研究生: |
趙芷郁 Chao, Chih Yu |
---|---|
論文名稱: |
整合型微流體系統應用於胃幽門螺旋菌喹諾酮抗藥性檢測 An Integrated Microfluidic System for Diagnosis of the Resistance of Helicobacter pylori to Quinolone-Based Antibiotics |
指導教授: |
李國賓
Lee, Gwo Bin |
口試委員: |
楊瑞珍
陳致真 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 微流體 、抗藥性檢測 、胃幽門螺旋菌 、單核苷酸多態性的聚合酶鏈反應 、光學檢測 |
外文關鍵詞: | microfluidic, antibiotic resistance detection, Helicobacter pylori, SNP-PCR, optical detection |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胃幽門螺旋菌是一種感染胃黏膜之致病菌,胃幽門螺旋菌之感染被認為和許多腸胃道疾病的發生密切相關。臨床上使用三合一藥物組合做為胃幽門螺旋菌之治療方法,此藥物組合包含兩種不同之抗生素以及一質子幫浦抑制劑;近來有些菌株被發現對喹諾酮類抗生素具有抗藥性。常規之細菌抗藥性檢測方法為Epsilometer test 或Kirby-Bauer disk diffusion susceptibility test 此法通常在初次治療失敗時被用來確認感染菌株是否為抗藥性菌株。Epsilometer test 以及Kirby-Bauer disk diffusion susceptibility test 需較為冗長之培養時間,並且檢驗結果易受到採檢狀況與檢體運送過程所影響。因此,為減少此採檢流程對檢驗結果之影響與縮短檢驗時間,除了觀察抗藥性表現之外,分子診斷技術也被應用於檢測胃幽門螺旋菌之抗藥性。喹諾酮類抗生素之抗藥性的產生導因於促旋酶A 亞單位上的單個氨基酸被取代,影響藥物的結合能力,因而對喹諾酮類抗生素產生抗藥性,此單個氨基酸被取代是由於促旋酶A 亞單位基因上之點突變所導致。聚合酶鏈反應和隨後的基因定序檢測是常規的分子診斷技術來確認抗生素抗性。單核苷酸多態性的聚合酶鏈反應是一種新的分子診斷方法,由一對特異性引物,以區分正常基因與點突變之基因而不需後續的定序檢測。然而,此診斷過程需要昂貴、笨重的裝置以及專業訓練的人員。在這項研究中,我們開發一整合微流體系統,結合單核苷酸多態性的聚合酶鏈反應技術檢測胃幽門螺旋菌對於喹諾酮類抗生素之抗藥性。微流體系統可以統整整體實驗過程包括樣品前處理、單核苷酸多態性的聚合酶鏈反應、以及結果檢測。除此之外,一片晶片上包含一個以上的檢測反應槽,可同時檢測一個以上的樣本,整個檢測流程可在一個小時內完成。使用此開發的微流體檢測系統的檢測極限為100顆胃幽門螺旋菌,102顆單核苷酸多態性(突變)胃幽門螺旋菌。這個整合之檢測技術平台能快速地診斷胃幽門螺旋菌的感染以及其抗藥性,更加貼近臨床的使用需求。
Helicobacter pylori (H. pylori) is a kind of bacteria which can colonize on the stomach mucosa. Previous ntudies showed that it is closely associated with gastric diseases. H. pylori could be cured by using the triple therapy, which is composed of two antibiotics and a proton pump inhibitor and it has been comment used to eradicate H. pylori in routine practice. However, some strains of H. pylori were found which could express resistance to one kind of the antibiotics: quinolones. The Epsilometer test and Kirby-Bauer disk diffusion susceptibility test are the two presently used methods to confirm the resistance to antibiotics after treatment. However, these methods are relatively time-consuming and the culture result is strongly affected by the procedure of sample collection, transportation and storage. Therefore, a new method is in great need to prevent the artificial influence of sample collection, transportation and storage and shorten the experimental time as well. To detect the resistance of quinolones, besides phenotypic tests, some molecular diagnostic methods were reported recently. Some point mutations in the gyrase gene were found to express a resistance to quinolones. A mutation resulting in the change of a single amino acid substitution at any one or both of the two different sites in the gyrase A subunit affects the ability of the drug in binding to it. Polymerase chain reaction (PCR) and subsequent detection are conventional molecular diagnostic techniques for confirmation of the resistance to antibiotics. Single nucleotide polymorphism polymerase chain reaction (SNP-PCR) is a relatively new method to distinguish the single point mutations from a normal gene by applying a pair of specific primers without using complicated sequencing processes. Nevertheless, this diagnostic process requires relatively expensive and bulky apparatus and is labor-intensive. In this study, an integrated microfluidic system was developed to detect the resistance to quinolones in H. pylori by using the molecular diagnostic technique of SNP-PCR. The microfluidic system could combine the entire experimental procedure including sample pre-treatment, PCR/SNP-PCR, and optical detection on a single chip/system. Besides, more than one reaction chambers were designed on a single chip to detect multiple samples. The process could be performed within 1 hour with detection limits of 100, 102, and 102 bacterial cells for the detection of H. pylori and two different single nucleotide polymorphism site (mutation site) strains. Being accompanied by the advantages of microfluidic systems, the study fits clinical needs and may be promising for fast diagnosis of H. pylori and its drug-resistance.
1. B. J. Marshall and J. R. Warren, “Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration”, Lancet, 1984, 8396, 1311-1315.
2. P. Ghiara, M. Marchetti, M. J. Blaser, M. K. Tummuru, T. L. Cover, E. D. Segal, L. S. Tompkins and R. Rappuoli, “Role of the Helicobacter pylori virulence factors vacuolating cytotoxin, CagA, and urease in a mouse model of disease”, Infection and Immunity, 1995, 63, 4154-4160.
3. E. J. Kuipers, J. C. Thijs and H. P. Festen, “The prevalence of Helicobacter pylori in peptic ulcer disease”, Alimentary Pharmacology and Therapeutics, 1995, 9, 59-69.
4. T. L. Cover and M. J. Blaser,“Helicobacter pylori and gastroduodenal disease”, Annual Review of Medicine, 1992, 43, 135-145.
5. N. Uemura, S. Okamoto, S. Yamamoto, N. Matsumura, S. Yamaguchi, M. Yamakido, K. Taniyama, N. Sasaki and R. J. Schlemper, “Helicobacter pylori infection and the development of gastric cancer”, The New England Journal of Medicine, 2001, 345, 784-789.
6. A. C. Wotherspoon, C. Doglioni , T.C. Diss, L. Pan, A. Moschini , M. de Boni and P. G. Isaacson, “Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori”, Lancet, 1993, 342, 575-577.
7. R. P. H. Logan, P. A. Gummett, J. J. Misiewicz, Q. N. Karim, M. M. Walker and J. H. Baron, “One week eradication regimen for Helicobacter pylori”, Lancet, 1991, 338, 1249-1252.
8. R. J. Adamek, S. Suerbaum, B. Pfaffenbach and W. Opferkuch, “Antibiotic resistance and antibiotic sensitivity based treatment in Helicobacter pylori infection: advantages and outcome”, The American Journal of Gastroenterology, 1998,93, 386-389.
9. T. Nishizawa, H. Suzuki, and T. Hibi, “Quinolone-based third-line therapy for Helicobacter pylori eradication”, Journal of Clinical Biochemistry and Nutrition, 2009, 44, 119-124..
10. K. H. Hung, B. S. Sheu, W. L. Chang, H. M. Wu, C. C. Liu and J. J. Wu, “Prevalence of primary fluoroquinolone resistance among clinical isolates of Helicobacter pylori at a university hospital in southern Taiwan”, Helicobacter, 2008, 14, 61-65.
11. S. A. Ho, J. A. Hoyle, F. A. Lewis, A. D. Secker, D. Cross, N. P. Mapstone, M. F. Dixon, J. I. Wyatt, D. S. Tompkins, and G. R. Taylor, “Direct polymerase chain reaction test for detection of Helicobacter pylori in humans and animals”, Journal of Clinical Microbiology, 1991, 29, 2543-2549.
12. N. P. Mapstone, D. A. F. Lynch, F. A. Lewis, A. T. R. Axon, D. S. Tompkins, M. F. Dixon, and P Quirke, “Identification of Helicobacter pyloni DNA in the mouths and stomachs of patients with gastritis Identification of Helicobacter pylori DNA in the mouths and stomachs of patients with gastritis using PCR”, Journal of Clinical Pathology, 1993, 46, 540-543
13. N. Akopyanz, N. O. Bukanov, T.U. Westblom1, S. Kresovich, and D. E. Berg, “DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting” Nucleic Acids Research, 1992, 20, 5137-5142.
14. A. Occhialini, M. Urdaci, F. Doucet-Populaire, C. M. Bébéar, H. Lamouliatte, and F. Mégraud, “Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes”, Antimicrobial Agents and Chemotherapy, 1997, 41, 2724-2728.
15. T. Nishizawa, H. Suzuki, A. Umezawa, H. Muraoka and E. Iwasaki, “Rapid detection of point mutations conferring resistance to fluoroquinolone in gyrA of Helicobacter pylori by allele-specific PCR”, Journal of Clinical Microbiology, 2007, 45, 303-305.
16. A. Nakamura, T. Furuta, N. Shirai, M. Sugimoto, M. Kajimura, and Y. Soya, “Determination of mutations of the 23S rRNA gene of Helicobacter pylori by allele specific primer-polymerase chain reaction method”, Journal of Gastroenterology and Hepatology, 2007, 22, 1057-1063.
17. N. Maluf “An introduction to microelectromechanical systems engineering”, Measurement Science and Technology, 2002, 13.
18. F.E.H. Tay, “Microfluidics and Bio-MEMS applications”, Microsystems, 2002. 10.
19. D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, “Micro total analysis systems. 1. introduction, theory, and technology”, Analytical Chemistry, 2002, 74, 2623-2636
20. N. Makris, R. Crott, C. A. Fallone, M. Bardou, and A. Barkun, “Cost-effectiveness of routine endoscopic biopsies for Helicobacter pylori detection in patients with non-ulcer dyspepsia”, Gastrointestinal Endoscopy. 2003, 58, 14-22.
21. H. Cohen and L. Laine, “Endoscopic methods for the diagnosis of Helicobacter pylori”, Alimentary Pharmacology and Therapeutics, 1997, 11, 3-9.
22. A. W. Bauer, W. M. Kirby, J. C. Sherris and M. Turck, “Antibiotic susceptibility testing by a standardized single disk method”, American Journal of Clinical Pathology, 1966, 45, 493-496.
23. Y. Glupczynski, M. Labbé, W. Hansen, F. Crokaert and E. Yourassowsky, “Evaluation of the E test for quantitative antimicrobial susceptibility testing of Helicobacter pylori”, Journal of Clinical Microbiology, 1991, 29, 2072-2075.
24. J. H. Wang, L. Cheng, C. H. Wang, W. S. Ling, S. W. Wang and G. B. Lee, “An integrated chip capable of performing sample pretreatment and nucleic acid amplification for HIV-1 detection”, Biosensors and Bioelectronics, 2013, 41, 484-491.
25. S. V. Pereira, G. A. Messina and J. Raba, “Integrated microfluidic magnetic immunosensor for quantification of human serum IgG antibodies to Helicobacter pylori”, Journal of Chromatography B, 2010, 878, 253-257.
26. C. M. Chang, W. H. Chang, C. H. Wang, J. H. Wang, J. D. Maid, and G. B. Lee, “Nucleic acid amplification using microfluidic systems”, Lab on a Chip, 2013, 13, 1225-1242.
27. L. J. Chien, J. H. Wang, T. M. Hsieh, P. H. Chen, P. J. Chen, D. S. Lee, C. H. Luo, G. B. Lee, “A micro circulating PCR chip using a suction-type membrane for fluidic transport. ”, Biomed. Microdevices, 2009, 11, 359-367.
28. W. H. Chang, S.Y. Yang, C. H. Wang, M. A. Tsai, P. C. Wang, T. Y. Chen, S. C. Chen, and G. B. Lee, “ Rapid isolation and detection of aquaculture pathogens in an integrated microfluidic system using loop-mediated isothermal amplification”, Sensors and Actuators B: Chemical, 2013, 180, 96-106.
29. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface
wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma
treatment and correlation with bond strength”, J Microelectromech Syst., 2005, 14, 590-597.
30. J. D. Simala-Grant, D. Zopf, and D. E. Taylor, “Antibiotic susceptibility of attached and free-floating Helocobacter pylori”, Antimicrobial Chemotherapy, 2001, 47, 555-563.
31. L. DemL, M. Aigner, J. Decker, A. Eckhardt, C. Schütz, P. R. Mittl, S. Barabas, S. Denk, G. Knoll, N. Lehn, and W. Schneider-Brachert, “Characterization of the Helicobacter pylori cysteine-rich protein A as a T-helper cell type 1 polarizing agent”, Infection and Immunity, 2005, 73, 4732-4742.
32. J. M. Kim, J. S. Kim, N. Kim, H. C. Jung, and I. S. Song, “Distribution of fluoroquinolone MICs in Helicobacter pylori strains from Korean patients”, Journal of Antimicrobial Chemotherapy, 2005, 56, 965-967.
33. J. M. Liou, C. Y. Chang, W. H. Sheng, Y. C. Wang, M. J. Chen, Y. C. Lee, H. W. Hung, H. C., S. C. Chang, M. S. Wu, and J. T. Lin, “Genotypic resistance in Helicobacter pylori strains correlates with susceptibility test and treatment outcomes after levofloxacinand clarithromycin-based therapies”, Antimicrobial Agents and Chemotherapy, 2011, 55, 1123-1129.
34. Y.-N. Yang, S.-K. Hsiung and G.-B. Lee, “A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure”, Microfluidics and Nanofluidics, 2008, 6, 823-833.
35. C. H. Tai, Y. C. Tsai, C. H. Wang, T. S. Ho, C. P. Chang, and G. B. Lee, “An integrated microfluidic platform for rapid detection and subtyping of influenza viruses from clinical samples”, Microfluidics and Nanofluidics, 2014, 16, 501-512.
36. N. J. Parham, F. J. Picard, R. Peytavi, M. Gagnon, G. Seyrig, P. A. Gagne´, M. Boissinot, and M. G. Bergeron, “Specific magnetic bead-based capture of genomic DNA from clinical samples: application to the detection of group B Streptococci in vaginal/anal swabs”, Clinical Chemistry, 2007, 53, 1570-1576.
37. M. L. Ribeiro, C. C. Ecclissato, R. G. Mattos, S. Mendonca, and J. Pedrazzoli,“ Quantitative real-time PCR for the clinical detection of Helicobacter pylori”, Genetics and Molecular Biology, 2007, 30, 431-434.
38. M. Mikulaa, A. Dzwoneka, K. J. Krynickab, and J. Ostrowskia,“Quantitative detection for low levels of Helicobacter pylori infection in experimentally infected mice by real-time PCR”, Journal of Microbiological Methods, 2003, 55, 351-359.
39. Y. Matsubara, K. Fujii, P. Rinaldo, and K. Narisawa,“A fluorogenic allele-specific amplification method for DNA-based screening for inherited metabolic disorders”, Acta Paediatrica, 1999, 432, 65-68.
40. E. Garza-González, G. I. Perez-Perez, H. J. Jaldonado-Garza, and F. J. Bosques-Padilla, “A review of Helicobacter pylori diagnosis, treatment, and methods to detect eradication”, World Journal of Gastroenterology, 2014, 20, 1438-1449.