridovirus (GIV) 2 1.4 Teleost host antiviral immune system 3 1.5 Large-scale analysis application in virus-teleost interaction study 4 1.6 Purpose 5 Chapter 2. Materials and methods 6 2.1 Fish maintenance and culture 6 2.2 Virus propagation 6 2.3 Fish samples 6 2.3.1 For cDNA library construction 6 2.3.2 NNV part 7 2.3.3 GIV part 7 2.4 Nucleic acid preparation 7 2.5 NNV detection by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) 8 2.6 cDNA library construction and cDNA chip preparation 8 2.7 Microarray hybridization and analysis 9 2.8 Sequencing and BLAST homology search 10 2.9 GIV content validation 10 2.10 Reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) and statistical analysis 11 Chapter 3. Results 12 3.1 NNV part 12 3.1.1 Clinical fish samples 12 3.1.2 NNV detection 12 3.1.3 Survey of variant gene expression using a cDNA microarray 13 3.1.4 Quantitative validation 13 3.1.5 Detection of expression of immune-related genes 14 3.2 GIV part 14 3.2.1 Differential expressed candidate gene selection using microarray 14 3.2.2 Quantitative transcriptional expression after inoculation with different immunostimulators 16 3.2.3 Response to vaccination with inactivated virus 18 Chapter 4. Discussion 20 4.1 NNV part 20 4.2 GIV part 23 Chapter 5. Conclusion 27 References 28 Table 1. Specific gene designed primers used in this study. 35 Table 2. Survivor-higher genes in NNV-infected Epinephelus coioides after microarray analysis. 39 Table 3. Morbid-higher genes in NNV-infected Epinephelus coioides after microarray analysis. 40 Table 4. Related fold change in gene expression level of different survived larvae versus morbid larvae 42 Table 5. Up-regulated genes in Epinephelus coioides after GIV infection. 43 Table 6. Down-regulated genes in Epinephelus coioides after GIV infection. 46 Table 7. Correlation of GIV-stimulated gene expression comparing to LPS- or PIC-induced response. 49 Table 8. Fold change of gene expression after inactivated GIV immunization. 50 Fig. 1. RT-PCR amplification of nervous necrosis virus coat protein (NNVCP) gene. 51 Fig. 2. Quantitative PCR validation of survivor-higher genes selected from a 2-fold microarray analysis. 52 Fig. 3. Quantitative PCR validation of morbid-higher genes selected from a 2-fold microarray analysis. 53 Fig. 4. Quantitative PCR detection of immune-related genes. 54 Fig. 5. The viral content of GIV-infected groupers during the experimental period. 55 Fig. 6. Temporal transcriptional expression of host genes following different stimulations. 56 Fig. 7. Quantitative temporal evaluation of host immune-related genes expression following different stimulations. 61 Fig. 8. Transcriptional gene expression after inactivated GIV immunization. 63

    Aoki, T., Hirono, I., Kondo, H., Hikima, J.-i., Jung, T.S., 2011. Microarray technology is an effective tool for identifying genes related to the aquacultural improvement of Japanese flounder, Paralichthys olivaceus. Comp. Biochem. Physiol., Part D: Genomics Proteomics 6, 39-43.
    Bejarano-Escobar, R., Blasco, M., DeGrip, W.J., Martín-Partido, G., Francisco-Morcillo, J., 2009. Cell differentiation in the retina of an epibenthonic teleost, the Tench (Tinca tinca, Linneo 1758). Exp. Eye Res. 89, 398-415.
    Björck, P., Leong, H.X., Engleman, E.G., 2011. Plasmacytoid Dendritic Cell Dichotomy: Identification of IFN-α Producing Cells as a Phenotypically and Functionally Distinct Subset. J. Immunol. 186, 1477-1485.
    Cantino, M.E., Brown, L.D., Chew, M., Luther, P.K., Squire, J.M., 2000. A-band architecture in vertebrate skeletal muscle: polarity of the myosin head array. J. Muscle Res. Cell Motil. 21, 681-690.
    Chang, C.-Y., Chiu, C.-C., John, J.A.C., 2008. Chapter 12 - Prophylaxis for Iridovirus and Nodavirus Infections in Cultured Grouper in Taiwan, in: Liao, I.C., Leaño, E.M. (Eds.), The Aquaculture of Groupers. Asian Fisheries Society, World Aquaculture Society, The Fisheries Society of Taiwan, National Taiwan Ocean University, pp. 207-224.
    Chang, Y.-T., Kai, Y.-H., Chi, S.-C., Song, Y.-L., 2011. Cytotoxic CD8α+ leucocytes have heterogeneous features in antigen recognition and class I MHC restriction in grouper. Fish Shellfish Immunol. 30, 1283-1293.
    Chao, C.-B., Chen, C.-Y., Lai, Y.-Y., Lin, C.-S., Huang, H.-T., 2004. Histological, ultrastructural, and in situ hybridization study on enlarged cells in grouper Epinephelus hybrids infected by grouper iridovirus in Taiwan (TGIV). Dis. Aquat. Organ. 58, 127-142.
    Chen, Y.-M., Kuo, C.-E., Huang, Y.-L., Shie, P.-S., Liao, J.-J., Yang, Y.-C., Chen, T.-Y., 2011. Molecular cloning and functional analysis of an orange-spotted grouper (Epinephelus coioides) secreted protein acidic and rich in cysteine (SPARC) and characterization of its expression response to nodavirus. Fish Shellfish Immunol. 31, 232-242.
    Chen, Y.-M., Kuo, C.-E., Wang, T.-Y., Shie, P.-S., Wang, W.-C., Huang, S.-L., Tsai, T.-J., Chen, P.-P., Chen, J.-C., Chen, T.-Y., 2010. Cloning of an orange-spotted grouper Epinephelus coioides heat shock protein 90AB (HSP90AB) and characterization of its expression in response to nodavirus. Fish Shellfish Immunol. 28, 895-904.
    Cheng, C.-A., John, J.A.C., Wu, M.-S., Lee, C.-Y., Lin, C.-H., Lin, C.-H., Chang, C.-Y., 2006. Characterization of serum immunoglobulin M of grouper and cDNA cloning of its heavy chain. Vet. Immunol. Immunopathol. 109, 255-265.
    Chi, S.-C., Lin, S.-C., Su, H.-M., Hu, W.-W., 1999. Temperature effect on nervous necrosis virus infection in grouper cell line and in grouper larvae. Virus Res. 63, 107-114.
    Chi, S.C., Lo, C.F., Kou, G.H., Chang, P.S., Peng, S.E., Chen, S.N., 1997. Mass mortalities associated with viral nervous necrosis (VNN) disease in two species of hatchery-reared grouper, Epinephelus fuscogutatus and Epinephelus akaara (Temminck & Schlegel). J. Fish Dis. 20, 185-193.
    Chou, H.-Y., Hsu, C.-C., Peng, T.-Y., 1998. Isolation and Characterization of a Pathogenic Iridovirus from Cultured Grouper (Epinephelus sp.) in Taiwan. Fish Pathol. 33, 201-206.
    Chou, H.Y., Chang, S.J., Chen, L.M., 1994. Investigation on the viral diseases of cultured grouper (Epinephelus sp.) and red sea bream (Pagrus major). Reports on Fish Disease (XIV) COA Fisheries Series 46, 41-49.
    Cui, H., Yan, Y., Wei, J., Hou, Z., Huang, Y., Huang, X., Qin, Q., 2011a. Cloning, characterization, and expression analysis of orange-spotted grouper (Epinephelus coioides) ILF2 gene (EcILF2). Fish Shellfish Immunol. 30, 378-388.
    Cui, H., Yan, Y., Wei, J., Huang, X., Huang, Y., Ouyang, Z., Qin, Q., 2011b. Identification and functional characterization of an interferon regulatory factor 7-like (IRF7-like) gene from orange-spotted grouper, Epinephelus coioides. Dev. Comp. Immunol. 35, 672-684.
    Dios, S., Poisa-Beiro, L., Figueras, A., Novoa, B., 2007. Suppression subtraction hybridization (SSH) and macroarray techniques reveal differential gene expression profiles in brain of sea bream infected with nodavirus. Mol. Immunol. 44, 2195-2204.
    Eisenberg, S., 1984. High density lipoprotein metabolism. J. Lipid Res. 25, 1017-1058.
    Endo, T., Kobayashi, M., Kobayashi, S., Onaya, T., 1986. Immunocytochemical and biochemical localization of parvalbumin in the retina. Cell Tissue Res. 243, 213-217.
    FAO, 2003-2012. Fisheries and Aquaculture topics.
    Galinska-Rakoczy, A., Engel, P., Xu, C., Jung, H., Craig, R., Tobacman, L.S., Lehman, W., 2008. Structural Basis for the Regulation of Muscle Contraction by Troponin and Tropomyosin. J. Mol. Biol. 379, 929-935.
    Guo, M., Wei, J., Huang, X., Huang, Y., Qin, Q., 2012. Antiviral effects of β-defensin derived from orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol. 32, 828-838.
    He, W., Yin, Z.-X., Li, Y., Huo, W.-L., Guan, H.-J., Weng, S.-P., Chan, S.-M., He, J.-G., 2006. Differential gene expression profile in spleen of mandarin fish Siniperca chuatsi infected with ISKNV, derived from suppression subtractive hybridization. Dis. Aquat. Organ. 73, 113-122.
    Huang, S.-M., Tu, C., Tseng, C.-H., Huang, C.-C., Chou, C.-C., Kuo, H.-C., Chang, S.-K., 2011a. Genetic analysis of fish iridoviruses isolated in Taiwan during 2001–2009. Arch. Virol. 156, 1505-1515.
    Huang, Y., Huang, X., Yan, Y., Cai, J., Ouyang, Z., Cui, H., Wang, P., Qin, Q., 2011b. Transcriptome analysis of orange-spotted grouper (Epinephelus coioides) spleen in response to Singapore grouper iridovirus. BMC Genomics 12, 556.
    Ji, B., Gaiser, S., Chen, X., Ernst, S.A., Logsdon, C.D., 2009. Intracellular trypsin induces pancreatic acinar cell death but not NF-κB activation. J. Biol. Chem. 284, 17488-17498.
    Klamp, T., Boehm, U., Schenk, D., Pfeffer, K., Howard, J.C., 2003. A Giant GTPase, Very Large Inducible GTPase-1, Is Inducible by IFNs. J. Immunol. 171, 1255-1265.
    Klausberger, T., Marton, L.F., O'Neill, J., Huck, J.H.J., Dalezios, Y., Fuentealba, P., Suen, W.Y., Papp, E., Kaneko, T., Watanabe, M., Csicsvari, J., Somogyi, P., 2005. Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J. Neurosci. 25, 9782-9793.
    Krasnov, A., Timmerhaus, G., Schiøtz, B.L., Torgersen, J., Afanasyev, S., Iliev, D., Jørgensen, J., Takle, H., Jørgensen, S.M., 2011. Genomic survey of early responses to viruses in Atlantic salmon, Salmo salar L. Mol. Immunol. 49, 163-174.
    Lai, Y.-S., Murali, S., Chiu, H.-C., Ju, H.-Y., Lin, Y.-S., Chen, S.-C., Guo, I.-C., Fang, K., Chang, C.-Y., 2001. Propagation of yellow grouper nervous necrosis virus (YGNNV) in a new nodavirus-susceptible cell line from yellow grouper, Epinephelus awoara (Temminck & Schlegel), brain tissue. J. Fish Dis. 24, 299-309.
    Lai, Y.-S., Murali, S., Ju, H.-Y., Wu, M.-F., Guo, I.-C., Chen, S.-C., Fang, K., Chang, C.-Y., 2000. Two iridovirus-susceptible cell lines established from kidney and liver of grouper, Epinephelus awoara (Temminck & Schlegel), and partial characterization of grouper iridovirus. J. Fish Dis. 23, 379-388.
    Lammers, M., Neumann, H., Chin, J.W., James, L.C., 2010. Acetylation regulates Cyclophilin A catalysis, immunosuppression and HIV isomerization. Nat. Chem. Biol. 6, 331-337.
    Leong, J.-A.C., Trobridge, G.D., Kim, C.H.Y., Johnson, M., Simon, B., 1998. Interferon-inducible Mx proteins in fish. Immunol. Rev. 166, 349-363.
    Li, Y., Dong, J.-B., Wu, M.-P., 2008. Human ApoA-I overexpression diminishes LPS-induced systemic inflammation and multiple organ damage in mice. Eur. J. Pharmacol. 590, 417-422.
    Lieschke, G.J., Trede, N.S., 2009. Fish immunology. Curr. Biol. 19, R678-R682.
    Lin, C.-H., John, J.A.C., Lin, C.-H., Chang, C.-Y., 2006. Inhibition of nervous necrosis virus propagation by fish Mx proteins. Biochem. Biophys. Res. Commun. 351, 534-539.
    Lin, C.-Y., Chen, Y.-M., Hsu, H.-H., Shiu, C.-T., Kuo, H.-C., Chen, T.-Y., 2011. Grouper (Epinephelus coioides) CXCR4 is expressed in response to pathogens infection and early stage of development. Dev. Comp. Immunol.
    Lin, P.-W., Huang, Y.-J., John, J., Chang, Y.-N., Yuan, C.-H., Chen, W.-Y., Yeh, C.-H., Shen, S.-T., Lin, F.-P., Tsui, W.-H., Chang, C.-Y., 2008. Iridovirus Bcl-2 protein inhibits apoptosis in the early stage of viral infection. Apoptosis 13, 165-176.
    Matsuyama, T., Fujiwara, A., Takano, T., Nakayasu, C., 2011. Suppression subtractive hybridization coupled with microarray analysis to examine differential expression of genes in Japanese flounder Paralichthys olivaceus leucocytes during Edwardsiella tarda and viral hemorrhagic septicemia virus infection. Fish Shellfish Immunol. 31, 524-532.
    Medzhitov, R., 2007. Recognition of microorganisms and activation of the immune response. Nature 449, 819-826.
    Montes, A., Figueras, A., Novoa, B., 2010. Nodavirus encephalopathy in turbot (Scophthalmus maximus): Inflammation, nitric oxide production and effect of anti-inflammatory compounds. Fish Shellfish Immunol. 28, 281-288.
    Munday, B.L., Kwang, J., Moody, N., 2002. Betanodavirus infections of teleost fish: a review. J. Fish Dis. 25, 127-142.
    Murali, S., Wu, M.-F., Guo, I.-C., Chen, S.-C., Yang, H.-W., Chang, C.-Y., 2002. Molecular characterization and pathogenicity of a grouper iridovirus (GIV) isolated from yellow grouper, Epinephelus awoara (Temminck & Schlegel). J. Fish Dis. 25, 91-100.
    Nagai, T., Nishizawa, T., 1999. Sequence of the non-structural protein gene encoded by RNA1 of striped jack nervous necrosis virus. J. Gen. Virol. 80, 3019-3022.
    Nishizawa, T., Mori, K.-i., Furuhashi, M., Nakai, T., Furusawa, I., Muroga, K., 1995. Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. J. Gen. Virol. 76, 1563-1569.
    Onoguchi, K., Yoneyama, M., Fujita, T., 2010. Retinoic Acid-Inducible Gene-I-Like Receptors. J. Interferon Cytokine Res. 31, 27-31.
    Overturf, K., LaPatra, S., 2006. Quantitative expression (Walbaum) of immunological factors in rainbow trout, Oncorhynchus mykiss (Walbaum), after infection with either Flavobacterium psychrophilum, Aeromonas salmonicida, or infectious haematopoietic necrosis virus. J. Fish Dis. 29, 215-224.
    Pan, Y.-R., Vatsyayan, J., Chang, Y.-S., Chang, H.-Y., 2008. Epstein–Barr virus latent membrane protein 2A upregulates UDP-glucose dehydrogenase gene expression via ERK and PI3K/Akt pathway. Cell. Microbiol. 10, 2447-2460.
    Park, K.C., Osborne, J.A., Montes, A., Dios, S., Nerland, A.H., Novoa, B., Figueras, A., Brown, L.L., Johnson, S.C., 2009. Immunological responses of turbot (Psetta maxima) to nodavirus infection or polyriboinosinic polyribocytidylic acid (pIC) stimulation, using expressed sequence tags (ESTs) analysis and cDNA microarrays. Fish Shellfish Immunol. 26, 91-108.
    Patel, S., Malde, K., Lanzén, A., Olsen, R.H., Nerland, A.H., 2009. Identification of immune related genes in Atlantic halibut (Hippoglossus hippoglossus L.) following in vivo antigenic and in vitro mitogenic stimulation. Fish Shellfish Immunol. 27, 729-738.
    Pfeffer, L.M., 2011. The Role of Nuclear Factor κB in the Interferon Response. J. Interferon Cytokine Res. 31, 553-559.
    Poisa-Beiro, L., Dios, S., Ahmed, H., Vasta, G.R., Martinez-Lopez, A., Estepa, A., Alonso-Gutierrez, J., Figueras, A., Novoa, B., 2009. Nodavirus infection of sea bass (Dicentrarchus labrax) induces up-regulation of galectin-1 expression with potential anti-inflammatory activity. J. Immunol. 183, 6600-6611.
    Purcell, M.K., Marjara, I.S., Batts, W., Kurath, G., Hansen, J.D., 2011. Transcriptome analysis of rainbow trout infected with high and low virulence strains of Infectious hematopoietic necrosis virus. Fish Shellfish Immunol. 30, 84-93.
    Rise, M.L., Hall, J.R., Rise, M., Hori, T.S., Browne, M.J., Gamperl, A.K., Hubert, S., Kimball, J., Bowman, S., Johnson, S.C., 2010. Impact of asymptomatic nodavirus carrier state and intraperitoneal viral mimic injection on brain transcript expression in Atlantic cod (Gadus morhua). Physiol. Genomics 42, 266-280.
    Sarropoulou, E., Sepulcre, P., Poisa-Beiro, L., Mulero, V., Meseguer, J., Figueras, A., Novoa, B., Terzoglou, V., Reinhardt, R., Magoulas, A., Kotoulas, G., 2009. Profiling of infection specific mRNA transcripts of the European seabass Dicentrarchus labrax. BMC Genomics 10, 157.
    Scapigliati, G., Buonocore, F., Randelli, E., Casani, D., Meloni, S., Zarletti, G., Tiberi, M., Pietretti, D., Boschi, I., Manchado, M., Martin-Antonio, B., Jimenez-Cantizano, R., Bovo, G., Borghesan, F., Lorenzen, N., Einer-Jensen, K., Adams, S., Thompson, K., Alonso, C., Bejar, J., Cano, I., Borrego, J.J., Alvarez, M.C., 2010. Cellular and molecular immune responses of the sea bass (Dicentrarchus labrax) experimentally infected with betanodavirus. Fish Shellfish Immunol. 28, 303-311.
    Schenten, D., Medzhitov, R., 2011. Chapter 3 - The Control of Adaptive Immune Responses by the Innate Immune System, in: Frederick, W.A. (Ed.), Adv. Immunol. Academic Press, pp. 87-124.
    Semenova, S., Rudenskaya, G., 2009. The astacin family of metalloproteinases. Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry 3, 17-32.
    Shi, H.-X., Yang, K., Liu, X., Liu, X.-Y., Wei, B., Shan, Y.-F., Zhu, L.-H., Wang, C., 2010. Positive Regulation of Interferon Regulatory Factor 3 Activation by Herc5 via ISG15 Modification. Mol. Cell. Biol. 30, 2424-2436.
    Shushakova, N., Eden, G., Dangers, M., Zwirner, J., Menne, J., Gueler, F., Luft, F.C., Haller, H., Dumler, I., 2005. The Urokinase/Urokinase Receptor System Mediates the IgG Immune Complex-Induced Inflammation in Lung. J. Immunol. 175, 4060-4068.
    Solem, S.T., Stenvik, J., 2006. Antibody repertoire development in teleosts--a review with emphasis on salmonids and Gadus morhua L. Dev. Comp. Immunol. 30, 57-76.
    Song, W.J., Qin, Q.W., Qiu, J., Huang, C.H., Wang, F., Hew, C.L., 2004. Functional Genomics Analysis of Singapore Grouper Iridovirus: Complete Sequence Determination and Proteomic Analysis. J. Virol. 78, 12576-12590.
    Ting, J.-W., Wu, M.-F., Tsai, C.-T., Lin, C.-C., Guo, I.-C., Chang, C.-Y., 2004. Identification and characterization of a novel gene of grouper iridovirus encoding a purine nucleoside phosphorylase. J. Gen. Virol. 85, 2883-2892.
    Tortorella, D., Gewurz, B.E., Furman, M.H., Schust, D.J., Ploegh, H.L., 2000. Viral Subversion of the Immune System. Annu. Rev. Immunol. 18, 861-926.
    Tsai, C.-T., Lin, C.-H., Chang, C.-Y., 2007. Analysis of codon usage bias and base compositional constraints in iridovirus genomes. Virus Res. 126, 196-206.
    Tsai, C.-T., Ting, J.-W., Wu, M.-H., Wu, M.-F., Guo, I.-C., Chang, C.-Y., 2005. Complete Genome Sequence of the Grouper Iridovirus and Comparison of Genomic Organization with Those of Other Iridoviruses. J. Virol. 79, 2010-2023.
    VanGuilder, H.D., Vrana, K.E., Freeman, W.M., 2008. Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques 44, 619-626.
    Verrier, E.R., Langevin, C., Benmansour, A., Boudinot, P., 2011. Early antiviral response and virus-induced genes in fish. Dev. Comp. Immunol. 35, 1204-1214.
    Walker, R., 1962. Fine structure of lymphocystis virus of fish. Virology 18, 503-505.
    Wei, J., Xu, D., Zhou, J., Cui, H., Yan, Y., Ouyang, Z., Gong, J., Huang, Y., Huang, X., Qin, Q., 2010. Molecular cloning, characterization and expression analysis of a C-type lectin (Ec-CTL) in orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol. 28, 178-186.
    Whittington, R.J., Becker, J.A., Dennis, M.M., 2010. Iridovirus infections in finfish – critical review with emphasis on ranaviruses. J. Fish Dis. 33, 95-122.
    Workenhe, S.T., Rise, M.L., Kibenge, M.J.T., Kibenge, F.S.B., 2010. The fight between the teleost fish immune response and aquatic viruses. Mol. Immunol. 47, 2525-2536.
    Wu, M.-S., Chen, C.-W., Liu, Y.-C., Huang, H.-H., Lin, C.-H., Tzeng, C.-S., Chang, C.-Y., 2012a. Transcriptional analysis of orange-spotted grouper reacting to experimental grouper iridovirus infection. Dev. Comp. Immunol. 37, 233-242.
    Wu, M.S., Chen, C.W., Lin, C.H., Tzeng, C.S., Chang, C.Y., 2012b. Differential expression profiling of orange-spotted grouper larvae, Epinephelus coioides (Hamilton), that survived a betanodavirus outbreak. J. Fish Dis. 35, 215-225.
    Xu, D., Wei, J., Cui, H., Gong, J., Yan, Y., Lai, R., Qin, Q., 2010. Differential profiles of gene expression in grouper Epinephelus coioides, infected with Singapore grouper iridovirus, revealed by suppression subtractive hybridization and DNA microarray. J. Fish Biol. 77, 341-360.
    Yeh, C.-H., Chen, Y.-S., Wu, M.-S., Chen, C.-W., Yuan, C.-H., Pan, K.-W., Chang, Y.-N., Chuang, N.-N., Chang, C.-Y., 2008. Differential display of grouper iridovirus-infected grouper cells by immunostaining. Biochem. Biophys. Res. Commun. 372, 674-680.
    Zhou, J.-G., Wei, J.-G., Xu, D., Cui, H.-C., Yan, Y., Ou-Yang, Z.-L., Huang, X.-H., Huang, Y.-H., Qin, Q.-W., 2011. Molecular cloning and characterization of two novel hepcidins from orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol. 30, 559-568.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE