簡易檢索 / 詳目顯示

研究生: 沈冠妤
Shen, Kuan-Yu
論文名稱: 基於文意理解的幾何題目自動解題系統
An Automatic Geometry Problem Solving System based on Semantic Understanding
指導教授: 許聞廉
Hsu, Wen-Lian
口試委員: 張詠淳
Chang, Yung-Chun
戴敏育
Day, Min-Yuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 49
中文關鍵詞: 數學應用問題自動解題幾何問題台灣小學數學
外文關鍵詞: MWP
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然語言處理中的問答問題是一項極具挑戰性的任務。這類型的任務需要先了解使用者的文字輸入,再生成正確的文字輸出,過程包含了文意理解和文章生成任務。其中,數學應用問題解題更是需要具備使用公式做計算的能力。本論文建立了一台灣小學幾何問題的解題演算法,可以回答以自然語言寫成的數學題目。我們的作法包含三部分:意圖分類、讀題,以及解題。我們先透過文本分類,判斷題目中每句話的意圖。再根據意圖從句子中擷取資訊,建立容納這些資訊的表單。最後,根據表單的資訊,運用公式進行解題。除了解題之外,我們的解題器還提供計算過程和題型分類,以便讓使用者更容易理解題目。

    本篇論文貢獻有三:一,利用語法規則和語意依存分析取代需要大量資料的深度學習模型,大幅減少對訓練資料數目的依賴性;二,建立了一台灣小學幾何問題資料集,包含題目敘述、正確解答,以及意圖標註;三,在極少的訓練資料下,完成了一個數學應用問題解題器,並達到了 81.7% 的解題正確率。


    In Natural Language Processing, question answering is a challenging task. Such task requires understanding of user input, and generating the appropriate response, which involves natural language understanding and text generation. Among all types of questions, solving math word problems (MWP) requires utilizing formulas for calculating the correct answer. In this thesis, we propose an algorithm specifically designed to solve mathematical word problems (MWP) in the domain of elementary-level geometry in Taiwan. Our approach consists of three parts: intent classification, problem comprehension, and problem solving. We determine the intent of each sentence in the question by text classification. Then, based on the intents, we extract information from the sentences and construct a form to accommodate this information. Finally, we utilize formulas to solve the input problem based on the information in the forms. In addition to problem solving, our problem solver also provides computation process and problem type classification, facilitating users to better understand the questions.

    The contribution of this thesis is in three-fold: First, we leverage regular expressions as a replacement for data-intensive deep learning models, which significantly reduce the reliance on a large scale datasets. Second, we establish a dataset for Taiwanese elementary school geometry problems, including problem descriptions, the correct answers, and annotations of intent for each sentence. Third, with minimal training data, we have developed a MWP solver that achieves an accuracy of 81.7%.

    誌謝 摘要 i Abstract ii 1 緒論 1 1.1 研究目的與動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究主題 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究貢獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 相關研究 5 2.1 現存資料集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 數學應用問題之資料集 . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 幾何數學題目之資料集 . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 數學應用問題 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 幾何問題理解與作答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 領域知識取得 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 方法 15 3.1 斷句 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 意圖判斷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 短句排序調整 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 讀題演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 解題演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5.1 求指定特徵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5.2 變量後求值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5.3 單位面積內求數量 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5.4 繞形狀外圍求長 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5.5 水位上升與下降 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5.6 多圖形相配合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6 題型分類模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 實驗結果與討論 25 4.1 TC-GEO965 資料集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.1 資料搜集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.2 資料標註 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.3 統計數據 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.4 與相關資料集之比較 . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 數學公式彙整 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 實驗設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.1 規則撰寫 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.2 題型分類模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.4 結果與比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5 錯誤分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 結論與未來展望 35 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 A 附錄 A:意圖判斷規則 37 B 附錄 B:各意圖所建立的表單及其資訊 41 C 附錄 C:表單資訊之提取規則 43 D 附錄 D:公式彙整 45 參考文獻 47

    參考文獻
    [1] Y. Wang, X. Liu, and S. Shi, “Deep neural solver for math word problems,” in Proceedings
    of the 2017 Conference on Empirical Methods in Natural Language Processing, (Copen-
    hagen, Denmark), pp. 845–854, Association for Computational Linguistics, Sept. 2017.
    [2] M. Seo, H. Hajishirzi, A. Farhadi, O. Etzioni, and C. Malcolm, “Solving geometry prob-
    lems: Combining text and diagram interpretation,” pp. 1466–1476, 01 2015.
    [3] E. A. Feigenbaum and J. Feldman, Computers and Thought. McGraw-Hill, 1963.
    [4] OpenAI, “Chatgpt: Large-scale language model.” https://openai.com, 2021.
    [5] N. R. M. S. J. K. P. D. A. N. P. S. G. S. A. A. S. A. A. H.-V. G. K. T. H. R. C. A. R.
    D. M. Z. J. W. C. W. C. H. M. C. E. S. M. L. S. G. B. C. J. C. C. B. S. M. A. R. I. S.
    D. A. Tom B. Brown, Benjamin Mann, “Language models are few-shot learners,” arXiv
    preprint arXiv:2005.14165, 2020.
    [6] 國泰世華銀行, “人工智能阿發.” https://www.cathaybk.com.tw/ChatWeb/chat?
    traceType=branchId&traceValue=Chatweb, 2023.
    [7] N. Kushman, Y. Artzi, L. Zettlemoyer, and R. Barzilay, “Learning to automatically solve
    algebra word problems,” in Proceedings of the 52nd Annual Meeting of the Association
    for Computational Linguistics (Volume 1: Long Papers), (Baltimore, Maryland), pp. 271–
    281, Association for Computational Linguistics, jun 2014.
    [8] R. Koncel-Kedziorski, S. Roy, A. Amini, N. Kushman, and H. Hajishirzi, “MAWPS: A
    math word problem repository,” in Proceedings of the 2016 Conference of the North
    American Chapter of the Association for Computational Linguistics: Human Language
    Technologies, (San Diego, California), pp. 1152–1157, Association for Computational
    Linguistics, June 2016.
    [9] S.-h. Tsai, C.-C. Liang, H.-M. Wang, and K.-Y. Su, “Sequence to general tree: Knowledge-
    guided geometry word problem solving,” in Proceedings of the 59th Annual Meeting of
    the Association for Computational Linguistics and the 11th International Joint Confer-
    ence on Natural Language Processing (Volume 2: Short Papers), (Online), pp. 964–972,
    Association for Computational Linguistics, aug. 2021.
    [10] M. Sachan and E. Xing, “Learning to solve geometry problems from natural language
    demonstrations in textbooks,” in Proceedings of the 6th Joint Conference on Lexical and
    Computational Semantics (*SEM 2017), (Vancouver, Canada), pp. 251–261, Association
    for Computational Linguistics, Aug. 2017.
    [11] P. Lu, R. Gong, S. Jiang, L. Qiu, S. Huang, X. Liang, and S.-C. Zhu, “Inter-gps: In-
    terpretable geometry problem solving with formal language and symbolic reasoning,” in
    The Joint Conference of the 59th Annual Meeting of the Association for Computational
    Linguistics and the 11th International Joint Conference on Natural Language Processing
    (ACL-IJCNLP 2021), 2021.
    [12] L. Wang, D. Zhang, J. Zhang, X. Xu, L. Gao, B. T. Dai, and H. Shen, “Template-based
    math word problem solvers with recursive neural networks,” Proceedings of the AAAI
    Conference on Artificial Intelligence, vol. 33, pp. 7144–7151, 07 2019.
    [13] L. Wang, Y. Wang, D. Cai, D. Zhang, and X. Liu, “Translating a math word problem to a
    expression tree,” in Proceedings of the 2018 Conference on Empirical Methods in Natu-
    ral Language Processing, (Brussels, Belgium), pp. 1064–1069, Association for Computa-
    tional Linguistics, Oct.-Nov. 2018.
    [14] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. Dauphin, “Convolutional sequence to
    sequence learning,” 05 2017.
    [15] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
    and I. Polosukhin, “Attention is all you need,” in NIPS, 2017.
    [16] W. jet Wang, C.-J. Chen, C. yu Lai, C. ming Lee, and H. hung Lin, “以「語言學理論」
    為基礎用「非機率模型」建立的數學應用問題作答系統,” in Proceedings of the
    32nd Conference on Computational Linguistics and Speech Processing, ROCLING 2020,
    (Taipei, Taiwan), The Association for Computational Linguistics and Chinese Language
    Processing (ACLCLP), Sep. 2020.
    [17] M. J. Seo, H. Hajishirzi, A. Farhadi, and O. Etzioni, “Diagram understanding in geometry
    questions,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, Jun.
    2014.
    [18] 林嵩智, “理解幾何文字題之學習環境,” Master’s thesis, 國立雲林科技大學, Yunlin,
    Taiwan, June 2001.
    [19] W.-L. Hsu, S.-H. Wu, and Y.-S. Chen, “Event identification based on the information map-
    infomap,” in 2001 IEEE International Conference on Systems, Man and Cybernetics. e-
    Systems and e-Man for Cybernetics in Cyberspace, vol. 3, pp. 1661–1666 vol.3, IEEE,
    2001.
    [20] 許勝程,
    基於認知知識及使用者主導策略的幾何文字題理解學習環境. PhD thesis,
    國立雲林科技大學, Yunlin, Taiwan, June 2006.
    [21] H.-J. Dai, C.-K. Wang, N.-W. Chang, M.-S. Huang, J. Jonnagaddala, F.-D. Wang, and W.-
    L. Hsu, “Statistical principle-based approach for recognizing and normalizing micrornas
    described in scientific literature,” Database, vol. 2019, 2019.
    [22] W.-L. Hsu, “Statistical pattern generation for information extraction,” Feb 2020.
    [23] P.-T. Lai, M.-S. Huang, T.-H. Yang, W.-L. Hsu, and R. T.-H. Tsai, “Statistical principle-
    based approach for gene and protein related object recognition,” Journal of cheminformat-
    ics, vol. 10, no. 1, pp. 1–9, 2018.
    [24] 張乃文,
    基於統計準則式方法偵測生醫文獻中的生物關聯. PhD thesis, 國立臺灣大
    學生醫電子與資訊學研究所, 2020.
    [25] 許聞廉, “一個全新的自然語言模型 principle-based approach,” in IR Workshop 2021,
    2021.
    [26] 洪千惠, “英語會話教學對話系統,” Master’s thesis, 國立清華大學, Hsinchu, Taiwan,
    July 2022.
    [27] X. Chen, Z. Liu, M. Sun, and Y. Liu, “K-bert: Enabling language representation with
    knowledge graph,” in Proceedings of the 2019 Conference on Empirical Methods in Nat-
    ural Language Processing and the 9th International Joint Conference on Natural Language
    Processing (EMNLP-IJCNLP), pp. 241–250, 2019.
    [28] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirec-
    tional transformers for language understanding,” in Proceedings of the 2019 Conference
    of the North American Chapter of the Association for Computational Linguistics: Human
    Language Technologies, Volume 1 (Long and Short Papers), (Minneapolis, Minnesota),
    pp. 4171–4186, Association for Computational Linguistics, June 2019.
    [29] S.-H. Tsai, C.-C. Liang, H.-M. Wang, and K.-Y. Su, “Mining commonsense and do-
    main knowledge from math word problems,” in Proceedings of the 33rd Conference on
    Computational Linguistics and Speech Processing (ROCLING 2021), (Taoyuan, Taiwan),
    pp. 111–117, The Association for Computational Linguistics and Chinese Language Pro-
    cessing (ACLCLP), Oct. 2021.
    [30] Y. Sun, S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang, “Ernie: Enhanced repre-
    sentation through knowledge integration,” in Proceedings of the 57th Annual Meeting of
    the Association for Computational Linguistics, pp. 1441–1451, 2019.
    [31] O. Contributors, “Open chinese convert 開放中文轉換.” https://github.com/BYVoid/
    OpenCC. Accessed on 2023/7/4.
    [32] W. Che, Y. Feng, L. Qin, and T. Liu, “N-LTP: An open-source neural language technology
    platform for Chinese,” in Proceedings of the 2021 Conference on Empirical Methods in
    Natural Language Processing: System Demonstrations, (Online and Punta Cana, Domini-
    can Republic), pp. 42–49, Association for Computational Linguistics, Nov. 2021.
    [33] L. Zhou, S. Dai, and L. Chen, “Learn to solve algebra word problems using quadratic
    programming,” in Proceedings of the 2015 Conference on Empirical Methods in Natural
    Language Processing, pp. 817–822, Association for Computational Linguistics, 01 2015.

    QR CODE