簡易檢索 / 詳目顯示

研究生: 鄭可寯
Zheng, Ke-Jun
論文名稱: 在低軌道衛星網路中設計有效率的群播鏈路換手演算法
An Efficient Link Handover Algorithm for Multicast in LEO Satellite Networks
指導教授: 許健平
Sheu, Jang-Ping
口試委員: 陳裕賢
Chen, Yuh-Shyan
邱德泉
Chiu, Te-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 43
中文關鍵詞: 衛星網路多播路由動態規劃鏈路換手
外文關鍵詞: satellite networking, multicast routing, dynamic programming, link handovers
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用衛星網路是一個新興的方式以提供無處不在的網路服務。 然而,衛
    星的移動會使得傳統網路的路由策略無法直接應用在衛星網路中。 這篇論
    文探討了在衛星網路中多播路由所面臨的挑戰,衛星的移動使地面使用者
    的服務衛星隨著時間不斷改變。 當在衛星網路中執行多播時,服務衛星的
    改變會產生大量的鏈路控制訊號。 最小化控制訊號負擔是一個 NP-困難問
    題, 於是我們提出了一個基於動態規劃的演算法 DMTS 以在多項式時間的
    複雜度下求得次佳解。 此外,我們提出了一個多播樹生成演算法 LMBBSP
    以在不平衡的網路中避免鏈路壅塞。 模擬的結果顯示所提出的策略在鏈路
    換手數量以及拒絕的請求數量比起比較基準都可以得到更好的結果。


    Satellite networks are a promising way to provide ubiquitous accessibility of
    network service. However, due to the mobility of satellites, the traditional routing
    scheme cannot be adopted to the constellation directly. This thesis studies the challenge of multicast routing on satellite networks. The mobility of satellites makes
    the serving satellites of ground users change with time. When performing a multicast on the constellation, the changing of serving satellites leads to a large amount
    of link handover control messages. To minimize the control message overhead
    is NP-hard. Therefore, a dynamic programming-based algorithm called Dynamic
    Multicast Tree Selection (DMTS) is then proposed to find the sub-optimal result
    with polynomial time complexity. DMTS reduces the link handovers of the dynamic multicast tree algorithms. Besides, we proposed a tree generation algorithm
    called LMBBSP with DMTS to avoid link congestion in unbalanced network load.
    The simulation results show that our proposed schemes outperform the baselines
    in aspects of link handovers and request rejection rate.

    摘要 i Abstract ii 1 Introduction 1 2 Related Work 5 3 System Model and Problem Formulation 9 3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Time Slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Tree Candidate of DMTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.1 Shortest Path Tree (SPT) . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.2 Maximum Bottleneck Bandwidth Shortest Path . . . . . . . . . . . . . 18 4 Dynamic Multicast Tree Selection (DMTS) 21 5 Performance Evaluation 29 5.1 The Effect of Tolerance Factor α . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Link Handovers and Request Rejections . . . . . . . . . . . . . . . . . . . . . 32 5.3 Performance with Different Network Load . . . . . . . . . . . . . . . . . . . . 34 5.4 Performance with Large Network Size . . . . . . . . . . . . . . . . . . . . . . 37 6 Conclusion 39 References 41

    [1] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M. Montoya, J. C. M.
    Duncan, D. Spano, S. Chatzinotas, S. Kisseleff, J. Querol, L. Lei, T. X. Vu, and G. Goussetis, “Satellite communications in the new space era: A survey and future challenges,”
    IEEE Communications Surveys Tutorials, vol. 23, no. 1, pp. 70–109, 2021.
    [2] B. Kempton and A. Riedl, “Network simulator for large low earth orbit satellite networks,”
    in IEEE International Conference on Communications (ICC), pp. 1–6, 2021.
    [3] O. Kodheli, A. Guidotti, and A. Vanelli-Coralli, “Integration of satellites in 5G through
    LEO constellations,” in IEEE Global Communications Conference (GLOBECOM), pp. 1–
    6, 2017.
    [4] M. Abo-Zeed, J. B. Din, I. Shayea, and M. Ergen, “Survey on land mobile satellite system:
    Challenges and future research trends,” IEEE Access, vol. 7, pp. 137291–137304, 2019.
    [5] Z. Qu, Y. Cheng, and G. Zhang, “Global aggregated traffic model for LEO satellite constellation IoT network,” in International Symposium on Advanced Electrical and Communication Technologies (ISAECT), pp. 1–6, 2019.
    [6] M. Centenaro, C. E. Costa, F. Granelli, C. Sacchi, and L. Vangelista, “A survey on technologies, standards and open challenges in satellite IoT,” IEEE Communications Surveys
    Tutorials, vol. 23, no. 3, pp. 1693–1720, 2021.
    [7] M. Handley, “Delay is not an option: Low latency routing in space,” in Proceedings of the
    17th ACM Workshop on Hot Topics in Networks, p. 85–91, 2018.
    [8] F. Shen, H. Yu, and X. Zhang, “HATS:a handover optimized routing algorithm for the
    low earth orbit (LEO) satellite network,” in International Conference on Information,
    Communications and Signal Processing (ICICS), pp. 1–5, 2009.
    [9] M. Chen and Z. Yang, “A convergent method of reducing packet loss during rerouting in
    multicast tree based on label forwarding,” in Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 1592–1596, 2019.
    [10] A. Sundarrajan and S. Ramasubramanian, “Fast rerouting for IP multicast under single
    node failures,” in IEEE Global Communications Conference (GLOBECOM), pp. 2076–
    2081, 2013.
    [11] J. Gu and Y. Zhang, “A multi-constrained multicast routing algorithm based on mobile
    agent for ad hoc network,” in International Conference on Communications and Mobile
    Computing, vol. 1, pp. 483–487, 2010.
    [12] J.-J. Kuo, S.-H. Chiang, S.-H. Shen, D.-N. Yang, and W.-T. Chen, “Dynamic multicast
    traffic engineering with efficient rerouting for software-defined networks,” in IEEE Conference on Computer Communications (INFOCOM), pp. 793–801, 2019.
    [13] H. Liu, F. Sun, Z. Yang, and F. Long, “A novel distributed routing algorithm for LEO
    satellite network,” in International Conference on Industrial Control and Electronics Engineering, pp. 37–40, 2012.
    [14] C. Duan, J. Feng, H. Chang, B. Song, and Z. Xu, “A novel handover control strategy combined with multi-hop routing in LEO satellite networks,” in IEEE International Parallel
    and Distributed Processing Symposium Workshops (IPDPSW), pp. 845–851, 2018.
    [15] Y. Liu, B. Wu, and B. Wang, “An improved satellites routing handover strategy,” in
    International Conference on Estimation, Detection and Information Fusion (ICEDIF),
    pp. 290–292, 2015.
    [16] R. Zhang, F. Liu, and Y. Ding, “An energy optimization-based fast rerouting method for
    micro-nano satellite formation,” in IEEE International Conference on Electronics Technology (ICET), pp. 131–136, 2019.
    [17] H. Li and X. Gu, “Research of routing and handover QoS performance for ISL networks
    in LEO/MEO satellite communication systems,” in International Symposium on Systems
    and Control in Aerospace and Astronautics, pp. 7 pp.–570, 2006.
    [18] E. Ekici, I. Akyildiz, and M. Bender, “A multicast routing algorithm for LEO satellite IP
    networks,” IEEE/ACM Transactions on Networking, vol. 10, no. 2, pp. 183–192, 2002.
    [19] C. Yuan and X. Wang, “A multicast routing algorithm for GEO/LEO satellite IP networks,” in IEEE International Conference on Dependable, Autonomic and Secure Computing, pp. 595–599, 2013.
    [20] Y. Ma, J. Su, C. Wu, X. Wang, W. Yu, B. Zhao, and X. Hu, “A source-based share-tree like
    multicast routing in satellite constellation networks,” in FTRA International Conference
    on Mobile, Ubiquitous, and Intelligent Computing, pp. 240–245, 2012.
    [21] M. Hu, J. Li, C. Cai, T. Deng, W. Xu, and Y. Dong, “Software defined multicast for largescale multi-layer LEO satellite networks,” IEEE Transactions on Network and Service
    Management, pp. 1–1, 2022.
    [22] E. Ekici, I. Akyildiz, and M. Bender, “Datagram routing algorithm for LEO satellite networks,” in Proceedings IEEE INFOCOM 2000, vol. 2, pp. 500–508 vol.2, 2000.
    [23] Y. Liu and C. Liu, “Distributed dynamic routing algorithm for satellite constellation,” in
    International Conference on Communication Software and Networks (ICCSN), pp. 300–
    304, 2018.
    [24] P. Xie, Z.-S. Zhang, and J. Zhang, “Inter-satellite routing algorithm by searching the
    global neighborhood for dynamic inter-satellite networks,” in International Conference
    on Advanced Computational Intelligence (ICACI), pp. 673–678, 2018.
    [25] F. Fang, R. Zhang, M. Li, and X. Li, “Research on multi-orbit hybrid satellite network routing algorithm based on detection and self-learning,” in International Conference on Instrumentation Measurement, Computer, Communication and Control (IMCCC), pp. 575–580, 2018.
    [26] R. Hemmecke, M. Koppe, J. Lee, and R. Weismantel, “Nonlinear integer programming,” ¨
    50 Years of Integer Programming 1958-2008, p. 561–618, Nov 2009.
    [27] L. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggregation in wireless
    sensor networks,” in Proceedings 22nd International Conference on Distributed Computing Systems Workshops, pp. 575–578, 2002.
    [28] J.-P. Sheu, C.-W. Chang, and Y.-C. Chang, “Efficient multicast algorithms for scalable
    video coding in software-defined networking,” in IEEE Annual International Symposium
    on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 2089–2093, 2015.
    [29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
    Third Edition. The MIT Press, 3rd ed., 2009.
    [30] H. Xu, D. Li, M. Liu, G. Han, W. Huang, and C. Xu, “A hybrid routing algorithm in
    terrestrial-satellite integrated network,” in IEEE/CIC International Conference on Communications in China (ICCC), pp. 90–95, 2020.
    [31] O. Popescu, “Power budgets for cubesat radios to support ground communications and
    inter-satellite links,” IEEE Access, vol. 5, pp. 12618–12625, 2017.

    QR CODE