簡易檢索 / 詳目顯示

研究生: 張維中
Chang, Wei-Chung
論文名稱: Stereochemical Process for Carbon-Carbon Bond Formation on Dihydropyran Ring System - Ferrier Rearrangement and Wittig Rearrangement
指導教授: 磯部稔
Minoru Isobe
汪炳鈞
Uang, Biing-Jiun
口試委員: 廖俊臣
Liao, Chun-Chen
洪上程
Hung, Shang-Cheng
葉名倉
Yeh, Ming-Chang
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
中文關鍵詞: 費里爾重排反應威悌重排反應碳碳鍵合成
外文關鍵詞: Ferrier rearrangement, Wittig rearrangement, Carbon-carbon bond formation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含了兩個題目: (一) 鈷媒介-費里爾類型重組反應合成掌性炔基環己酮化合物
    利用糖苷化反應,在酸性條件下,以乙醯化葡萄烯糖和(三甲基甲硅烷基)乙炔為起始物來合成1-炔基醣類化合物。八羰基二鈷與炔基形成的已炔基鈷錯化合物可以用來穩定炔丙基碳正離子 (尼古拉斯碳正離子),將此一特性運用於我們所合成的1-炔基-5-烯基醣類化合物,來進行費里爾類型重組反應得到炔基環己酮。從實驗結果發現2號碳位置保護基的大小對於立體選擇性有很大的影響,而此效應為鄰位交叉效應,實驗結果引起我們對於反應過程中立體化學的興趣。而近期所發表利用理論計算來推測炔基鈷錯化合物反應機構的文獻,更是令我們想對於此反應機構有更深入的了解。
    (二) 研究丙炔基醚二氫吡進行喃威悌重排反應的立體化學
    二號位置和四號位置具有丙炔基醚的二氫吡喃,利用[2,3]-威悌重排反應得到四號位置和二號位置具有高立體選擇性的碳碳鍵。反應機構:1) 對前手性為R或是S的氫進行去質子化、2) 具有立體異構的碳負離子進行平衡、3) 反應過渡態時分子構造進行翻轉、4) 進行[2,3]或[1,2]- 威悌重排反應、然後5) 終止反應。反應步驟第二步,對具有立體異構的碳負離子進行平衡,再某些為協同反應的[2,3]-威悌重排例子中是可以被省略的。而在某些例子中,[2,3]或[1,2]- 威悌重排反應是經由烯丙基的碳氧鍵斷裂而不是協同反應機構。而這一特殊反應機構,進一步利用密度泛函理論計算來加以證實。


    This thesis consists of two topics: I. Cobalt-Assisted Ferrier-Type Rearrangement to Construct Chiral Alkynyl Cyclohexanones Functionalized 1-C-alkynyl sugars are prepared through so called C-glycosidation from a D-glucose derivative, 2-acetoxy-glucal triacetate with TMS-acetylene under Lewis acid condition. Dicobalt complexes of these C-alkynyl products, sugar acetylenes possess a special chemical character to stabilize the propargylic carbenium cations (known as Nicholas cation) at the anomeric position. This cation could promote the Ferrier-type rearrangement through the above propargyl vinyl cyclic cationic intermediates to afford alkynyl cyclohexanones after decomplexation. High stereoselectivity resulted from the suitably oriented steric interaction between the C-2 O-protecting group and the alkynyl substituents due to gauche effect. Such an effect prompted us to focus on stereochemical course of this rearrangement particularly found in the dihydropyran ring system. II. Stereochemical Course of Wittig Rearrangement of Dihydropyran Allyl Propargyl Ethers [2,3]-Wittig rearrangements of sugar-derived dihydropyran allyl propargyl ethers located at the 2- or 4-position have been studied as a means for extending the carbon chains to the 4- or 2-position with chirality transfer. The stereochemical courses of these reactions depend on the following factors: (1) deprotonation of propargylic pro-R or pro-S-H, (2) equilibration of the lithiated stereogenic carbanion, (3) conformational inversion at the transition state, (4) [2,3]- or [1,2]-Wittig-rearrangement, and (5) workup. The equilibration step-(2) may be skipped depending on the orientational change for the step-(3) leading to a concerted [2,3]-Wittig process. In some cases, a new mechanism occurs leading to allyl-C-O bond-cleavage before either the [2,3]- or [1,2]-Wittig rearrangement. The stereochemical courses of the rearrangements are compared among the lithiated reactants for determining the reaction pathways. This unique mechanism in the poly-oxygenated dihydropyran ring system was further supported by DFT calculations. Indeed, some examples are reported of the [2,3]-process going through a non-concerted process in 2-steps due to strong chelation effects.

    Contents 中文摘要……………………………..…………………………………..I ABSTRACT……...……………………………………………………...II ACKNOWLEDGMENTS………………..……………………………III CONTENTS………...………………………………………………….IV LIST OF FIGURES.……….....…………………………………….....VI LIST OF TABLES…………..……………………………….…...….VIII LIST OF SCHEMES…………………………………………………..IX LIST OF ABBREVIATIONS…………………….………………....XIV Chapter 1 Introduction of Sugar Acetylene-Dicobalthexacarbonyl Complex in Organic Synthesis……………………………………..……………1 Chapter 2 Coalt-Assisted Ferrier-Type Rearrangement to Construct Chiral Alkynyl Cyclohexanones 2.1 Synthesis of optically active substituted-alkyne vinyl ethers………….....21 2.2 Cobalt-assisted Ferrier-type rearrangement……………………………...23 2.3 Plausible mechanism of cobalt-assisted Ferrier-type rearrangement….....33 2.4 Conclusion………………………………………………………………..40 Chapter 3 Experimental and References (Cobalt-Assisted Ferrier-Type Rearrangement to Construct Chiral Alkynyl Cyclohexanones) 3.1 General Information……………………………………………………...41 3.2 Experimental Procedure and Characterization Data…………………….42 Chapter 4 Introduction of [2,3]-Wittig Rearrangement in Total Synthesis of Natural Products…...…………………………………………..........................92 Chapter 5 Stereochemical Course of Wittig Rearrangement of Dihydropyran Allyl Propargyl Ethers 5.1 Preparation of DHP allyl propargyl ethers……………………………...113 5.2 Wittig rearrangements, substrates and products………………………...115 5.3 Structural assignment of the rearrangement products……………...…...122 5.4 Results and discussion………………………… ………………………127 5.5 DFT calculation………………………………………………………....130 5.6 Mechanism……………………………………………………………...136 5.7 Summary………………………………………………………………..146 Chapter 6 Experimental and References (Stereochemical Course of Wittig Rearrangement of Dihydropyran Allyl Propargyl Ethers) 6.1 Experimental procedure and characterization data…….………….…....147 REFERENCES…….…………………………………………………………...162 APPENDICES…...……………………………………………………………...166 X-ray diffraction of cpmpound 127………………………………………………...167

    References:
    [1] M. Isobe, M. Kitamura, T. Goto, Tetrahedron Lett. 1979, 20, 3465-3468.
    [2] a) Y. Ichikawa, M. Isobe, D.-L. Bai, T. Goto, Tetrahedron 1987, 43, 4737-4748; b) Y. Ichikawa, M. Isobe, T. Goto, Tetrahedron 1987, 43, 4749-4758; c) Y. Ichikawa, M. Isobe, H. Masaki, T. Kawai, T. Goto, Tetrahedron 1987, 43, 4759-4766; d) M. Isobe, Y. Ichikawa, D.-L. Bai, H. Masaki, T. Goto, Tetrahedron 1987, 43, 4767-4776; e) K. Tsuboi, Y. Ichikawa, M. Isobe, Synlett 1997, 1997, 713-715.
    [3] a) Y. Jiang, Y. Ichikawa, M. Isobe, Synlett 1995, 1995, 285-288; b) Y. Jiang, M. Isobe, Tetrahedron 1996, 52, 2877-2892; c) J. Jiang, Y. Ichikawa, M. Isobe, Tetrahedron 1997, 53, 5103-5122; d) K. Tsuboi, Y. Ichikawa, Y. Jiang, A. Naganawa, M. Isobe, Tetrahedron 1997, 53, 5123-5142; e) M. Isobe, M. Kurono, K. Tsuboi, A. Takai, Chem. Asian J. 2007, 2, 377-385.
    [4] a) T. Nishikawa, M. Asai, N. Ohyabu, N. Yamamoto, M. Isobe, Angew. Chem. Int. Ed. 1999, 38, 3081-3084; b) T. Nishikawa, M. Asai, M. Isobe, J. Am. Chem. Soc. 2002, 124, 7847-7852; c) T. Nishikawa, D. Urabe, K. Yoshida, T. Iwabuchi, M. Asai, M. Isobe, Org. Lett. 2002, 4, 2679-2682; d) N. Ohyabu, T. Nishikawa, M. Isobe, J. Am. Chem. Soc. 2003, 125, 8798-8805; e) T. Nishikawa, D. Urabe, M. Isobe, Angew. Chem. Int. Ed. 2004, 43, 4782-4785.
    [5] a) S. Hosokawa, M. Isobe, Synlett 1995, 1995, 1179-1180; b) S. Hosokawa, M. Isobe, Synlett 1996, 1996, 351-352; c) S. Hosokawa, M. Isobe, J. Org. Chem. 1999, 64, 37-48; d) R. Saeeng, M. Isobe, Tetrahedron Lett. 1999, 40, 1911-1914; e) T.-Z. Liu, J.-M. Li, M. Isobe, Tetrahedron 2000, 56, 10209-10219; f) S. Takai, M. Isobe, Org. Lett. 2002, 4, 1183-1186; g) T. Baba, G. Huang, M. Isobe, Tetrahedron 2003, 59, 6851-6872; h) A. Hamajima, M. Isobe, Angew. Chem. Int. Ed. 2009, 48, 2941-2945.
    [6] M. Isobe, N. Fukami, T. Goto, Chem. Lett. 1985, 14, 71-74.
    [7] a) S. Danishefsky, J. F. Kerwin, J. Org. Chem. 1982, 47, 3803-3805; b) T. Tsukiyama, M. Isobe, Tetrahedron Lett. 1992, 33, 7911-7914.
    [8] R. J. Ferrier, W. G. Overend, A. E. Ryan, J. Chem. Soc. 1962, 3667-3670.
    [9] a) S. Tanaka, T. Tsukiyama, M. Isobe, Tetrahedron Lett. 1993, 34, 5757-5760; b) S. Tanaka, M. Isobe, Tetrahedron 1994, 50, 5633-5644.
    [10] A. Takai, K. Tsuboi, M. Koyasu, M. Isobe, Biochem. J. 2000, 350, 81-88.
    [11] M. Isobe, S. Takai, J. Organomet. Chem. 1999, 589, 122-125.
    [12] K. M. Nicholas, R. Pettit, J. Organomet. Chem. 1972, 44, C21-C24.
    [13] R. J. Ferrier, J. Chem. Soc., Perkin Trans. 1 1979, 1455-1458.
    [14] a) M. Isobe, C. Yenjai, S. Tanaka, Synlett 1994, 1994, 916-918; b) C. Yenjai, M. Isobe, Tetrahedron 1998, 54, 2509-2520.
    [15] a) S. Tanaka, M. Isobe, Tetrahedron Lett. 1994, 35, 7801-7804; b) S. Tanaka, N. Tatsuta, O. Yamashita, M. Isobe, Tetrahedron 1994, 50, 12883-12894; c) S. Tanaka, M. Isobe, Synthesis 1995, 1995, 859-862.
    [16] a) K. Kira, M. Isobe, Tetrahedron Lett. 2000, 41, 5951-5955; b) K. Kira, M. Isobe, Tetrahedron Lett. 2001, 42, 2821-2824; c) K. Kira, A. Hamajima, M. Isobe, Tetrahedron 2002, 58, 1875-1888; d) S. Takai, N. Sawada, M. Isobe, J. Org. Chem. 2003, 68, 3225-3231.
    [17] A. Hamajima, M. Isobe, Org. Lett. 2006, 8, 1205-1208.
    [18] K.-W. Tsao, C.-Y. Cheng, M. Isobe, Org. Lett. 2012, 14, 5274-5277.
    [19] a) D. R. Carbery, S. Reignier, J. W. Myatt, N. D. Miller, J. P. A. Harrity, Angew. Chem. Int. Ed. 2002, 41, 2584-2587; b) D. R. Carbery, N. D. Miller, J. P. A. Harrity, Chem. Commun. 2002, 1546-1547; c) D. R. Carbery, S. Reignier, N. D. Miller, H. Adams, J. P. A. Harrity, J. Org. Chem. 2003, 68, 4392-4399; d) S. J. Meek, E. H. Demont, J. P. A. Harrity, Tetrahedron Lett. 2007, 48, 4165-4168.
    [20] a) S. J. Meek, F. Pradaux, E. H. Demont, J. P. A. Harrity, Org. Lett. 2006, 8, 5597-5600; b) S. J. Meek, F. Pradaux, E. H. Demont, J. P. A. Harrity, J. Org. Chem. 2007, 72, 3467-3477.
    [21] S. J. Meek, F. Pradaux, D. R. Carbery, E. H. Demont, J. P. A. Harrity, J. Org. Chem. 2005, 70, 10046-10056.
    [22] A. Deleuze, C. Menozzi, M. Sollogoub, P. Sinaÿ, Angew. Chem. Int. Ed. 2004, 43, 6680-6683.
    [23] W. B. Motherwell, M. J. Tozer, B. C. Ross, J. Chem. Soc., Chem. Commun. 1989, 1437-1439.
    [24] a) R. Saeeng, U. Sirion, P. Sahakitpichan, M. Isobe, Tetrahedron Lett. 2003, 44, 6211-6215; b) R. Saeeng, M. Isobe, Chem. Lett. 2006, 35, 552-557.
    [25] a) S. L. Schreiber, M. T. Klimas, T. Sammakia, J. Am. Chem. Soc. 1987, 109, 5749-5759; b) H. El Hafa, C. Cordier, M. Gruselle, Y. Besace, G. Jaouen, M. J. McGlinchey, Organometallics 1994, 13, 5149-5156; c) K. L. Malisza, L. Girard, D. W. Hughes, J. F. Britten, M. J. McGlinchey, Organometallics 1995, 14, 4676-4684.
    [26] A. Pfletschinger, W. Koch, H.-G. Schmalz, Chem. Eur. J. 2001, 7, 5325-5332.
    [27] a) Y. Tahara, J. Pharm. Soc. Jpn. 1909, 29, 587; b) Y. Tahara, Biochem. Z. 1911, 30, 255.
    [28] A. Yokoo, Proc. Jpn. Acad. 1952, 28, 200.
    [29] a) T. Goto, Y. Kishi, S. Takahashi, Y. Hirata, Tetrahedron 1965, 21, 2059-2088; b) K. Tsuda, S. Ikuma, M. Kawamura, R. Tachikawa, K. Sakai, C. Tamura, O. Amakasu, Chem. Pharm. Bull. 1964, 12, 1357-1374; c) R. B. Woodward, Pure. Appl. Chem. 1964, 9, 49-74.
    [30] T. Nishikawa, M. Isobe, The Chemical Record 2013, 13, 286-302.
    [31] a) B. A. Mendelsohn, M. A. Ciufolini, Org. Lett. 2009, 11, 4736-4739; b) D. F. Taber, P. H. Storck, J. Org. Chem. 2003, 68, 7768-7771; c) T. Itoh, M. Watanabe, T. Fukuyama, Synlett 2002, 2002, 1323-1325; d) B. Noya, M. D. Paredes, L. Ozores, R. Alonso, J. Org. Chem. 2000, 65, 5960-5968.
    [32] a) Y. Kishi, M. Aratani, T. Fukuyama, F. Nakatsubo, T. Goto, S. Inoue, H. Tanino, S. Sugiura, H. Kakoi, J. Am. Chem. Soc. 1972, 94, 9217-9219; b) Y. Kishi, T. Fukuyama, M. Aratani, F. Nakatsubo, T. Goto, S. Inoue, H. Tanino, S. Sugiura, H. Kakoi, J. Am. Chem. Soc. 1972, 94, 9219-9221.
    [33] M. Yotsu-Yamashita, Y. Abe, Y. Kudo, R. Ritson-Williams, V. Paul, K. Konoki, Y. Cho, M. Adachi, T. Imazu, T. Nishikawa, M. Isobe, Marine Drugs 2013, 11, 2799-2813.
    [34] D. Urabe, T. Nishikawa , M. Isobe, Chem. Asian J. 2006, 1, 125-135.
    [35] M. Isobe, T. Nishikawa, S. Pikul, T. Goto, Tetrahedron Lett. 1987, 28, 6485-6488.
    [36] a) M. Isobe, Y. Fukuda, T. Nishikawa, P. Chabert, T. Kawai, T. Goto, Tetrahedron Lett. 1990, 31, 3327-3330; b) T. Nishikawa, M. Asai, N. Ohyabu, N. Yamamoto, Y. Fukuda, M. Isobe, Tetrahedron 2001, 57, 3875-3883.
    [37] a) M. Bamba, T. Nishikawa, M. Isobe, Tetrahedron Lett. 1996, 37, 8199-8202; b) M. Bamba, T. Nishikawa, M. Isobe, Synlett 1998, 1998, 371-372; c) M. Bamba, T. Nishikawa, M. Isobe, Tetrahedron 1998, 54, 6639-6650.
    [38] G. M. Rubottom, J. M. Gruber, G. M. Mong, J. Org. Chem. 1976, 41, 1673-1674.
    [39] T. Nakai, K. Mikami, Chem. Rev. 1986, 86, 885-902.
    [40] J. A. Marshall, in Comprehensive Organic Synthesis (Ed.: B. M. T. Fleming), Pergamon, Oxford, 1991, pp. 975-1014.
    [41] L. E. Overman, J. Am. Chem. Soc. 1976, 98, 2901-2910.
    [42] J. A. Marshall, Comprehensive Organic Synthesis 1991, 3, 975-1014.
    [43] a) K. Mikami, K.-I. Azuma, T. Nakai, Tetrahedron 1984, 40, 2303-2308; b) K. Mikami, T. Maeda, T. Nakai, Tetrahedron Lett. 1986, 27, 4189-4190.
    [44] K. Mikami, Y. Kimura, N. Kishi, T. Nakai, J. Org. Chem. 1983, 48, 279-281.
    [45] Y. D. Wu, K. N. Houk, J. A. Marshall, J. Org. Chem. 1990, 55, 1421-1423.
    [46] K. Mikami, K. Kawamoto, T. Nakai, Tetrahedron Lett. 1985, 26, 5799-5802.
    [47] a) K. Mikami, K. Kawamoto, T. Nakai, Chem. Lett. 1985, 14, 1719-1722; b) E.-i. Nakai, T. Nakai, Tetrahedron Lett. 1988, 29, 4587-4590.
    [48] a) P. D. P. Shapland, E. J. Thomas, Tetrahedron 2009, 65, 4201-4211; b) G. McGowan, E. J. Thomas, Org. Biomol. Chem. 2009, 7, 2576-2590.
    [49] a) S. Fushimi, S. Nishikawa, A. Shimazu, H. Seto, J. Antibiot. 1989, 42, 1019-1025; b) S. Fushimi, K. Furihata, H. Seto, J. Antibiot. 1989, 42, 1026-1036.
    [50] V. Druais, M. J. Hall, C. Corsi, S. V. Wendeborn, C. Meyer, J. Cossy, Tetrahedron 2010, 66, 6358-6375.
    [51] V. Druais, M. J. Hall, C. Corsi, S. V. Wendeborn, C. Meyer, J. Cossy, Org. Lett. 2009, 11, 935-938.
    [52] M. Isobe, Y. Ichikawa, Y. Funabashi, S. Mio, T. Goto, Tetrahedron 1986, 42, 2863-2872.
    [53] H. Fujii, K. Oshima, K. Utimoto, Chem. Lett. 1991, 20, 1847-1848.
    [54] J. L. Cohen, A. R. Chamberlin, Tetrahedron Lett. 2007, 48, 2533-2536.
    [55] Nicole M. A. J. Kriek, Elise van d. Hout, P. Kelly, Krista E. v. Meijgaarden, A. Geluk, Tom H. M. Ottenhoff, Gijs A. van d. Marel, M. Overhand, Jacques H. v. Boom, A. Rob P. M. Valentijn, Herman S. Overkleeft, Eur. J. Org. Chem. 2003, 2003, 2418-2427.
    [56] a) U. M. Ganter, T. Kashima, M. Sheves, F. Siebert, J. Am. Chem. Soc. 1991, 113, 4092-4096; b) I. I. Ohtani, K. Hotta, Y. Ichikawa, M. Isobe, Chem. Lett. 1995, 24, 513-514.
    [57] a) F. A. L. Anet, F. Levendecker, J. Am. Chem. Soc. 1973, 95, 156-159; b) A. C. Huitric, B. R. Lowry, A. E. Weber, J. E. Nemorin, S. Sternhell, J. Org. Chem. 1975, 40, 965-966.
    [58] F. Haeffner, K. N. Houk, S. M. Schulze, J. K. Lee, J. Org. Chem. 2003, 68, 2310-2316.
    [59] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford, CT, USA, 2009.
    [60] a) J. C. Sheldon, M. S. Taylor, J. H. Bowie, S. Dua, C. S. Brian Chia, P. C. H. Eichinger, J. Chem. Soc. Perkin Trans. II 1999, 333-340; b) S. Strunk, M. Schlosser, Eur. J. Org. Chem. 2006, 2006, 4393-4397.
    [61] P. Antoniotti, G. Tonachini, J. Org. Chem. 1998, 63, 9756-9762.
    [62] T. J. Blackburn, M. Helliwell, M. J. Kilner, A. T. L. Lee, E. J. Thomas, Tetrahedron Lett. 2009, 50, 3550-3554.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE