研究生: |
張晏誠 Chang, Yen-Cheng |
---|---|
論文名稱: |
溶液相銅奈米線之合成與其於透明導電電極上的應用 The Synthesis of Copper Nanowire in Solution Phase and their Application in Transparent Conductive Electrode |
指導教授: | 段興宇 |
口試委員: |
段興宇
湯學成 曾院介 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 溶液相 、奈米線 、透明導電電極 |
外文關鍵詞: | solution phase, nanowire, transparent conductive electrode |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究中,細、長且分散良好的銅奈米線可藉由晶種促進生長機制於有機相中得到。銅奈米線平均長度約為37.7μm,平均直徑約為46nm,其長寬比高達820為相當高的一個值。對奈米線導電膜而言,奈米線長度越長有利於片電阻的下降。我們以簡單、易操作且低成本的噴塗塗佈(spray coating)製備透明導電電極且詳細的研究他們的電性與穿透度的表現。在光電性質上,我們的直流導電率和光學導電率最好可達到比值(σDC/σOp)逼近300,這個數值僅次於銀奈米線導電玻璃。穿透度90%片電阻50Ω/sq的透明導電電極可被製備。另外,我們也測試了銅奈米線薄膜在大氣環境下的穩定性,經過一個多月的放置片電阻只有小幅度上升,具有一定的電性穩定性。
In this study, thin, long, and well-dispersed copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowire are about 37.7 μm and 46 nm with a high aspect ratio of 820. These wires were used for nanowire conducting films since their relatively long length is advantage in lowering the sheet resistance. Transparent conducting copper nanowire electrodes were prepared by a simple, facile and low cost spray coating method and their properties were characterized. Transparent electrode with optical transmittance and sheet resistance of 90% and 50Ω/sq was obtained. A relatively high value of 300 for the optoeletricial property, σDC/σOp, was obtained, only inferior to silver nanowire-based conducting glass. Moreover, the copper nanowire films maintained their electrical stabilities upon exposed to the ambient over more than one month.
1 Hu, L. B., Kim, H. S., Lee, J. Y., Peumans, P. & Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 4, 2955-2963, (2010).
2 Rowell, M. W. et al. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 88, (2006).
3 Yin, Z. Y. et al. Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano 4, (2010).
4 Kang, M. G., Xu, T., Park, H. J., Luo, X. G. & Guo, L. J. Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes. Adv Mater 22, 4378-+, (2010).
5 Wu, H. et al. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode. Nano Lett. 10, 4242-4248, (2010).
6 Hecht, D. S., Hu, L. B. & Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv Mater 23, 1482-1513, (2011).
7 Tahar, R. B. H., Ban, T., Ohya, Y. & Takahashi, Y. Tin doped indium oxide thin films: Electrical properties. J. Appl. Phys. 83, 2631-2645 (1998).
8 Iijima, S. HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature 354, 56-58, (1991).
9 Durkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35-39, (2004).
10 Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941-2944, (2000).
11 Javey, A. et al. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 1, 241-246, (2002).
12 Kaempgen, M., Duesberg, G. S. & Roth, S. Transparent carbon nanotube coatings. Appl. Surf. Sci. 252, 425-429, (2005).
13 Dressel, M. & Gruner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter. (2002).
14 De, S. et al. Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. ACS Nano 3, 1767-1774, (2009).
15 Geng, H. Z. et al. Absorption spectroscopy of surfactant-dispersed carbon nanotube film: Modulation of electronic structures. Chem. Phys. Lett. 455, 275-278, (2008).
16 Hecht, D. S. et al. High conductivity transparent carbon nanotube films deposited from superacid (vol 22, 075201, 2011). Nanotechnology 22, (2011).
17 Pereira, L. F. C., Rocha, C. G., Latge, A., Coleman, J. N. & Ferreira, M. S. Upper bound for the conductivity of nanotube networks. Appl. Phys. Lett. 95, (2009).
18 Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669, (2004).
19 Orlita, M. et al. Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene. Phys. Rev. Lett. 101, (2008).
20 Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907, (2008).
21 Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388, (2008).
22 Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308-1308, (2008).
23 Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3, 270-274, (2008).
24 Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5, 574-578, (2010).
25 De, S. & Coleman, J. N. Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? ACS Nano 4, 2713-2720, (2010).
26 Zheng, Q. B. et al. Transparent Conductive Films Consisting of Ultra large Graphene Sheets Produced by Langmuir-Blodgett Assembly. ACS Nano 5, 6039-6051, (2011).
27 Ke, Y. Q. et al. Resistivity of thin Cu films with surface roughness. Phys Rev B 79, (2009).
28 Ghosh, D. S., Martinez, L., Giurgola, S., Vergani, P. & Pruneri, V. Widely transparent electrodes based on ultrathin metals. Opt Lett 34, 325-327 (2009).
29 Kang, M. G. & Guo, L. J. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv Mater 19, 1391-+, (2007).
30 Kang, M. G., Park, H. J., Ahn, S. H. & Guo, L. J. Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells. Sol Energ Mat Sol C 94, 1179-1184, (2010).
31 Ghosh, D. S., Chen, T. L. & Pruneri, V. High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 96,
32 Scardaci, V., Coull, R., Lyons, P. E., Rickard, D. & Coleman, J. N. Spray Deposition of Highly Transparent, Low-Resistance Networks of Silver Nanowires over Large Areas. Small 7, 2621-2628, (2011).
33 Lee, P. et al. Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network. Adv Mater,(2012).
34 Rathmell, A. R., Bergin, S. M., Hua, Y. L., Li, Z. Y. & Wiley, B. J. The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films. Adv Mater 22, 3558-+, (2010).
35 Rathmell, A. R. & Wiley, B. J. The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates. Adv Mater 23, 4798-+, (2011).
36 Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices (vol 9, pg 205, 2010). Nat. Mater. 9, 865-865, (2010).
37 Lee, J. Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689-692, (2008).
38 Pike, G. E. & Seager, C. H. Percolation and conductivity: A computer study. II. Phys. Rev. B: Solid State 10, 1421 (1974).
39 Bergin, S. M. et al. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996-2004, (2012).
40 Hu, L., Wu, H. & Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. Mrs Bull 36 (2011).
41 Ye, E. Y., Zhang, S. Y., Liu, S. H. & Han, M. Y. Disproportionation for Growing Copper Nanowires and their Controlled Self-Assembly Facilitated by Ligand Exchange. Chem-Eur J 17, 3074-3077, (2011).
42 Tang, X. & Tsuji, M. Syntheses of Silver Nanowires in Liquid Phase. 402 (2010).
43 Lee, Y. I. et al. Tunable Synthesis of Cuprous and Cupric Oxide Nanotubes from Electrodeposited Copper Nanowires. J. Nanosci. Nanotechnol. 11, 1455-1458, (2011.
44 Gu, W. H., Kim, K. K. & Ieee. A new approach to accurate resistivity measurement for a single nanowire - Theory and application. (Ieee, 2006).
45 Zhong, S. et al. Nanoscale Twinned Copper Nanowire Formation by Direct Electrodeposition. Small 5, 2265-2270, (2009).
46 Chen, K. C., Wu, W. W., Liao, C. N., Chen, L. J. & Tu, K. N. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321, 1066-1069, (2008).
47 Li, C. & Huang, D. Handbook of Metal Materials. (2004).
48 Xu, L. et al. Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins. Appl. Phys. Lett. 90, (2007).
49 King, P. J., Khan, U., Lotya, M., De, S. & Coleman, J. N. Improvement of Transparent Conducting Nanotube Films by Addition of Small Quantities of Graphene. ACS Nano 4, 4238-4246, (2010).