研究生: |
張昱翔 Yu-Hsiang Chang |
---|---|
論文名稱: |
藉由隨機系統模型辨識轉錄因子中的協同作用 Identification of Cooperativity among Transcription Factors via Stochastic System Model |
指導教授: |
陳博現
Bor-Sen Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 轉錄因子間的協同作用 、動態模型 、基因調控網路 、細胞週期 |
外文關鍵詞: | cooperativity among TFs, dynamic model, gene regulatory network, cell cycle |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現在已經知道轉錄因子(transcription factor)之間會產生協同作用來調控基因。對全基因的免疫蛋白沈澱反應實驗 (genome-wide location data) 可以幫助我們瞭解個別的轉錄因子如何去其標的基因(target gene)。但是,轉錄因子之間的協調作用如何去調控其標的基因卻需要更進一步的研究。在本篇論文中,為了探索基因表現出來的動態特性,我們使用隨機系統模型和最大相似度方法來整合全基因免疫蛋白沈澱反應實驗資料和基因表現資料,並藉由生物系統的角度來發現在細胞週期時轉錄因子之間的協同作用是如何去調控其標的基因。
隨著隨機動態模型的建立,根據轉錄因子間協同作用的調控能力大小以及其出現的次數,我們定義一種新的協同作用量測方式。將我們的方法應用在酵母菌的細胞週期上時,我們成功地發現許多所預測的協同作用已被之前實驗所驗證,而其他吾人所預測的協同作用可以作為未來生物實驗的研究方向。除此之外,我們的方法也提供數化轉錄因子對其標的基因的調控能力的能力。最後我們可以藉由吾人所列出轉錄因子之中協同作用的關係來建立出一個轉錄因子的協同作用網路圖。
Transcription factors (TFs) are known to co-occur with cooperativity to regulate genes. Genome-wide location data can help us understand how an individual TF regulates its target gene, but how TFs cooperate to regulate their target genes still needs further study. In this study, to explore dynamic property of gene expression profiles, an approach based on the stochastic system model and the maximum likelihood estimation method is proposed to integrate genome-wide location data and expression profiles to reveal how TFs cooperate to regulate their target genes from the systems biological perspective in the yeast cell cycle.
Based on a stochastic dynamic model, a new measurement of cooperativity among TFs is developed according to the regulatory abilities of cooperative TF pairs and the number of their occurrences. Our method is applied to the yeast cell cycle to successfully reveal many cooperative TF pairs confirmed by previous experiments, and other TF pairs mentioned potentially with cooperativity in our results can provide a direction for future experiments. Furthermore, our method also provides quantitative regulatory ability of the individual TF and the cooperativity of TFs to their target genes. Finally, a cooperative TF network of cell cycle is constructed based on significant cooperative TF pairs.
1. Auffray, C., Imbeaud, S., Roux-Rouquie, M., Hood, L. (2003) From functional genomics to systems biology: concepts and practices. C R Biol., 326, 879-892.
2. Banerjee, N., Zhang, M.Q. Identifying cooperativity among transcription factors controlling the cell cycle in yeast. (2003) Nucleic Acids Res., 31, 7024-7031.
3. Chen, H.C., Lee, H.C., Lin, T.Y., Li, W.H., Chen, B.S. (2004) Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics, 20, 1914-1927.
4. Costanzo, M., Schub, O., Andrews, B. (2003) G1 transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1. Mol. Cell Biol., 23, 5064-5077.
5. Davidson, E.H., McClay, D.R., Hood, L. (2003) Regulatory gene networks and the properties of the developmental process. Proc. Natl. Acad. Sci. USA, 100, 1475-1480.
6. Dirick, L., Moll, T., Auer, H., Nasmyth, K. (1992) A central role for SWI6 in modulating cell cycle Start-specific transcription in yeast. Nature, 357, 508-13.
7. Doolin, M.T., Johnson, A.L., Johnston, L.H., Butler, G. (2001) Overlapping and distinct roles of the duplicated yeast transcription factors Ace2p and Swi5p. Mol. Microbiol., 40, 422-432.
8. Faires Burden (1998) Numerical Methods, Page 87-91, 2nd edition, Brooks/Cole Publishing Company.
9. Futcher, B. (2002) Transcriptional regulatory networks and the yeast cell cycle. Curr. Opin. Cell Biol., 14, 676-683.
10. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell, 11, 4241-4257.
11. Goldbeter, A. and Koshland, DE Jr. (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA, 78, 6840-6844.
12. Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford, T.W., Hannett, N.M., Tagne, J.B., Reynolds, D.B., Yoo, J., Jennings, E.G., Zeitlinger, J., Pokholok, D.K., Kellis, M., Rolfe, P.A., Takusagawa, K.T., Lander, E.S., Gifford, D.K., Fraenkel, E., Young, R.A. (2004), Transcriptional regulatory code of a eukaryotic genome, Nature, 431, 99-104.
13. Hasty, J., McMillen. D., Collins, J.J. (2002) Engineered gene circuits. Nature, 420, 224-230.
14. Ho, Y., Costanzo, M., Moore, L., Kobayashi, R., Andrews, B.J. (1999) Regulation of transcription at the Saccharomyces cerevisiae start transition by Stb1, a Swi6-binding protein. Mol. Cell Biol., 19, 5267-5278.
15. Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher D, Mann, M., Hogue, C.W., Figeys, D., Tyers, M. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature., 415, 180-183.
16. Hood, L. (2003) Systems biology: integrating technology, biology, and computation. Mech Ageing Dev., 124, 9-16.
17. Iyer, V.R., Horak, C.E., Scafe, C.S., Botstein, D., Snyder, M., and Brown, P.O. (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature, 409, 533-538.
18. Johansson, R. (1993), System modeling and identification, Page 113-119, Prentice-Hall.
19. Kato, M., Hata, N., Banerjee, N., Futcher, B., Zhang, M.Q. (2004) Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol., 5, R56.
20. Koch, C., Moll, T., Neuberg, M., Ahorn, H., Nasmyth, K. (1993) A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science, 261, 1551-1557l
21. Kumar, R., Reynolds, D.M., Shevchenko, A., Shevchenko, A., Goldstone, S.D., Dalton, S. (2000) Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr. Biol., 10, 896-906.
22. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298, 799-804.
23. Loy, C.J., Lydall, D., Surana, U. (1999) NDD1, a high-dosage suppressor of cdc28-1N, is essential for expression of a subset of late-S-phase-specific genes in Saccharomyces cerevisiae. Mol. Cell Biol., 19, 3312-3327.
24. Manke, T., Bringas, R., Vingron, M. (2003) Correlating protein-DNA and protein-protein interaction networks. J. Mol. Biol., 333, 75-85.
25. McBride, H.J., Yu, Y., Stillman, D.J. (1999) Distinct regions of the Swi5 and Ace2 transcription factors are required for specific gene activation. J. Biol. Chem., 274, 21029-21036.
26. Mestl, T., Plahte, E. and Omholt, S.W. (1995) A mathematical framework for describing and analyzing gene regulatory networks. J. Theor. Biol., 176, 291-300.
27. Olson, K.A., Nelson, C., Tai, G., Hung, W., Yong, C., Astell, C., Sadowski, I. (2000) Two regulators of Ste12p inhibit pheromone-responsive transcription by separate mechanisms. Mol. Cell Biol., 20, 4199-4209.
28. Pilpel, Y., Sudarsanam, P., Church, G.M. Identifying regulatory networks by combinatorial analysis of promoter elements. (2001) Nat. Genet., 29, 153-159.
29. Primig, M., Sockanathan, S., Auer, H., Nasmyth, K. (1992) Anatomy of a transcription factor important for the start of the cell cycle in Saccharomyces cerevisiae. Nature, 358, 593-597.
30. Simon, I., Barnett, J., Hannett, N., Harbison, C.T., Rinaldi, N.J., Volkert, T.L., Wyrick, J.J., Zeitlinger, J., Gifford, D.K., Jaakkola, T.S. and Young, R.A. (2001) Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle. Cell, 106, 697-708.
31. Spector, M.S., Raff, A., DeSilva, H., Lee, K., Osley, M.A. (1997) Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol. Cell Biol., 17, 545-552.
32. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.Q., Bostein, D. and Futcher, B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cererisiae by microarray hybridization. Mol. Biol. Cell, 9, 3273-3297.
33. Tegner, J., Yeung, M.K., Hasty, J., Collins, J.J. (2003) Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci. USA., 100, 5944-5949.
34. Zhu, G., Spellman, P.T., Volpe, T., Brown, P.O., Botstein, D., Davis, T.N., Futcher, B. (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature, 406, 90-94.