簡易檢索 / 詳目顯示

研究生: 黃揚名
Yang-Ming Huang
論文名稱: 離散型軟體可靠度模型下的循序軟體發行策略
A sequential software reliability policy using a discrete-time software reliability model
指導教授: 張延彰
Yen-Chang Chang
洪文良
Wen-Liang Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 24
中文關鍵詞: 軟體可靠度離散型軟體可靠度模型成本模型最佳發行時間
外文關鍵詞: software reliability, biscrete software reliability model, cost model, optimal release time
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在開發高品質且穩定的軟體產品之過程,軟體可靠度(software reliability)扮演著相當重要的角色。在過去三十年來,已有不少學者提出許多可靠度模型,應用於評估軟體產品的可靠度,尤其在國防、醫學及航空上的使用更是不可或缺。基於軟體可靠度模型所發展出來的軟體發行問題,對軟體開發者更是一項重要的議題。本文中我們採用一離散型軟體可靠度模型(discrete software reliability model)及一特定的成本模型(cost model)來探討最佳發行時間,並且有效控制其開發成本。


    Software reliability plays an important role for a high-quality and stable software. So reliability is a key feature during the development of a software. In the past three decades, many scholars have made many different models used to assess the reliability of software products. Especially, the method is widely used in the defense industry, medical science and aviation. Release problems based on a certain software reliability model, turns to be a popular issue. In this paper, we discuss a discrete software reliability model and a specific cost model to explore the optimal release time. We introduce an effective control costs for the development of software.

    第一章 序論……………………………………………………………1 第二章 文獻探討………………………………………………………3 2.1 軟體可度……………………………………………………3 2.2 成本模型……………………………………………………5 2.3 冪穩定模型…………………………………………………6 第三章 模型的假設與應用……………………………………………7 3.1 模型的概念…………………………………………………7 3.2 模型假設……………………………………………………8 第四章 最佳軟體發行問題……………………………………………11 4.1 最佳軟體發行………………………………………………11 4.2 成本模型基本假設…………………………………………11 4.3 成本模型的算法和特性……………………………………12 第五章 結論……………………………………………………………17 參考文獻 ………………………………………………………………18

    1、中文文獻
    [ 1 ] 曾耀德,「離散型式的軟體可靠度模型應用」,國立新竹教育大學應用數學系研究所,碩士學位論文,2010.12
    2、英文文獻
    [ 1 ] Boland, P. J. and Singh, H. (2003), A Birth-Process Approach to Moranda’s Geometric Software-Reliability Model, IEEE Transactions on Reliability, 52(2), 168-174.
    [ 2 ] Bolanda, P. J. and Chuiv, N. N. (2007), Optimal Times for Software Release When Repair Is Imperfect, Statistics and Probability Letters, 77(12), 1176-1184.
    [ 3 ] Cai, K. Y. (2000). Towards a conceptual framework of software run reliability modeling. Information Sciences, 126, 137-163.
    [ 4 ] Chang, Y. C. & Liu, C. T. (2007). A Reliability-Constrained Software Release Policy Using a Non-Gaussian Kalman Filter Model, Probability in the Eng. and Informational Sciences, 21(2), 301-314.
    [ 5 ] Chen, Y. & Singpurwalla, N. D. (1994). Anon-Gaussian Kalman filter model for tracking software reliability. Statistica Sinica, 4, 535-548.
    [ 6 ] Geol, A. L. & Okumoto, K. (1979). Time-Dependent Error-Detection Rate Model for Software Reliability and other Performance Measures. IEEE Transactions on Reliability, R-28(3), 206-211.
    [ 7 ] Grunwald, G. K. & Guttorp, P. and Raftery, A. E. (1993). Predicition Rules for Exponential Family State Space Models. J. R. Statist. Soc. B, 55(4), 937-943.
    [ 8 ] Huang, C.Y. (2005), Cost-Reliability-Optimal Release Policy for Software Reliability Models Incorporating Improvements in Testing Efficiency, J. Systems and Software, 77(2), 139-155.
    [ 9 ] Huang, C. Y. & Lyu, M. R. (2005), Optimal Release Time for Software Systems Considering Cost, Testing-Effort, and Test Efficiency, IEEE Transactions on Reliability, 54(4), 583-591.
    [10] Jelinski, Z. & Moranda, P. B. (1972). Software Reliability Research. Statistical Computer Performance Evaluation, Ed. W. Freiberger, Academic Press, New York, 465-497.
    [11] Langberg, N. & Singpurwalla, N. D. (1985). A Unification of Some Software Reliability Models. SIAM J. Scientific and Statistcal Computation, 6, 781-790.
    [12] Leung, Y. W. (1992), Optimum Software Release Time with a Given Cost Budget, J. Systems and Software, 17(3), 233-242.
    [13] Littlewood, B. & Verrall, J. L. (1973). A Bayesian Reliability Growth Model for Computer Software. J. Roy. Statist. Soc. Ser. C, 22(3), 332-346.
    [14] Littlewood, B. & Verrall, J. L. (1974). A Bayesian Reliability Model with a Stochastically Monotone Failure Rate. IEEE Transactions on Reliability. R-23(2), 108-114.
    [15] Morali, N. and Soyer, R. (2003), Optimal stopping in software testing. Naval Research Logistics (NRL), 50, 88–104.
    [16] Okumoto, K. & Goel, A. L. (1980). Optimum release time for software systems based on reliability and cost criteria. Journal of Systems and Software, 1, 315–318.
    [17] Pham, H. (1996), A Software Cost Model with Imperfect Debugging, Random Life Cycle and Penalty Cost, Int’l J. Systems Science, 27(5), 455-463.
    [18] Pham, H. and Zhang , X. (1999), A Software Cost Model with Warranty and Risk Costs, IEEE Transactions on Computers, 48(1), 71-75.
    [19] Smith, J. Q. (1979). A Generalization of the Bayesian Steady Forecasting Model. J. R. Statist. Soc. Ser. B, 41(3), 375-387.
    [20] Xie, M. & Hong, G. Y. (1999). Software release time determination based on unbounded NHPP Model. Computers and Industrial Engineering 37, 165–168.
    [21] Yamada, S., Narhisa, H. & Osaki, S. (1984). Optimum release policies for a software system with a scheduled software delivery time. International Journal of Systems and Science 15, 905–914.
    [22] Yamada, S. & Osaki, S. (1985). Cost-reliability optimal release policies for software systems. IEEE Transactions on Reliability, 34, 422–424.
    [23] Yamada, S., Kimura, M. & Toyota, T. (1999). Economic analysis of software release problems with warranty cost and reliability requirement. Reliability Engineering and System Safety, 66, 49–55.
    [24] Yang, B., Hu, H. & Jia, L. (2008). A Study of Uncertainty in Software Cost and Its Impact on Optimal Software Release Time. IEEE Transactions on Software Engineering, 34(6), 813-825.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE