簡易檢索 / 詳目顯示

研究生: 賴千蕙
Lai, Chian-Hui
論文名稱: 開發多功能奈米載體應用於細胞專一標的與抗癌藥物傳遞之研究
Development of multifuctional nano-carrier for specific cell targeting and anti-cancer drug delivery
指導教授: 林俊成
Lin, Chun-Cheng
口試委員: 莊永仁
楊家銘
周鳳英
張文祥
楊重熙
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 255
中文關鍵詞: 奈米粒子專一標的抗癌藥物表面修飾硼中子療法二次序列點擊反應生物影像
外文關鍵詞: Nanoparticle, Specific Targeting, Anticancer drug, Surface modifiaction, BNCT, Sequence double click chemistry, Cell image
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究是著重於發展醣體功能化的奈米粒子(nanoparticle, NP)以及細胞專一標的、生物影像和癌症治療等多方面運用之研究。表達在HepG2細胞表面的去唾液酸醣蛋白接受器 (Asialo-glycoprotein receptor,ASGP-R)可以專一性識別非還原末端(non-reducing end)含有半乳糖 (galactose)或乙醯胺基半乳糖 (N-acetyl-galactoseamine,GalNAc)的醣體(glycans),因此選擇ASGP-R作為標的蛋白質接受器(receptor)進行研究。不同奈米載體如磁性奈米粒子、二氧化矽奈米粒子和孔洞材料奈米粒子表面裝配具有專一標的配位基(ligand)-其為三價體半乳糖。此三價體半乳糖分子同時也裝配到多價體(dendrimer)分子(dendritic glyco-borane, DGB)結構體上去發展中子捕獲抗癌試劑。我們利用以奈米粒子(NP)或是樹狀體(dendrimer)當作良好的多價載體(multivalent carrier),結合有機合成方式,使奈米粒子表面或是分子裝配三價半乳糖,再經由受質引導的吞噬作用(receptor- mediated endocytosis)專一性的標的HepG2肝癌細胞。在此篇研究中,所有的奈米粒子表面皆有修飾螢光基團(Cyanine 3, Cy3),螢光基團的修飾是經由不同的化學競爭反應,使奈米粒子表面除了裝配螢光團之外,奈米粒子仍可修飾幾乎相同表面高濃度的配位基-半乳糖。
    利用化學共價鍵結的方式在磁性奈米粒子表面同時修飾具有不同比例的螢光團和半乳糖衍生物,用以發展多功能HepG2細胞專一標的之試劑。經由實驗證實,半乳糖衍生物修飾之磁性奈米粒子可以經由受質引導的吞噬作用專一地進入HepG2細胞,並且T-Gal-s-Cy3@MNP被此細胞吞噬的最多,同時我們發現,倘若能夠在奈米粒子表面修飾之小分子配位基可以調整其空間位向使其配合接受體的空間排列,則可使經由受質引導的吞噬作用發揮到最大。在此處的研究,所有醣體修飾的奈米粒子都不具有毒性,在生物應用上應有很大的潛力。
    利用有機合成的方式,合成雙烯架橋分子使其裝配在螢光二氧化矽奈米粒子表面,藉此增加表面可修飾官能基的數量與增加極高反應性,二序列兩次點擊反應包含strain-promoted azide-alkyne cycloaddition (SPAAC) 和 Cu(I)-catalyzed azide-alkyne cycloaddition(CuAAC)來建構表面具有抗癌藥物(paclitaxel, PTX)和三價半乳糖體的螢光二氧化矽奈米粒子,此方法中,昂貴的化合物或是不易合成的分子可經由SPAAC的形式裝配到奈米粒子表面,因其反應不須外加任何試劑,更可在反應之後直接回收珍貴之分子,而利用三價半乳糖分子修飾的表面除了可以增加水溶性之外亦可以有專一標的HepG2細胞的功能,此種TGal-PTX@Cy3 SiO2NP奈米碳針表面裝配包含螢光、專一標配位基和抗癌藥物,可以提供第一時間(real-time)細胞專一標的之抗癌藥物細胞毒殺效果。
    在硼中子捕獲治療中(BNCT),必須仰賴傳遞除足夠的10B原子至標的之癌細胞,施予中子至含10B細胞,激發態之不穩定的硼分子隨後放出一定距離的能量,最終死細胞,然而在此領域的研究中,常受限於含硼藥物的毒性、低水溶性與低癌細胞專一性,因此在筆者研究中發展兩種中子捕獲試劑,包含醣體多價體
    (dendritic glyco-borane, DGB)和孔洞材料架構之T-Gal-B-Cy3@MSN,DGB多價分子與T-Gal-B-Cy3@MSN皆具有三價半乳糖,可能供水溶性與專一標的性,在DGB的實驗中證實,其為極好的硼中子捕獲試劑,跟美國食品藥物管理局准許的硼中子試劑BSH比較,具有十倍以上的毒殺效果,在孔洞材料架構之T-Gal-B-Cy3@MSN方面,是發展「特洛伊木馬」的策略,孔洞材料具有多孔體積,可置入極大值的含硼藥物 (此處用o-carborane),平均一個奈米粒子就要含約重量百分之五十的硼原子在其內部,這樣的策略解決孔洞材料當藥物載體之藥物釋放動力學之限制,在表面又修飾三價半乳糖分子,可以提供專一標的HepG2細胞之能力,相信這兩種硼中子捕獲試劑,應在中子捕獲治療上有極大的潛力。


    The work presented in this thesis focuses on the development of carbohydrate-functionalized nanoparticles (NPs) and their diverse biomedical applications such as cell-specific targeting, imaging and cancer therapy. The asialoglycoprotein receptors (ASGP-Rs), which can specifically interact with galactose (Gal) or N-acetyl-galactosamine (GalNAc), were chosen as a way to target HepG2 cells. Targeting ligands were presented on NP carriers such as magnetic nanoparticles (MNPs), silica oxide nanoparticles (SiO2NPs) and mesoporous silica nanoparticles (MSNs). Moreover, a dendrimer-like multivalent galactosyl carborane (dendritic glyco-borane, DGB) was developed for potential application in boron neutron capture therapy (BNCT). Multivalent carriers such as NPs or dendrimer-like molecules decorated with trivalent-Gal moieties are good systems for HepG2 cell-specific targeting via receptor-mediated endocytosis. The fluorescent NPs (MNP, SiO2NPs and MSN) were fabricated by a competition method to incorporate Cy3 without the loss of the original surface amine density that allows for the loading of high concentrations of targeting ligand.
    The fluorescent dye Cy3 and galactose derivatives were covalently assembled with different ratios on the surfaces of MNPs to produce multifunctional HepG2 cancer cell–targeting agents. We found that the specific uptake of galactosyl-conjugated MNP by HepG2 cell via receptor-mediated endocytosis and T-Gal-s-Cy3@MNP was the most efficiently ingested MNP tested. Moreover, we found that by adjusting the spatial arrangement of the ligands on MNPs to match the distance between carbohydrate binding sites on the receptor, the increase in cellular uptake by multivalent presentation of the ligand could be maximized. All the glyco Cy3@MNPs are not cytotoxic, indicating that they may potentially be used for in vivo applications.
    We also used sequential double click chemistry (SDCC) involving strain-promoted azide-alkyne cycloaddition (SPAAC) and Cu(I)-catalyzed azide-alkyne cycloaddition to assemble an anticancer drug (paclitaxel, PTX) and a targeting ligand (trivalent galactosside, TGal) on a fluorescent silicon oxide nanoparticle (SiO2NP) by using a di-alkyne linker as a bridge which can increase the surface availability for further functionalization. The expensive compound used in SPAAC can be easily recovered due to the absence of other reagents in the reaction mixture. The use of a trivalent galactosyl ligand, which interacts with the ASGP-Rs on the surface of HepG2 cells, not only provides a targeting function, but also overcomes the inherent low water solubility of PTX. The presence of a fluorescent probe, a targeting ligand, and an anticancer drug on the multifunctional TGal-PTX@Cy3SiO2NP allows for real-time imaging, specific cancer-cell targeting and cell-killing effects that are similar to PTX.
    Boron neutron capture therapy (BNCT) relies on the uptake of a sufficient number of 10B atoms by the target cell. The cell is then being irradiated with neutrons and the absorption of neutrons by 10B atoms leads to the release of energy and finally to the death of the cell. The success of BNCT requires a sufficient number of 10B atoms to be delivered to the targeted cells and the main challenges often arise from the low water solubility of boron compounds, the unselective uptake of the cancer cell, and the toxicity of boron. Two types (dendritic glyco-borane, DGB and T-Gal-B-Cy3@MSN) of boron neutron capture therapy (BNCT) agents were design as third generation BNCT agents. DGB which possesses trivalent Gal moieties and trivalent carboranes was synthesized and tested as a potential cell-targeting agent in BNCT with HepG2 cells. DGB improved the delivery of boron to HepG2 cells, and neutron irradiation data show that DGB exhibits a ten-fold improvement at killing HepG2 cells compared to BSH, an FDA-approved drug. Another strategy we pursued was to use mesoporous silicon NPs (MSNs) as 10B carriers for a “Trojan horse” type approach. T-Gal-B-Cy3@MSN as BNCT agent has large pore volumes which allow for the loading of o-carborane (almost 50% boron atoms per MSNs particle). This resolves previous limitations concerning the drug release kinetics of MSNs. Moreover, the trivalent Gal moiety serves as a targeting ligand for the targeting of HepG2 cells. We believe that our approach provides new insights on the development of dendrimer- and MSN-type BNTC agents.

    Abstract IV Acknowledgement VII AbbreviationsIX List of Figures XII List of Schemes XVII List of Tables XVII Chapter 1. Introduction 1 1.1 The general introduction of carbohydrates 1 1.2 Multivalency in carbohydrate recognition: The glycoside cluster effect 3 1.2.1 Multivalency: Definition, biological role, and examples 3 1.2.2 The multivalent carriers 6 1.2.3 Dendrimers and other scaffolds as multivalent carriers 8 1.2.4 Nanoparticles as multivalent carriers 15 1.3 Specific cell targeting and mechanism of the cell uptake 20 1.3.1 Specific targeting 20 1.3.2 Mechanism of cellular uptake 31 1.4 Applications of nanoparticles in biological systems 35 1.5 Functionalization of nanoparticles 35 1.6 The goal of thesis research 37 Chapter 2. Galactose encapsulated multifunctional magnetic nanoparticle for HepG2 cancer cell internalization 38 2.1 Introduction 38 2.1.1 The application of magnetic nanoparticle in biology 38 2.1.2 Multi-functionalized magnetic nanoparticle for cell imaging 40 2.1.3 Specific aims 41 2.2 Result and discussion 42 2.2.1 Synthesis and characterization of amine functionalized MNP (NH2@MNP) 42 2.2.2 Fabrication of fluorescence (Cy3) labeled MNP 46 2.2.3 Synthesis of galactose ligands 49 2.2.4 The conjugation of carbohydrate ligands with fluorescent MNP and characterization of surface carbohydrate amount 50 2.2.5 Evaluation of the MNP uptake by cell 55 2.3 Conclusion 66 2.4 Experimental Section 66 Chapter 3. Sequential Double Click Chemistry to Fabricate Paclitaxel- and Galactose-Loaded Fluorescent Silicon Oxide Nanoparticles for Specific HepG2 Cell Targeting 79 3.1 Introduction 79 3.1.1 The advantages of application nanoparticle in anti-cancer drug delivery 79 3.1. 2 Synthesis of fluorescent silica oxide nanoparticle 81 3.1.3 Click Chemistry 82 3.1.4 Design and development of sequential orthogonal double-click on silica oxide NPs ..............................................................................................................84 3.1.5 Specific aim in this chapter 86 3.2 Result and Discussion 87 3.2.1 Sequential conjugation of Paclitaxel and triantennary galactose to di-alkyne precursor by “Double-click” strategy: Model study in solution phase. 87 3.2.2 Preparation and characterization of drug-loaded Cy3-doped silica NPs. 93 3.2.3 Biological evaluation and cytotoxicity test 99 3.3 Conclusion 102 3.4 Experimental Section 102 Chapter 4. Design of Dendrimer-like Multivalent Galactosyl Carborane Molecule and Galactosyl-Functionalized Mesoporous Silica Nanoparticles as Specifically Targeted Delivery System for Potential Applications in Boron Neutron Capture Therapy 118 4.1 Introduction 118 4.1.1 Boron Neutron Capture Therapy (BNCT) 118 4.1.2 The advantages of using Carborane as BNCT agent 120 4.1.3 Development of Dendrimer-like Carboranes as BNCT Agent 122 4.1.4 The Advantages of Mesoporous Silica Nanoparticles (MSN) as specifically Targeted Delivery System 123 4.1.5 Specific Aims 128 4.2 Results and Discussion 128 4.2.1 Design and Synthesis of Dendrimer-like Multivalent Galactosyl Carborane Molecule as BNCT Agent for Specifically Targeting HepG2 cell 128 4.2.2 Galactosyl-Functionalized Mesoporous Silica Nanoparticle as a Target Specific Delivery System for BNCT 142 4.3 Conclusion 154 4.4 Experimental section 155 4.4.1 Part of Design of Dendrimer-like Multivalent Galactosyl Carborane Molecular.................... 155 4.4.2 Part of Galactosyl-Functionalized Mesoporous Silica Nanoparticles 164 References.................... 176 Publications.................. 195 Appendix (NMR spectrum) 197

    References:
    1. Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etxler, M. E., Essentials of glycobiology. 2nd ed.; Cold Spring Harbor Laboratory Press: New York, 2009.
    2. Bertozzi, C. R.; Kiessling, L. L., Chemical glycobiology. Science 2001, 291 (5512), 2357-64.
    3. Lundquist, J. J.; Toone, E. J., The Cluster Glycoside Effect. Chem. Rev. 2002, 102 (2), 555-578.
    4. Lee, Y. C.; Lee, R. T., Carbohydrate-Protein Interactions: Basis of Glycobiology. Acc. Chem. Res. 1995, 28 (8), 321-327.
    5. Mathai Mammen, S.-K. C. G. M. W., Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. Int. Ed. 1998, 37 (20), 2754-2794.
    6. (a) Gestwicki, J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling, L. L., Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 2002, 124 (50), 14922-33; (b) Gestwicki, J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling, L. L., Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J Am Chem Soc 2002, 124 (50), 14922-33.
    7. Faraji, A. H.; Wipf, P., Nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 2009, 17 (8), 2950-2962.
    8. Deniaud, D.; Julienne, K.; Gouin, S. G., Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands. Org. Biomol. Chem. 2011, 9 (4), 966-979.
    9. Kikkeri, R.; Grunstein, D.; Seeberger, P. H., Lectin biosensing using digital analysis of Ru(II)-glycodendrimers. J. Am. Chem. Soc. 2010, 132 (30), 10230-2.
    10. Bernardes, G. J.; Kikkeri, R.; Maglinao, M.; Laurino, P.; Collot, M.; Hong, S. Y.; Lepenies, B.; Seeberger, P. H., Design, synthesis and biological evaluation of carbohydrate-functionalized cyclodextrins and liposomes for hepatocyte-specific targeting. Org. Biomol. Chem. 2010, 8 (21), 4987-96.
    11. Grunstein, D.; Maglinao, M.; Kikkeri, R.; Collot, M.; Barylyuk, K.; Lepenies, B.; Kamena, F.; Zenobi, R.; Seeberger, P. H., Hexameric supramolecular scaffold orients carbohydrates to sense bacteria. J. Am. Chem. Soc. 2011, 133 (35), 13957-66.
    12. Jan, F.-D., Synthese and immunogenicities of tumor-associated carbohydrate vaccines. The PhD. thesis; Darpment of Chemistry; National Tsing Hua University 2009.
    13. (a) Engering, A. J.; Cella, M.; Fluitsma, D.; Brockhaus, M.; Hoefsmit, E. C. M.; Lanzavecchia, A.; Pieters, J., The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol. 1997, 27 (9), 2417-2425; (b) Sheng, K. C.; Kalkanidis, M.; Pouniotis, D. S.; Esparon, S.; Tang, C. K.; Apostolopoulos, V.; Pietersz, G. A., Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur. J. Immunol. 2008, 38 (2), 424-436.
    14. Laurino, P.; Kikkeri, R.; Azzouz, N.; Seeberger, P. H., Detection of bacteria using glyco-dendronized polylysine prepared by continuous flow photofunctionalization. Nano Lett 2011, 11 (1), 73-8.
    15. Lin, C. C.; Yeh, Y. C.; Yang, C. Y.; Chen, C. L.; Chen, G. F.; Chen, C. C.; Wu, Y. C., Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J. Am. Chem. Soc. 2002, 124 (14), 3508-9.
    16. Chen, Y. J.; Chen, S. H.; Chien, Y. Y.; Chang, Y. W.; Liao, H. K.; Chang, C. Y.; Jan, M. D.; Wang, K. T.; Lin, C. C., Carbohydrate-encapsulated gold nanoparticles for rapid target-protein identification and binding-epitope mapping. ChemBioChem 2005, 6 (7), 1169-73.
    17. Lin, C. C.; Yeh, Y. C.; Yang, C. Y.; Chen, G. F.; Chen, Y. C.; Wu, Y. C.; Chen, C. C., Quantitative analysis of multivalent interactions of carbohydrate-encapsulated gold nanoparticles with concanavalin A. Chem. Commun. 2003, (23), 2920-1.
    18. Chien, Y. Y.; Jan, M. D.; Adak, A. K.; Tzeng, H. C.; Lin, Y. P.; Chen, Y. J.; Wang, K. T.; Chen, C. T.; Chen, C. C.; Lin, C. C., Globotriose-functionalized gold nanoparticles as multivalent probes for Shiga-like toxin. ChemBioChem 2008, 9 (7), 1100-9.
    19. Lin, P.-C.; Chen, S.-H.; Wang, K.-Y.; Chen, M.-L.; Adak, A. K.; Hwu, J.-R. R.; Chen, Y.-J.; Lin, C.-C., Fabrication of Oriented Antibody-Conjugated Magnetic Nanoprobes and Their Immunoaffinity Application. Anal. Chem. 2009, 81 (21), 8774-8782.
    20. Gu, H.; Ho, P. L.; Tsang, K. W.; Yu, C. W.; Xu, B., Using biofunctional magnetic nanoparticles to capture gram-negative bacteria at an ultra-low concentration. Chem. Commun. 2003, (15), 1966-7.
    21. Yu, M. K.; Park, J.; Jon, S., Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012, 2 (1), 3-44.
    22. Brannon-Peppas, L.; Blanchette, J. O., Nanoparticle and targeted systems for cancer therapy. Adv. Drug Delivery Rev. 2004, 56 (11), 1649-1659.
    23. (a) Yu, W. W.; Chang, E.; Falkner, J. C.; Zhang, J.; Al-Somali, A. M.; Sayes, C. M.; Johns, J.; Drezek, R.; Colvin, V. L., Forming Biocompatible and Nonaggregated Nanocrystals in Water Using Amphiphilic Polymers. J. Am. Chem. Soc. 2007, 129 (10), 2871-2879; (b) Corsi, F.; Fiandra, L.; De Palma, C.; Colombo, M.; Mazzucchelli, S.; Verderio, P.; Allevi, R.; Tosoni, A.; Nebuloni, M.; Clementi, E.; Prosperi, D., HER2 expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice. ACS Nano 2011, 5 (8), 6383-93; (c) Van de Broek, B.; Devoogdt, N.; D'Hollander, A.; Gijs, H. L.; Jans, K.; Lagae, L.; Muyldermans, S.; Maes, G.; Borghs, G., Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 2011, 5 (6), 4319-28.
    24. (a) Banerjee, S. S.; Chen, D. H., A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology 2009, 20 (18), 185103; (b) Fan, K.; Cao, C.; Pan, Y.; Lu, D.; Yang, D.; Feng, J.; Song, L.; Liang, M.; Yan, X., Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012, 7 (7), 459-64; (c) Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; Lopez-Iglesias, C.; Teixido, M.; Kogan, M. J.; Giralt, E., Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012.
    25. (a) Sugahara, K. N.; Teesalu, T.; Karmali, P. P.; Kotamraju, V. R.; Agemy, L.; Greenwald, D. R.; Ruoslahti, E., Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs. Science 2010, 328 (5981), 1031-1035; (b) Montet, X.; Montet-Abou, K.; Reynolds, F.; Weissleder, R.; Josephson, L., Nanoparticle imaging of integrins on tumor cells. Neoplasia 2006, 8 (3), 214-222; (c) Garanger, E.; Boturyn, D.; Coll, J. L.; Favrot, M. C.; Dumy, P., Multivalent RGD synthetic peptides as potent alphaVbeta3 integrin ligands. Org. Biomol. Chem. 2006, 4 (10), 1958-65; (d) de la Fuente, J. M.; Berry, C. C.; Riehle, M. O.; Curtis, A. S. G., Nanoparticle Targeting at Cells. Langmuir 2006, 22 (7), 3286-3293.
    26. (a) Chen, C.-T.; Munot, Y. S.; Salunke, S. B.; Wang, Y.-C.; Lin, R.-K.; Lin, C.-C.; Chen, C.-C.; Liu, Y.-H., A Triantennary Dendritic Galactoside-Capped Nanohybrid with a ZnS/CdSe Nanoparticle Core as a Hydrophilic, Fluorescent, Multivalent Probe for Metastatic Lung Cancer Cells. Adv. Funct. Mater. 2008, 18 (4), 527-540; (b) Kikkeri, R.; Lepenies, B.; Adibekian, A.; Laurino, P.; Seeberger, P. H., In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J. Am. Chem. Soc. 2009, 131 (6), 2110-2; (c) Medina, S. H.; Tekumalla, V.; Chevliakov, M. V.; Shewach, D. S.; Ensminger, W. D.; El-Sayed, M. E. H., N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers. Biomaterials 2011, 32 (17), 4118-4129; (d) Wang, Y. C.; Liu, X. Q.; Sun, T. M.; Xiong, M. H.; Wang, J., Functionalized micelles from block copolymer of polyphosphoester and poly(epsilon-caprolactone) for receptor-mediated drug delivery. J. Controlled Release 2008, 128 (1), 32-40; (e) Liang, H. F.; Chen, S. C.; Chen, M. C.; Lee, P. W.; Chen, C. T.; Sung, H. W., Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system against cultured HepG2 cells. Bioconjugate Chem. 2006, 17 (2), 291-9; (f) Zhang, X. Q.; Wang, X. L.; Zhang, P. C.; Liu, Z. L.; Zhuo, R. X.; Mao, H. Q.; Leong, K. W., Galactosylated ternary DNA/polyphosphoramidate nanoparticles mediate high gene transfection efficiency in hepatocytes. J. Controlled Release 2005, 102 (3), 749-63.
    27. van Kasteren, S. I.; Campbell, S. J.; Serres, S.; Anthony, D. C.; Sibson, N. R.; Davis, B. G., Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (1), 18-23.
    28. (a) Das, M.; Bandyopadhyay, D.; Mishra, D.; Datir, S.; Dhak, P.; Jain, S.; Maiti, T. K.; Basak, A.; Pramanik, P., “Clickable”, Trifunctional Magnetite Nanoparticles and Their Chemoselective Biofunctionalization. Bioconjugate Chem. 2011, 22 (6), 1181-1193; (b) Yang, H.; Zhuang, Y.; Hu, H.; Du, X.; Zhang, C.; Shi, X.; Wu, H.; Yang, S., Silica-Coated Manganese Oxide Nanoparticles as a Platform for Targeted Magnetic Resonance and Fluorescence Imaging of Cancer Cells. Adv. Funct. Mater. 2010, 9999 (9999), NA; (c) Wang, X.; Li, J.; Wang, Y.; Cho, K. J.; Kim, G.; Gjyrezi, A.; Koenig, L.; Giannakakou, P.; Shin, H. J.; Tighiouart, M.; Nie, S.; Chen, Z. G.; Shin, D. M., HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano 2009, 3 (10), 3165-74; (d) Kohler, N.; Sun, C.; Wang, J.; Zhang, M., Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 2005, 21 (19), 8858-64; (e) Pan, X. Q.; Wang, H.; Shukla, S.; Sekido, M.; Adams, D. M.; Tjarks, W.; Barth, R. F.; Lee, R. J., Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy. Bioconjugate Chem. 2002, 13 (3), 435-42.
    29. Funovics, M. A.; Kapeller, B.; Hoeller, C.; Su, H. S.; Kunstfeld, R.; Puig, S.; Macfelda, K., MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. J. Magn. Resonance 2004, 22 (6), 843-850.
    30. (a) Farokhzad, O. C.; Cheng, J.; Teply, B. A.; Sherifi, I.; Jon, S.; Kantoff, P. W.; Richie, J. P.; Langer, R., Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (16), 6315-6320; (b) Tong, R.; Yala, L.; Fan, T. M.; Cheng, J., The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells. Biomaterials 2010, 31 (11), 3043-53.
    31. Fang, I. J.; Slowing, II; Wu, K. C.; Lin, V. S.; Trewyn, B. G., Ligand Conformation Dictates Membrane and Endosomal Trafficking of Arginine-Glycine-Aspartate (RGD)-Functionalized Mesoporous Silica Nanoparticles. Chem. Eur. J. 2012, 18 (25), 7787-92.
    32. Wang, Y.; Wang, Y.; Xiang, J.; Yao, K., Target-Specific Cellular Uptake of Taxol-Loaded Heparin-PEG-Folate Nanoparticles. Biomacromolecules 2010, 11 (12), 3531-3538.
    33. Stockert, R. J.; Morell, A. G.; Scheinberg, I. H., Mammalian hepatic lectin. Science 1974, 186 (4161), 365-6.
    34. Connolly, D. T.; Townsend, R. R.; Kawaguchi, K.; Bell, W. R.; Lee, Y. C., Binding and endocytosis of cluster glycosides by rabbit hepatocytes. Evidence for a short-circuit pathway that does not lead to degradation. J. Biol. Chem. 1982, 257 (2), 939-45.
    35. (a) Weigel, P. H.; Yik, J. H. N., Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochim. Biophys. Acta 2002, 1572 (2-3), 341-363; (b) Khorev, O.; Stokmaier, D.; Schwardt, O.; Cutting, B.; Ernst, B., Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Bioorg. Med. Chem. 2008, 16 (9), 5216-5231.
    36. Weigel, P. H.; Oka, J. A., The large intracellular pool of asialoglycoprotein receptors functions during the endocytosis of asialoglycoproteins by isolated rat hepatocytes. J. Biol. Chem. 1983, 258 (8), 5095-102.
    37. Lee, Y. C.; Townsend, R. R.; Hardy, M. R.; Lonngren, J.; Arnarp, J.; Haraldsson, M.; Lonn, H., Binding of synthetic oligosaccharides to the hepatic Gal/GalNAc lectin. Dependence on fine structural features. J. Biol. Chem. 1983, 258 (1), 199-202.
    38. Cai, W.; Chen, X., Nanoplatforms for targeted molecular imaging in living subjects. Small 2007, 3 (11), 1840-54.
    39. Rozema, D. B.; Lewis, D. L.; Wakefield, D. H.; Wong, S. C.; Klein, J. J.; Roesch, P. L.; Bertin, S. L.; Reppen, T. W.; Chu, Q.; Blokhin, A. V.; Hagstrom, J. E.; Wolff, J. A., Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (32), 12982-12987.
    40. Becker, W. M.; Kleinsmith, L. J.; Hardin, J. The world of the cell. http://lsl.sinica.edu.tw/LibraryResources/Newbook/230/008.htm.
    41. (a) Douma, K.; Prinzen, L.; Slaaf, D. W.; Reutelingsperger, C. P.; Biessen, E. A.; Hackeng, T. M.; Post, M. J.; van Zandvoort, M. A., Nanoparticles for optical molecular imaging of atherosclerosis. Small 2009, 5 (5), 544-57; (b) Katz, E.; Willner, I., Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 2004, 43 (45), 6042-108.
    42. de la Fuente, J. M.; Penades, S., Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine and material science. Biochim. Biophys. Acta 2006, 1760 (4), 636-51.
    43. Won, J.; Kim, M.; Yi, Y. W.; Kim, Y. H.; Jung, N.; Kim, T. K., A magnetic nanoprobe technology for detecting molecular interactions in live cells. Science 2005, 309 (5731), 121-5.
    44. Yu, C. C.; Lin, P. C.; Lin, C. C., Site-specific immobilization of CMP-sialic acid synthetase on magnetic nanoparticles and its use in the synthesis of CMP-sialic acid. Chem. Commun. 2008, (11), 1308-10.
    45. Gu, H.; Xu, K.; Xu, C.; Xu, B., Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 2006, (9), 941-9.
    46. Wang, X.; Ramstrom, O.; Yan, M., A photochemically initiated chemistry for coupling underivatized carbohydrates to gold nanoparticles. J. Mater. Chem. 2009, 19 (47), 8944-8949.
    47. (a) Li, D.; Teoh, W. Y.; Gooding, J. J.; Selomulya, C.; Amal, R., Functionalization Strategies for Protease Immobilization on Magnetic Nanoparticles. Adv. Funct. Mater. 2010, 9999 (9999), NA; (b) Knopp, D.; Tang, D.; Niessner, R., Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal. Chim. Acta 2009, 647 (1), 14-30.
    48. Lu, A. H.; Salabas, E. L.; Schuth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46 (8), 1222-44.
    49. Lin, P. C.; Chou, P. H.; Chen, S. H.; Liao, H. K.; Wang, K. Y.; Chen, Y. J.; Lin, C. C., Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2 (4), 485-9.
    50. Yu, C.-C.; Kuo, Y.-Y.; Liang, C.-F.; Chien, W.-T.; Wu, H.-T.; Chang, T.-C.; Jan, F.-D.; Lin, C.-C., Site-Specific Immobilization of Enzymes on Magnetic Nanoparticles and Their Use in Organic Synthesis. Bioconjugate Chem. 2012.
    51. Weissleder, R.; Mahmood, U., Molecular imaging. Radiology 2001, 219 (2), 316-33.
    52. (a) Jun, Y. W.; Lee, J. H.; Cheon, J., Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 2008, 47 (28), 5122-35; (b) Veiseh, O.; Sun, C.; Gunn, J.; Kohler, N.; Gabikian, P.; Lee, D.; Bhattarai, N.; Ellenbogen, R.; Sze, R.; Hallahan, A.; Olson, J.; Zhang, M., Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 2005, 5 (6), 1003-8.
    53. Chang, E.; Thekkek, N.; Yu, W. W.; Colvin, V. L.; Drezek, R., Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2006, 2 (12), 1412-7.
    54. (a) Yuan, Q.; Venkatasubramanian, R.; Hein, S.; Misra, R. D., A stimulus-responsive magnetic nanoparticle drug carrier: magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomater. 2008, 4 (4), 1024-37; (b) Medarova, Z.; Pham, W.; Farrar, C.; Petkova, V.; Moore, A., In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 2007, 13 (3), 372-7.
    55. (a) Zhang, L.; Liu, B.; Dong, S., Bifunctional nanostructure of magnetic core luminescent shell and its application as solid-state electrochemiluminescence sensor material. J. Phys. Chem. B 2007, 111 (35), 10448-52; (b) Perez, J. M.; Simeone, F. J.; Saeki, Y.; Josephson, L.; Weissleder, R., Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 2003, 125 (34), 10192-3.
    56. (a) van Landeghem, F. K.; Maier-Hauff, K.; Jordan, A.; Hoffmann, K. T.; Gneveckow, U.; Scholz, R.; Thiesen, B.; Bruck, W.; von Deimling, A., Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 2009, 30 (1), 52-7; (b) Hadjipanayis, C. G.; Bonder, M. J.; Balakrishnan, S.; Wang, X.; Mao, H.; Hadjipanayis, G. C., Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 2008, 4 (11), 1925-9.
    57. Lee, J. H.; Schneider, B.; Jordan, E. K.; Liu, W.; Frank, J. A., Synthesis of Complexable Fluorescent Superparamagnetic Iron Oxide Nanoparticles (FL SPIONs) and Cell Labeling for Clinical Application. Adv. Mater. 2008, 20 (13), 2512-2516.
    58. Zhao, X.; Bagwe, R. P.; Tan, W., Development of Organic-Dye-Doped Silica Nanoparticles in a Reverse Microemulsion. Adv. Mater. 2004, 16 (2), 173-176.
    59. Chou, P. H.; Chen, S. H.; Liao, H. K.; Lin, P. C.; Her, G. R.; Lai, A. C.; Chen, J. H.; Lin, C. C.; Chen, Y. J., Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma. Anal. Chem. 2005, 77 (18), 5990-7.
    60. Gu, H.; Zheng, R.; Zhang, X.; Xu, B., Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126 (18), 5664-5.
    61. Bruce, I. J.; Sen, T., Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 2005, 21 (15), 7029-35.
    62. Wessendorf, M. W.; Brelje, T. C., Which fluorophore is brightest? A comparison of the staining obtained using fluorescein, tetramethylrhodamine, lissamine rhodamine, Texas red, and cyanine 3.18. Histochemistry 1992, 98 (2), 81-5.
    63. Jung, M. E.; Kim, W.-J., Practical syntheses of dyes for difference gel electrophoresis. Bioorg. Med. Chem. 2006, 14 (1), 92-97.
    64. Wu, X.; Ling, C. C.; Bundle, D. R., A new homobifunctional p-nitro phenyl ester coupling reagent for the preparation of neoglycoproteins. Org. Lett. 2004, 6 (24), 4407-10.
    65. Fan, G.-T.; Lee, C.-C.; Lin, C.-C.; Fang, J.-M., Stereoselective Synthesis of Neu5Ac(2→5)Neu5Gc: The Building Block of Oligo/Poly (→5-OglycolylNeu5Gc2→) Chains in Sea Urchin Egg Cell Surface Glycoprotein. J. Org. Chem. 2002, 67 (21), 7565-7568.
    66. Gao, J.; Zhang, W.; Huang, P.; Zhang, B.; Zhang, X.; Xu, B., Intracellular spatial control of fluorescent magnetic nanoparticles. J. Am. Chem. Soc. 2008, 130 (12), 3710-1.
    67. (a) Banerjee, S. S.; Chen, D.-H., Magnetic Nanoparticles Grafted with Cyclodextrin for Hydrophobic Drug Delivery. Chem. Mater. 2007, 19 (25), 6345-6349; (b) Abeylath, S. C.; Turos, E., Glycosylated polyacrylate nanoparticles by emulsion polymerization. Carbohydr. Polym. 2007, 70 (1), 32-37; (c) Sundgren, A.; Barchi Jr, J. J., Varied presentation of the Thomsen-Friedenreich disaccharide tumor-associated carbohydrate antigen on gold nanoparticles. Carbohydr. Res. 2008, 343 (10-11), 1594-1604; (d) Popielarski, S. R.; Pun, S. H.; Davis, M. E., A Nanoparticle-Based Model Delivery System To Guide the Rational Design of Gene Delivery to the Liver. 1. Synthesis and Characterization. Bioconjugate Chem. 2005, 16 (5), 1063-1070.
    68. Nativo, P.; Prior, I. A.; Brust, M., Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2008, 2 (8), 1639-44.
    69. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65 (1-2), 55-63.
    70. Schmitt, L.; Dietrich, C.; Tampe, R., Synthesis and Characterization of Chelator-Lipids for Reversible Immobilization of Engineered Proteins at Self-Assembled Lipid Interfaces. J. Am. Chem. Soc. 1994, 116 (19), 8485-8491.
    71. Huang, G.; Diakur, J.; Xu, Z.; Wiebe, L. I., Asialoglycoprotein receptor-targeted superparamagnetic iron oxide nanoparticles. Int J Pharm 2008, 360 (1-2), 197-203.
    72. (a) Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 2005, 5 (3), 161-171; (b) Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2 (12), 751-760; (c) Davis, M. E.; Chen, Z.; Shin, D. M., Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discovery 2008, 7 (9), 771-782; (d) Doane, T. L.; Burda, C., The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41 (7), 2885-911.
    73. (a) Vonarbourg, A.; Passirani, C.; Saulnier, P.; Benoit, J.-P., Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 2006, 27 (24), 4356-4373; (b) Sanhai, W. R.; Sakamoto, J. H.; Canady, R.; Ferrari, M., Seven challenges for nanomedicine. Nat. Nanotechnol. 2008, 3 (5), 242-244; (c) Farokhzad, O. C.; Langer, R., Impact of Nanotechnology on Drug Delivery. ACS Nano 2009, 3 (1), 16-20; (d) Adiseshaiah, P. P.; Hall, J. B.; McNeil, S. E., Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2 (1), 99-112; (e) Georgelin, T.; Bombard, S.; Siaugue, J. M.; Cabuil, V., Nanoparticle-mediated delivery of bleomycin. Angew. Chem. Int. Ed. 2010, 49 (47), 8897-901.
    74. (a) Chen, Y.-J.; Chen, S.-H.; Chien, Y.-Y.; Chang, Y.-W.; Liao, H.-K.; Chang, C.-Y.; Jan, M.-D.; Wang, K.-T.; Lin, C.-C., Carbohydrate-Encapsulated Gold Nanoparticles for Rapid Target-Protein Identification and Binding-Epitope Mapping. ChemBioChem 2005, 6 (7), 1169-1173; (b) Lai, C.-H.; Lin, C.-Y.; Wu, H.-T.; Chan, H.-S.; Chuang, Y.-J.; Chen, C.-T.; Lin, C.-C., Galactose Encapsulated Multifunctional Nanoparticle for HepG2 Cell Internalization. Adv. Funct. Mater. 2010, 20 (22), 3948-3958.
    75. Hawkins, M. J.; Soon-Shiong, P.; Desai, N., Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Delivery Rev. 2008, 60 (8), 876-885.
    76. Matsumura, Y.; Maeda, H., A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46 (12 Pt 1), 6387-92.
    77. Hobbs, S. K.; Monsky, W. L.; Yuan, F.; Roberts, W. G.; Griffith, L.; Torchilin, V. P.; Jain, R. K., Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. U.S.A. 1998, 95 (8), 4607-12.
    78. Yan, J.; Estévez, M. C.; Smith, J. E.; Wang, K.; He, X.; Wang, L.; Tan, W., Dye-doped nanoparticles for bioanalysis. Nano Today 2007, 2 (3), 44-50.
    79. Tan, W.; Wang, K.; He, X.; Zhao, X. J.; Drake, T.; Wang, L.; Bagwe, R. P., Bionanotechnology based on silica nanoparticles. Med. Res. Rev. 2004, 24 (5), 621-638.
    80. Kim, H. K.; Kang, S.-J.; Choi, S.-K.; Min, Y.-H.; Yoon, C.-S., Highly Efficient Organic/Inorganic Hybrid Nonlinear Optic Materials via Sol−Gel Process:  Synthesis, Optical Properties, and Photobleaching for Channel Waveguides. Chem. Mater. 1999, 11 (3), 779-788.
    81. (a) Tabatabaei, S.; et al., Experimental study of the synthesis and characterisation of silica nanoparticles via the sol-gel method. Journal of Physics: Conference Series 2006, 26 (1), 371; (b) Davies, G.-L.; Barry, A.; Gun'ko, Y. K., Preparation and size optimisation of silica nanoparticles using statistical analyses. Chem. Phys. Lett. 2009, 468 (4-6), 239-244; (c) van Blaaderen, A.; Vrij, A., Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 1992, 8 (12), 2921-2931; (d) Ow, H.; Larson, D. R.; Srivastava, M.; Baird, B. A.; Webb, W. W.; Wiesner, U., Bright and Stable Core−Shell Fluorescent Silica Nanoparticles. Nano Lett. 2005, 5 (1), 113-117.
    82. (a) Kim, S. H.; Jeyakumar, M.; Katzenellenbogen, J. A., Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling. J. Am. Chem. Soc. 2007, 129 (43), 13254-64; (b) Bae, S. W.; Tan, W.; Hong, J.-I., Fluorescent dye-doped silica nanoparticles: new tools for bioapplications. Chem. Commun. 2012, 48 (17), 2270-2282.
    83. (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40 (11), 2004-2021; (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41 (14), 2596-2599.
    84. Tornøe, C. W.; Christensen, C.; Meldal, M., Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67 (9), 3057-3064.
    85. Huisgen, R., 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem. Int. Ed. 1963, 2 (10), 565-598.
    86. Lim, R. K. V.; Lin, Q., Bioorthogonal chemistry: recent progress and future directions. Chem. Commun. 2010, 46 (10), 1589-600.
    87. Wittig, G.; Krebs, A., Zur Existenz niedergliedriger Cycloalkine, I. Chem. Ber. 1961, 94 (12), 3260-3275.
    88. Meier, H.; Petersen, H.; Kolshorn, H., Die Ringspannung von Cycloalkinen und ihre spektroskopischen Auswirkungen. Chem. Ber. 1980, 113 (7), 2398-2409.
    89. Turner, R. B.; Jarrett, A. D.; Goebel, P.; Mallon, B. J., Heats of hydrogenation. IX. Cyclic acetylenes and some miscellaneous olefins. J. Am. Chem. Soc. 1973, 95 (3), 790-792.
    90. Agard, N. J.; Prescher, J. A.; Bertozzi, C. R., A Strain-Promoted [3 + 2] Azide−Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J. Am. Chem. Soc. 2004, 126 (46), 15046-15047.
    91. Ning, X.; Guo, J.; Wolfert, Margreet A.; Boons, G.-J., Visualizing Metabolically Labeled Glycoconjugates of Living Cells by Copper-Free and Fast Huisgen Cycloadditions. Angew. Chem. Int. Ed. 2008, 47 (12), 2253-2255.
    92. (a) Colombo, M.; Sommaruga, S.; Mazzucchelli, S.; Polito, L.; Verderio, P.; Galeffi, P.; Corsi, F.; Tortora, P.; Prosperi, D., Site-Specific Conjugation of ScFvs Antibodies to Nanoparticles by Bioorthogonal Strain-Promoted Alkyne–Nitrone Cycloaddition. Angew. Chem. Int. Ed. 2012, 51 (2), 496-499; (b) Cohen, A. S.; Dubikovskaya, E. A.; Rush, J. S.; Bertozzi, C. R., Real-Time Bioluminescence Imaging of Glycans on Live Cells. J. Am. Chem. Soc. 2010; (c) Jewett, J. C.; Sletten, E. M.; Bertozzi, C. R., Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc. 2010, 132 (11), 3688-90; (d) Poloukhtine, A. A.; Mbua, N. E.; Wolfert, M. A.; Boons, G.-J.; Popik, V. V., Selective Labeling of Living Cells by a Photo-Triggered Click Reaction. J. Am. Chem. Soc. 2009, 131 (43), 15769-15776; (e) Zhang, P.; Liu, S.; Gao, D.; Hu, D.; Gong, P.; Sheng, Z.; Deng, J.; Ma, Y.; Cai, L., Click-Functionalized Compact Quantum Dots Protected by Multidentate-Imidazole Ligands: Conjugation-Ready Nanotags for Living-Virus Labeling and Imaging. J. Am. Chem. Soc. 2012, 134 (20), 8388-8391.
    93. Chang, P. V.; Prescher, J. A.; Sletten, E. M.; Baskin, J. M.; Miller, I. A.; Agard, N. J.; Lo, A.; Bertozzi, C. R., Copper-free click chemistry in living animals. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (5), 1821-6.
    94. Dong, X.; Mattingly, C. A.; Tseng, M. T.; Cho, M. J.; Liu, Y.; Adams, V. R.; Mumper, R. J., Doxorubicin and Paclitaxel-Loaded Lipid-Based Nanoparticles Overcome Multidrug Resistance by Inhibiting P-Glycoprotein and Depleting ATP. Cancer Res. 2009, 69 (9), 3918-3926.
    95. (a) Gibson, J. D.; Khanal, B. P.; Zubarev, E. R., Paclitaxel-functionalized gold nanoparticles. J. Am. Chem. Soc. 2007, 129 (37), 11653-61; (b) Hwu, J. R.; Lin, Y. S.; Josephrajan, T.; Hsu, M.-H.; Cheng, F.-Y.; Yeh, C.-S.; Su, W.-C.; Shieh, D.-B., Targeted Paclitaxel by Conjugation to Iron Oxide and Gold Nanoparticles. J. Am. Chem. Soc. 2008, 131 (1), 66-68; (c) Chen, J.; Chen, S.; Zhao, X.; Kuznetsova, L. V.; Wong, S. S.; Ojima, I., Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery. J. Am. Chem. Soc. 2008, 130 (49), 16778-16785; (d) Liu, K. K.; Zheng, W. W.; Wang, C. C.; Chiu, Y. C.; Cheng, C. L.; Lo, Y. S.; Chen, C.; Chao, J. I., Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 2010, 21 (31), 315106; (e) Chorny, M.; Fishbein, I.; Yellen, B. B.; Alferiev, I. S.; Bakay, M.; Ganta, S.; Adamo, R.; Amiji, M.; Friedman, G.; Levy, R. J., Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (18), 8346-51; (f) Zhang, X.-Q.; Xu, X.; Lam, R.; Giljohann, D.; Ho, D.; Mirkin, C. A., Strategy for Increasing Drug Solubility and Efficacy through Covalent Attachment to Polyvalent DNA–Nanoparticle Conjugates. ACS Nano 2011, 5 (9), 6962-6970; (g) Mo, R.; Jin, X.; Li, N.; Ju, C.; Sun, M.; Zhang, C.; Ping, Q., The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials 2011, 32 (20), 4609-4620; (h) Shan, L.; Cui, S.; Du, C.; Wan, S.; Qian, Z.; Achilefu, S.; Gu, Y., A paclitaxel-conjugated adenovirus vector for targeted drug delivery for tumor therapy. Biomaterials 2012, 33 (1), 146-62.
    96. Kele, P.; Mezo, G.; Achatz, D.; Wolfbeis, O. S., Dual labeling of biomolecules by using click chemistry: a sequential approach. Angew. Chem., Int. Ed. 2009, 48 (2), 344-7.
    97. Jewett, J. C.; Bertozzi, C. R., Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 2010, 39 (4), 1272-9.
    98. (a) Damascelli, B.; Cantu, G.; Mattavelli, F.; Tamplenizza, P.; Bidoli, P.; Leo, E.; Dosio, F.; Cerrotta, A. M.; Di Tolla, G.; Frigerio, L. F.; Garbagnati, F.; Lanocita, R.; Marchiano, A.; Patelli, G.; Spreafico, C.; Ticha, V.; Vespro, V.; Zunino, F., Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007): Phase II study of patients with squamous cell carcinoma of the head and neck and anal canal: preliminary evidence of clinical activity. Cancer 2001, 92 (10), 2592-602; (b) Griset, A. P.; Walpole, J.; Liu, R.; Gaffey, A.; Colson, Y. L.; Grinstaff, M. W., Expansile nanoparticles: synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. J. Am. Chem. Soc. 2009, 131 (7), 2469-71.
    99. Sundararajan, C.; Besanger, T. R.; Labiris, R.; Guenther, K. J.; Strack, T.; Garafalo, R.; Kawabata, T. T.; Finco-Kent, D.; Zubieta, J.; Babich, J. W.; Valliant, J. F., Synthesis and Characterization of Rhenium and Technetium-99m Labeled Insulin. J. Med. Chem. 2010, 53 (6), 2612-2621.
    100. Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R., A Comparative Study of Bioorthogonal Reactions with Azides. ACS Chem. Biol. 2006, 1 (10), 644-648.
    101. Cavallaro, G.; Licciardi, M.; Caliceti, P.; Salmaso, S.; Giammona, G., Synthesis, physico-chemical and biological characterization of a paclitaxel macromolecular prodrug. Eur. J. Pharm. Biopharm. 2004, 58 (1), 151-9.
    102. Kuzmin, A.; Poloukhtine, A.; Wolfert, M. A.; Popik, V. V., Surface Functionalization Using Catalyst-Free Azide−Alkyne Cycloaddition. Bioconjugate Chem. 2010, 21 (11), 2076-2085.
    103. Stober, W., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26 (1), 62-69.
    104. Jiang, W.; KimBetty, Y. S.; Rutka, J. T.; ChanWarren, C. W., Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3 (3), 145-150.
    105. Fang, C.; Shi, B.; Pei, Y. Y.; Hong, M. H.; Wu, J.; Chen, H. Z., In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci. 2006, 27 (1), 27-36.
    106. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26 (1), 62-69.
    107. Chen, G.; Song, F.; Wang, X.; Sun, S.; Fan, J.; Peng, X., Bright and stable Cy3-encapsulated fluorescent silica nanoparticles with a large Stokes shift. Dyes Pigm. 2012, 93 (1–3), 1532-1537.
    108. Koehler, L. H., Differentiation of Carbohydrates by Anthrone Reaction Rate and Color Intensity. Anal. Chem. 1952, 24 (10), 1576-1579.
    109. (a) Schiff, P. B.; Horwitz, S. B., Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. U.S.A. 1980, 77 (3), 1561-1565; (b) Kavallaris, M., Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 2010, 10 (3), 194-204.
    110. Lin, Y. S.; Tungpradit, R.; Sinchaikul, S.; An, F. M.; Liu, D. Z.; Phutrakul, S.; Chen, S. T., Targeting the delivery of glycan-based paclitaxel prodrugs to cancer cells via glucose transporters. J. Med. Chem. 2008, 51 (23), 7428-41.
    111. Dragoni, E.; Calderone, V.; Fragai, M.; Jaiswal, R.; Luchinat, C.; Nativi, C., Biotin-Tagged Probes for MMP Expression and Activation: Design, Synthesis, and Binding Properties. Bioconjugate Chem. 2009, 20 (4), 719-727.
    112. Lai, C.-H.; Lin, Y.-C.; Chou, F.-I.; Liang, C.-F.; Lin, E.-W.; Chuang, Y.-J.; Lin, C.-C., Design of multivalent galactosyl carborane as a targeting specific agent for potential application to boron neutron capture therapy. Chem. Commun. 2012, 48 (4).
    113. (a) Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F. G.; Barth, R. F.; Codogni, I. M.; Wilson, J. G., The Chemistry of Neutron Capture Therapy. (Chem. Rev. 1998, 98, 1515. Published on the Web May 20, 1998). Chem. Rev. 1998, 98 (6), 1515-1562; (b) Hawthorne, M. F.; Maderna, A., Applications of Radiolabeled Boron Clusters to the Diagnosis and Treatment of Cancer. Chem. Rev. 1999, 99 (12), 3421-3434; (c) Barth, R. F.; Coderre, J. A.; Vicente, M. G. H.; Blue, T. E., Boron Neutron Capture Therapy of Cancer: Current Status and Future Prospects. Clin. Cancer Res. 2005, 11 (11), 3987-4002; (d) Wu, G.; Barth, R. F.; Yang, W.; Lee, R. J.; Tjarks, W.; Backer, M. V.; Backer, J. M., Boron containing macromolecules and nanovehicles as delivery agents for neutron capture therapy. Curr. Med. Chem.: Anti-Cancer Agents 2006, 6 (2), 167-84.
    114. Kruger, P. G., Some Biological Effects of Nuclear Disintegration Products on Neoplastic Tissue. Proc. Natl. Acad. Sci. U. S. A. 1940, 26 (3), 181-92.
    115. Locksley, H. B.; Farr, L. E., The tolerance of large doses of sodium borate intravenously by patients receiving neutron capture therapy. J. Pharmacol. Exp. Ther. 1955, 114 (4), 484-9.
    116. Farr, L. E.; Sweet, W. H.; Robertson, J. S.; Foster, C. G.; Locksley, H. B.; Sutherland, D. L.; Mendelsohn, M. L.; Stickley, E. E., Neutron capture therapy with boron in the treatment of glioblastoma multiforme. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1954, 71 (2), 279-93.
    117. Goodwin, J. T.; Farr, L. E.; Sweet, W. H.; Robertson, J. S., Pathological study of eight patients with glioblastoma multiforme treated by neutron-capture therapy using boron 10. Cancer 1955, 8 (3), 601-15.
    118. Calabrese, G.; Gomes, A. C. N. M.; Barbu, E.; Nevell, T. G.; Tsibouklis, J., Carborane-based derivatives of delocalised lipophilic cations for boron neutron capture therapy: synthesis and preliminary in vitro evaluation. J. Mater. Chem. 2008, 18 (40), 4864-4871.
    119. Hatanaka, H., A revised boron neutron capture therapy for malignant brain tumors. II. Interim clinical result with the patients excluding previous treatments. J. Neurol. 1975, 209 (2), 81-94.
    120. Mishima, Y.; Honda, C.; Ichihashi, M.; Obara, H.; Hiratsuka, J.; Fukuda, H.; Karashima, H.; Kobayashi, T.; Kanda, K.; Yoshino, K., Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. The Lancet 1989, 334 (8659), 388-389.
    121. Hatanaka, H.; Nakagawa, Y., Clinical results of long-surviving brain tumor patients who underwent boron neutron capture therapy. Int. J. Radiat. Oncol. Biol. Phys. 1994, 28 (5), 1061-6.
    122. Barth, R. F., Boron neutron capture therapy at the crossroads: challenges and opportunities. Appl. Radiat. Isot. 2009, 67 (7-8 Suppl), S3-6.
    123. (a) Pan, X.; Wu, G.; Yang, W.; Barth, R. F.; Tjarks, W.; Lee, R. J., Synthesis of Cetuximab-Immunoliposomes via a Cholesterol-Based Membrane Anchor for Targeting of EGFR. Bioconjugate Chem. 2007, 18 (1), 101-108; (b) Koning, G. A.; Fretz, M. M.; Woroniecka, U.; Storm, G.; Krijger, G. C., Targeting liposomes to tumor endothelial cells for neutron capture therapy. Appl. Radiat. Isot. 2004, 61 (5), 963-967; (c) Cappelli, A.; Pericot Mohr, G.; Gallelli, A.; Giuliani, G.; Anzini, M.; Vomero, S.; Fresta, M.; Porcu, P.; Maciocco, E.; Concas, A.; Biggio, G.; Donati, A., Structure-activity relationships in carboxamide derivatives based on the targeted delivery of radionuclides and boron atoms by means of peripheral benzodiazepine receptor ligands. J. Med. Chem. 2003, 46 (17), 3568-71.
    124. Pitochelli, A. R.; Hawthorne, F. M., The isolation of the icosahedral B12H12 -2 ion. J. Am. Chem. Soc. 1960, 82 (12), 3228-3229.
    125. (a) Thimon, C.; Panza, L.; Morin, C., Synthesis of a Glycosylated ortho-Carboranyl Amino Acid. Synlett 2003, 2003 (10), 1399-1402; (b) Tietze, L. F.; Griesbach, U.; Bothe, U.; Nakamura, H.; Yamamoto, Y., Novel carboranes with a DNA binding unit for the treatment of cancer by boron neutron capture therapy. Chembiochem 2002, 3 (2-3), 219-25; (c) Maderna, A.; Huertas, R.; Hawthorne, M. F.; Luguya, R.; Vicente, M. G., Synthesis of a porphyrin-labelled carboranyl phosphate diester: a potential new drug for boron neutron capture therapy of cancer. Chem. Commun. 2002, (16), 1784-5; (d) Crivello, A.; Nervi, C.; Gobetto, R.; Crich, S. G.; Szabo, I.; Barge, A.; Toppino, A.; Deagostino, A.; Venturello, P.; Aime, S., Towards improved boron neutron capture therapy agents: evaluation of in vitro cellular uptake of a glutamine-functionalized carborane. J. Biol. Inorg. Chem. 2009, 14 (6), 883-90; (e) Cappelli, A.; Valenti, S.; Mancini, A.; Giuliani, G.; Anzini, M.; Altieri, S.; Bortolussi, S.; Ferrari, C.; Clerici, A. M.; Zonta, C.; Carraro, F.; Filippi, I.; Giorgi, G.; Donati, A.; Ristori, S.; Vomero, S.; Concas, A.; Biggio, G., Carborane-Conjugated 2-Quinolinecarboxamide Ligands of the Translocator Protein for Boron Neutron Capture Therapy. Bioconjugate Chem. 2010, 21 (12), 2213-2221; (f) Tietze, L. F.; Bothe, U.; Griesbach, U.; Nakaichi, M.; Hasegawa, T.; Nakamura, H.; Yamamoto, Y., Carboranyl bisglycosides for the treatment of cancer by boron neutron capture therapy. Chembiochem 2001, 2 (5), 326-34.
    126. Yisgedu, T. B.; Chen, X.; Schricker, S.; Parquette, J.; Meyers, E. A.; Shore, S. G., Synthesis and characterization of homopolymers and copolymers containing closo-[B12H12]2- boron cage derivatives. Chem. Eur. J. 2009, 15 (9), 2190-9.
    127. (a) Parrott, M. C.; Marchington, E. B.; Valliant, J. F.; Adronov, A., Synthesis and properties of carborane-functionalized aliphatic polyester dendrimers. J. Am. Chem. Soc. 2005, 127 (34), 12081-9; (b) Dash, B. P.; Satapathy, R.; Maguire, J. A.; Hosmane, N. S., Synthesis of a new class of carborane-containing star-shaped molecules via silicon tetrachloride promoted cyclotrimerization reactions. Org. Lett. 2008, 10 (11), 2247-50.
    128. (a) Lee, J. D.; Ueno, M.; Miyajima, Y.; Nakamura, H., Synthesis of boron cluster lipids: closo-dodecaborate as an alternative hydrophilic function of boronated liposomes for neutron capture therapy. Org. Lett. 2007, 9 (2), 323-6; (b) Altieri, S.; Balzi, M.; Bortolussi, S.; Bruschi, P.; Ciani, L.; Clerici, A. M.; Faraoni, P.; Ferrari, C.; Gadan, M. A.; Panza, L.; Pietrangeli, D.; Ricciardi, G.; Ristori, S., Carborane Derivatives Loaded into Liposomes as Efficient Delivery Systems for Boron Neutron Capture Therapy†. J. Med. Chem. 2009, 52 (23), 7829-7835.
    129. Chou, F. I.; Chung, H. P.; Liu, H. M.; Chi, C. W.; Lui, W. Y., Suitability of boron carriers for BNCT: accumulation of boron in malignant and normal liver cells after treatment with BPA, BSH and BA. Appl. Radiat. Isot. 2009, 67 (7-8 Suppl), S105-8.
    130. Binder, W. H.; Sachsenhofer, R., ‘Click’ Chemistry in Polymer and Materials Science. Macromol. Rapid Commun. 2007, 28 (1), 15-54.
    131. Yang, P. P.; Gai, S. L.; Lin, J., Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 2012, 41 (9), 3679-3698.
    132. Vallet-Regi, M.; Ramila, A.; del Real, R. P.; Perez-Pariente, J., A New Property of MCM-41: Drug Delivery System. Chem. Mater. 2001, 13 (2), 308-311.
    133. (a) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114 (27), 10834-10843; (b) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359 (6397), 710-712.
    134. (a) Somorjai, G. A.; Frei, H.; Park, J. Y., Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques. J. Am. Chem. Soc. 2009, 131 (46), 16589-16605; (b) Kuschel, A.; Polarz, S., Effects of Primary and Secondary Surface Groups in Enantioselective Catalysis Using Nanoporous Materials with Chiral Walls. J. Am. Chem. Soc. 2010, 132 (18), 6558-6565; (c) Lin, W.; Frei, H., Photochemical CO2 Splitting by Metal-to-Metal Charge-Transfer Excitation in Mesoporous ZrCu(I)-MCM-41 Silicate Sieve. J. Am. Chem. Soc. 2005, 127 (6), 1610-1611.
    135. (a) Vivero-Escoto, J. L.; Slowing, II; Wu, C. W.; Lin, V. S., Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc. 2009, 131 (10), 3462-3; (b) Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C.-W.; Lin, V. S. Y., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Delivery Rev. 2008, 60 (11), 1278-1288; (c) Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P., pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J. Am. Chem. Soc. 2010, 132 (5), 1500-1.
    136. Ispas, C.; Sokolov, I.; Andreescu, S., Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal. Bioanal. Chem. 2009, 393 (2), 543-554.
    137. (a) Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery 2005, 4 (2), 145-160; (b) Malmsten, M., Soft drug delivery systems. Soft Matter 2006, 2 (9), 760-769; (c) Vallet-Regi, M., Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem. Eur. J. 2006, 12 (23), 5934-5943; (d) Yoo, J. W.; Lee, C. H., Drug delivery systems for hormone therapy. J. Controlled Release 2006, 112 (1), 1-14; (e) Raemdonck, K.; Demeester, J.; De Smedt, S., Advanced nanogel engineering for drug delivery. Soft Matter 2009, 5 (4), 707-715; (f) Malmsten, M.; Bysell, H.; Hansson, P., Biomacromolecules in microgels - Opportunities and challenges for drug delivery. Curr. Opin. Colloid Interface Sci. 2010, 15 (6), 435-444.
    138. (a) I.K. Kwon, S. H. J., E. Kang and K. Park, Nanoparticulate drug delivery systems for cancer therapy. Cancer Nanotechnol. 2007, 333-344; (b) Chacko, R. T.; Ventura, J.; Zhuang, J. M.; Thayumanavan, S., Polymer nanogels: A versatile nanoscopic drug delivery platform. Adv. Drug Delivery Rev. 2012, 64 (9), 836-851.
    139. (a) Unger, K.; Rupprecht, H.; Valentin, B.; Kircher, W., The use of porous and surface modified silicas as drug delivery and stabilizing agnets. Drug Dev. Ind. Pharm. 1983, 9 (1-2), 69-91; (b) Bottcher, H.; Slowik, P.; Suss, W., Sol-gel carrier systems for controlled drug delivery. J. Sol-Gel Sci. Technol. 1998, 13 (1-3), 277-281; (c) Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A., Understanding the stability in water of mesoporous SBA-15 and MCM-41. J. Phys. Chem. C 2007, 111 (23), 8268-8277.
    140. (a) Vallet-Regi, M.; Balas, F.; Arcos, D., Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 2007, 46, 7548-7558; (b) Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 2003, 125 (15), 4451-4459; (c) Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y., Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. Int. Ed. 2005, 44 (32), 5038-5044; (d) Lu, J.; Liong, M.; Zink, J. I.; Tamanoi, F., Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 2007, 3 (8), 1341-1346; (e) Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I., Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2 (5), 889-96; (f) Rosenholm, J. M.; Meinander, A.; Peuhu, E.; Niemi, R.; Eriksson, J. E.; Sahlgren, C.; Linden, M., Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells. Acs Nano 2009, 3 (1), 197-206; (g) Lu, F.; Wu, S. H.; Hung, Y.; Mou, C. Y., Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles. Small 2009, 5 (12), 1408-1413; (h) Liu, J. W.; Stace-Naughton, A.; Jiang, X. M.; Brinker, C. J., Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery Vehicles. J. Am. Chem. Soc. 2009, 131 (4), 1354-+; (i) Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J. W.; Phillips, B.; Carter, M. B.; Carroll, N. J.; Jiang, X. M.; Dunphy, D. R.; Willman, C. L.; Petsev, D. N.; Evans, D. G.; Parikh, A. N.; Chackerian, B.; Wharton, W.; Peabody, D. S.; Brinker, C. J., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 2011, 10 (5), 389-397; (j) Wang, L. S.; Wu, L. C.; Lu, S. Y.; Chang, L. L.; Teng, I. T.; Yang, C. M.; Ho, J. A. A., Biofunctionalized Phospholipid-Capped Mesoporous Silica Nanoshuttles for Targeted Drug Delivery: Improved Water Suspensibility and Decreased Nonspecific Protein Binding. Acs Nano 2010, 4 (8), 4371-4379.
    141. (a) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114 (27), 10834-10843; (b) Trewyn, B. G.; Slowing, II; Giri, S.; Chen, H. T.; Lin, V. S. Y., Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc. Chem. Res. 2007, 40 (9), 846-853.
    142. Barbe, C.; Bartlett, J.; Kong, L. G.; Finnie, K.; Lin, H. Q.; Larkin, M.; Calleja, S.; Bush, A.; Calleja, G., Silica particles: A novel drug-delivery system. Adv. Mater. 2004, 16 (21), 1959-1966.
    143. Ristori, S.; Oberdisse, J.; Grillo, I.; Donati, A.; Spalla, O., Structural characterization of cationic liposomes loaded with sugar-based carboranes. Biophys. J. 2005, 88 (1), 535-47.
    144. Hein, C. D.; Liu, X. M.; Chen, F.; Cullen, D. M.; Wang, D., The synthesis of a multiblock osteotropic polyrotaxane by copper(I)-catalyzed huisgen 1,3-dipolar cycloaddition. Macromol Biosci. 2010, 10 (12), 1544-56.
    145. Han, S.-Y.; Kim, Y.-A., Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 2004, 60 (11), 2447-2467.
    146. Wilson, J. G.; Anisuzzaman, A. K. M.; Alam, F.; Soloway, A. H., Development of carborane synthons: synthesis and chemistry of (aminoalkyl)carboranes. Inorg. Chem. 1992, 31 (10), 1955-1958.
    147. Osby, J. O.; Martin, M. G.; Ganem, B., An exceptionally mild deprotection of phthalimides. Tetrahedron Lett. 1984, 25 (20), 2093-2096.
    148. Loewus, F. A., Improvement in Anthrone Method for Determination of Carbohydrates. Anal. Chem. 1952, 24 (1), 219-219.
    149. Rosenholm, J. M.; Linden, M., Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas. Chem. Mater. 2007, 19, 5023-5034.
    150. Liu, J.; Jiang, X.; Ashley, C.; Brinker, C. J., Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc. 2009, 131 (22), 7567-9.
    151. Tsunoda, N.; Kokuryo, T.; Oda, K.; Senga, T.; Yokoyama, Y.; Nagino, M.; Nimura, Y.; Hamaguchi, M., Nek2 as a novel molecular target for the treatment of breast carcinoma. Cancer Sci. 2009, 100 (1), 111-116.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE