研究生: |
林毓錡 Lin, Yu-Ci |
---|---|
論文名稱: |
絕對線型磁阻位置編碼器之設計與分析 Design and Analysis of Linear Absolute Position Encoders |
指導教授: |
王培仁
Wang, Pei-Jen |
口試委員: |
茆尚勳
Mao, Shang-Xun 王勝清 Wang, Sheng-Ching |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 絕對線型編碼器 、絕對編碼 、編碼論 |
外文關鍵詞: | Absolute Linear Encoder, Absolute Encoding, De Bruijn Sequence |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前工業應用常見之編碼器結構可分為光學與磁性兩大類,光學編碼器雖在精度上高於磁性編碼器,但磁性編碼器較能承受較嚴峻的工作環境,且具有高剛性之機械結構,並保持良好解析精度,故在工業應用上,磁性編碼器仍具實務之競爭優勢,可為光學編碼器之互補應用產品。
本論文之研究目的針對磁性編碼器中感應式線型磁阻絕對位置感測器,進行設計原理及編碼方式之研究,採用電腦輔助工程分析軟體建立完整尺身及感應線圈磁路模型,透過電磁場暫態分析與渦電流感應分析來模擬線型感測器。研究並針對絕對位置之編碼理論,提出一套基於傳統De Bruijn序列衍生之具系統性且可實施法則進行絕對位置編碼,於滿足絕對型編碼不得重複、尺槽挖孔均勻及連續孔槽小於4位元三項限制條件,可解決因加工應力尺身變形及環境溫度造成不均勻膨脹形成之精度誤差問題。期望最終完成試製尺身與線圈讀頭,並驗證電磁場分析之設計數據,達成高精度感應式線型磁阻型絕對位置感測器之研製工作。
In the present, encoders employed for industrial applications are grouped based on two categories, namely optical and magnetic encoders. Although the optical are superior in precision to the magnetic ones, the latter could endure severe environment with highly rigid mechanical structure plus reasonable resolution and accuracy. Hence, the magnetic encoders are still highly competitive in harsh applications to complement the industrial applications niches of optical encoders.
The objective of this thesis is to study absolute position linear encoders based on the theory of inductive reluctance from both operational principle and encoding methods. To analyze the magnetic circuits, commercial CAE packages are employed for model of the scale and sensing coils based on transient and eddy-current modes. To improve the precision, a novel absolute position encoding theory on De Bruijn Sequences are proposed with the constraints on unique code sequence, uniformly distributed pockets and smaller than 4-bit consecutive pockets to implement the systematic absolute codes. Finally, the ultimate goal is to prototype the scale and sensing coils so that the CAE results can be verified together with the precision absolute inductive linear encoders being manufactured and tested.
[1]Bera, S. C., Sarkar, R., & Bhowmick, M. (2011), “Study of a modified differential inductance measurement circuit as position transducer of a power cylinder”, IEEE Trans. on Instrumentation and Measurement, 61(2), pp.530-538.
[2]Aschenbrenner, B., & Zagar, B. G. (2014), “Analysis and validation of a planar high-frequency contactless absolute inductive position sensor”, IEEE Trans. on Instrumentation and Measurement, 64(3), pp.768-775.
[3]“編碼器種類、原理與運動量測方法“, retrieve from September, 14, 2018, NATIONAL INSTRUMENT, http://www.ni.com/tutorial/7109/zht/表
[4]Fericean, S., & Droxler, R. (2007), “New non-contacting inductive analog proximity and inductive linear displacement sensors for industrial automation”, IEEE Sensors Journal, 7(11), pp.1538-1545.
[5]Norhisam, M., Norrimah, A., Wagiran, R., Sidek, R. M., Mariun, N., & Wakiwaka, H. (2008), “Consideration of theoretical equation for output voltage of linear displacement sensor using meander coil and pattern guide”, Sensors and Actuators A: Physical, 147(2), pp.470-473.
[6]George, B., Tan, Z., & Nihtianov, S. (2017), “Advances in capacitive, eddy current, and magnetic displacement sensors and corresponding interfaces”, IEEE Trans. on Industrial Electronics, 64(12), pp.9595-9607.
[7]Li, Y., Sheng, X., Lian, M., & Wang, Y. (2016), ”Influence of tilt angle on eddy current displacement measurement”, Nondestructive Testing and Evaluation, 31(4), pp.289-302.
[8]Theodoulidis, T. (2005), ”Analytical model for tilted coils in eddy-current nondestructive inspection”, IEEE Trans. on Magnetics, 41(9), pp.2447-2454.
[9]Vasiloiu, V. (2003). U.S. Patent No. 6,611,138. Washington, DC: U.S. Patent and Trademark Office.
[10]Matsumoto, T., & Ohno, K. (1996). U.S. Patent No. 5,563,408. Washington, DC: U.S. Patent and Trademark Office.
[11]Ohno, K., Hattori, T., & Matsumoto, T. (1991). U.S. Patent No. 5,068,529. Washington, DC: U.S. Patent and Trademark Office.
[12]Vasiloiu, V., & Eisschiel, H. (2015). U.S. Patent No. 9,013,192. Washington, DC: U.S. Patent and Trademark Office.
[13]洪麒富(2018)。”感應式磁阻型線性位置編碼器設計與分析”,國立清華大學動力機械工程學系碩士學位論文
[14]Nagase, T., & Higashi, K. (1992). U.S. Patent No. 5,117,105. Washington, DC: U.S. Patent and Trademark Office.
[15]Weiwen, L., Hui, Z., Wei, T., & Chunfeng, L. (2012). Research on combinatorial-code grating eddy-current absolute-position sensor. IEEE Transactions on Instrumentation and Measurement, 61(4), 1113-1124
[16]方奕博(2019)。”感應式磁阻型絕對位置編碼器設計與分析”,國立清華大學動力機械工程學系碩士學位論文
[17]RAMAMOORTHY, Ramesh. Reduce system costs with resolver-to-digital conversion implementation on C2000™ microcontrollers. Texas Instrument, 2014.
[18]“Absolute encoder based on the AMOSIN-Inductive Measuring Principle“, retrieve from Octobor, 30, 2018, AmoAutomatisierung, http://www.amogmbh.com/fileadmin/amo/pro-dukte/prospekt/Prospekt_ABSOLUTE.pdf