研究生: |
林弘毅 Lin, Hong-Yi |
---|---|
論文名稱: |
適用於高速移動環境下之多重輸入輸出正交分頻多工基頻引擎設計 A MIMO-OFDM Baseband Engine for High Mobility Environment |
指導教授: |
馬席彬
Ma, Hsi-Pin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 94 |
中文關鍵詞: | 多重輸入輸出 、分頻正交多工 、空間頻率區塊編碼 、載波間干擾 、全球互通微波存取 |
外文關鍵詞: | MIMO, OFDM, SFBC, ICI, WiMAX |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,提出了一個為了高速移動環境而設計的多重輸入輸出正交多工系統。為了要對抗時變傳輸通道,在系統中使用了空間頻率區塊編碼(SFBC)理論來獲得額外的分集增益,而不需要額外的通訊資源。更甚者,一個低複雜度與具應用彈性的載波間干擾(ICI)消除模組也一併被提出於本論文中。
在高速移動環境中,都普勒效應造成了載波間干擾。載波間干擾破壞了子載波間的正交特性進而降低了系統效能。從另一個角度來看,通道矩陣不再是一個對角矩陣,且通道矩陣之非對角元素將導致載波間干擾,且需要被消除。在本系統中使用了一個線性近似的演算法來進行通道矩陣的估測。為了將載波間干擾消除模組應用於多重輸入輸出系統中,傳統的Zero Forcing(ZF)載波間補償演算法將被本論文提出的方法所取代來消除載波間干擾。要了避免逆矩陣的龐大運算量,我們使用了減法補償理論代替繁複的逆矩陣運算。而在運算複雜度方面,本論文提出的方法從O(N3)降低至O(N),且該模組可以彈性的運用於單一輸入輸出(SISO)與多重輸入輸出系統上。
本論文所提出之空間頻率區塊編碼正交多工基頻傳送接收機使用SystemC撰寫建構而成。接收機包含了時序同步模組,載波偏移估測補償模組,通道估測模組,具軟輸出(soft output)之空間頻率區塊編碼解碼器,與一低複雜度且具應用彈性之載波間干擾消除模組。為了要模擬高速移動環境,通道環境使用了由3GPP所提出的ITU-VA通道模型與傑克斯(Jakes)模型用來模擬高速移動環境。根據模擬的結果,我們所提出的空間頻率區塊編碼正交多工具載波間消除模組之系統在補償了載波間干擾之後,可以有效的對抗通道效應且獲得3 dB的增益於高速移動環境中。
In this thesis, a MIMO-OFDM system which is designed for high mobility environment is proposed. In order to fight with the time varying channel, the system uses space frequency block coding (SFBC) algorithm to obtain additional diversity gain without any extra communication resource. Furthermore, a flexible and low complexity intercarrier interference (ICI) mitigation module is also proposed in the thesis.
Doppler Effect causes ICI in high mobility environment. The ICI destroys orthogonality between subcarriers and degrades the system performance. In other words, the channel matrix is not a diagonal matrix anymore, non diagonal elements are the equivalent ICI factors and need to be eliminated. The channel matrix estimation uses a linear approximation algorithm. In order to adapt the module to MIMO systems, the proposed method substitutes for ZF ICI compensation algorithm to mitigate the ICI. So as to avoid calculating the inverse matrix, we take subtraction instead of inversion computation. The computational complexity can be reduced from O(N3) to O(N). The module can be applied not only in SISO systems but also in MIMO systems flexibly.
The proposed SFBC-OFDM baseband transceiver is constructed by SystemC language. The receiver includes a timing synchronization module, a carrier frequency offset estimation and compensation module, a channel estimation module, a SFBC decoder with soft output, and a flexible and low complexity ICI mitigation module. In order to model a high mobility environment, ITU-VA channel model, which is constituted by 3GPP, is employed for the simulation. Also, Jakes’ model is added to simulate the high mobility environment. According to the simulation result, the proposed SFBC-OFDM system with ICI mitigation obtains about 3dB gain after ICI compensation in the high mobility environment.
[1] 802.16-2004: IEEE Standard for Local and Metropolitan Area Networks Part 16:
Air Interface for Fixed Broadband Wireless Access Systems, IEEE 802.16-2004,
Oct. 2004.
[2] IEEE 802.16e-2005: IEEE Standard for Local and Metropolitan Area Networks
Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems
Amendment for Physical and Medium Access Control Layers for Combined Fixed
and Mobile Operation in Licensed Bands and Corrigendum 1, Dec. 2005.
[3] IEEE C802.16e-04/192: Preamble design to enhance MIMO support, Jun. 2004.
[Online]. Available http://www.ieee802.org/16/tge
[4] IEEE C802.16e-04/302: Preamble structure for STC/MIMO Zone, Aug. 2004. [Online].
Available http://www.ieee802.org/16/tge
[5] T. Eng, K. Ning, and L. B. Milstein, “Comparison of diversity combining techniques
for Rayleigh-fading channels,” IEEE Transactions on Communications, vol. 44, no.
9, pp. 1117-1129, Sep. 1996.
[6] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,”
IEEE Journal on Selected Areas in Communications, Vol 16, no. 8, pp.
1451-1458, Oct. 1998.
[7] D. Agrawal, V. Tarokh, A. Naguib, and N. Seshadri, “Space-time coded OFDM for
high data-rate wireless communication over wideband channels,” IEEE Vehicular
Technology Conference, Vol 3, pp. 2232-2236, May 1998.
[8] L. Li, X. Tao, P. Zhang, and H. Haas, “A Practical Space-Frequency Block Coded
OFDM Scheme for Fast Fading Broadband Channels,” The 13th IEEE International
Symposium on Personal, Indoor, and Mobile Radio Communications, vol. 1,
pp. 212-216, Sep. 2002.
[9] G. L. Stuber, J.R. Barry, S.W. McLaughlin, Y. Li, M. A. Ingram, and T. G. Pratt,
“Broadband MIMO-OFDM wireless communications,” in Proc. of IEEE, Vol 92,
no. 2, pp. 271-294, Feb. 2004.
[10] A. van Zelst and T. C. W. Schenk, “Implementation of a MIMO OFDM-based
wireless LAN system,” IEEE Transactions on Signal Processing, Vol. 52, no. 2, pp.
483-494, Feb. 2004.
[11] E. Zhou, X. Zhang, H. Zhao, andW.Wang, “Synchronization algorithms for MIMO
OFDMsystems,” IEEE Wireless Communications and Networking Conference, Vol.
1, pp. 18-22, Mar. 2005.
[12] Juha Heiskala and John Terry, OFDM Wireless LANs: A Theoretical and Practical
Guide. Sams, Dec. 2001.
[13] A. V. Oppenheim, and R. W. Schafer, Discrete-Time Signal Processing, 2nd ed.
New Jersey: Prentice Hall, 1989.
[14] J. -J van de Beek, O. Edfors, M. S. K. Wilson, and P. O. Borjesson, “On channel
estimation in OFDM systems,” in Proc. of IEEE Vehicular Technology Conference,
vol. 2, pp. 815-819, Jul. 1995.
[15] J. Rinne and M. Renfors, “Pilot spacing in orthogonal frequency division multiplexing
systems on practical channels,” IEEE Transactions on Consumer Electronics,
vol. 42, no. 4, pp. 959-962, Nov. 1996.
[16] B. Yang, P. Gong, S. Feng, H. Zhang, Y. Li, and W. Wu, “Monte Carlo probabilistic
data association ddetector for SFBC-VBLAST-OFDM system,” IEEE Wireless
Communications and Networking Conference, pp. 1502-1505, Mar. 2007.
[17] V. Fischer, A. Kurpriers, and D. Karsunke, “ICI Reduction Method for OFDM
Systems,” Institute for Communication Technology, Darmstadt University of Technology,
Germany.
[18] Y. Mostofi and D. Cox, “ICI Mitigation for Pilot-Aided OFDM Mobile Systems,”
IEEE Transactions on Wireless Communications, vol. 4, no. 2, pp. 765-774, Mar.
2005.
[19] G. W. Jeon, H. K. Chang, and S. Y. Cho, “An Equalization Technique for Orthogonal
Frequency-Division Multiplexing Systems in Time-Variant Multipath Channels,”
IEEE Transactions on Communications, vol. 47, no. 3, pp. 27-32, Jan. 1999.
[20] G. H. Golub and C. F. V. Loan, Matrix Computations, the Johns Hopkins University
Press, 1989.
[21] 3GPP TS 25.101, “Technical Specification Group Radio Access Network: User
Equipment (UE) radio transmission and reception (FDD) (Release 7),” v7.0.0, Jun.
2005.
[22] W. C. Jakes, Microwave Mobile Communications, New York: Wiley, 1974.
[23] G. L. Stuber, Principles of Mobile Communication, 2nd ed. K.A.P., 2001.
[24] G. E. P. Box and M. E. Muller, “A Note on the generation of random normal
deviates,” Ann. Math. Stat., vol 29, pp. 610-611, 1958.
[25] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. NJ: Prentice Hill, 2004.
[26] B. Vucetic and J. Yuan, Turbo Codes: Principles and Applications, Springer, 2000.
[27] F. Tufvesson and T. Maseng, “Pilot Assisted Channel Estimation for OFDM in
Mobile Cellular Systems,” IEEE Vehicular Technology Conference, vol 3, pp. 1639-
1643, May. 1997.
[28] X. Huang and H. C. Wu, “Robust and Efficient Intercarrier Interference Mitigation
for OFDM Systems in Time-Varying Fading Channels,” IEEE Vehicular Technology
Conference, vol. 56, pp. 2517-2528, Sep. 2007.
[29] D. Sreedhar and A. Chockalingam, “Detection of SFBC-OFDM signals in
Frequency- and Time-Selective MIMO Channels,” IEEE Wireless Communications
and Networking Conference, pp. 852-857, Mar. 2007.
[30] J. G. Proakis, Digital Communications, 2nd ed. New York: McGrawHill, 1989.