研究生: |
余政道 |
---|---|
論文名稱: |
高科技產業之多目標營收管理 Multi-objective Revenue Management in High-Tech Industries |
指導教授: | 簡禎富 |
口試委員: |
簡禎富
盧志遠 蘇哲平 吳吉政 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 營收管理 、產能支援需求 、紫式決策分析架構 、多目標遺傳演算法 、非凌越解 、柏拉圖排序 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
營收管理(Revenue Management)運用在管理企業需求面之決策問題,傳統營收管理被廣泛運用航空、旅館以及汽車出租產業,擁有產品易腐壞、產品需求隨著時間變很大以及短時間內擁有龐大的固定成本的特性。由於高科技產業亦擁有產能易消逝性、需求隨著時間變異大及短時間內擁有龐大的固定成本之特性,然而絕少研究將營收管理的概念導入高科技產業,並將規劃目標提升至財務層面,來達成企業的願景和卓越經營。
高科技產業的製造策略為維持成長與獲利,然而高科技產業為資本密集產業,尤其產能建置的設備機台花費金額龐大,規劃不佳與單目標規劃可能有遺珠之憾發生,因此產能管理的能力對公司經營目標的達成有非常大的影響。本研究目的係考慮高科技產業的產能限制,,發展多目標產能支援需求架構,以最佳產能運用策略來規劃企業需求,利用系統化的步驟解構、分析並求解高科技產業面臨的問題,來達到多個財務目標的最佳化。並且分別以半導體製造業與太陽能電池製造業為實證對象,實證結果顯示皆較案例公司的利用經驗法則規劃為佳,分別作為年度設置產能與訂單分配的最佳化支援,其中太陽能電池製造業將系統納入日常規劃訂單的輔助工具。
王小璠(2005),多準則決策分析,滄海書局,中市。
簡禎富(2005),決策分析與管理,雙葉書廊,台北。
顏青玉(2009),系統化定價決策分析架構,國立清華大學工業工程與工程管理學系碩士論文。
Barahona, F., Bermon, S., Gunluk, O., and Hood, S., (2003), “Robust Capacity Planning in Semiconductor manufacturing,” T. J. Watson Research Center, IBM, NY, Tech. Report RC22196.
Bermon, S. and Hood, S. J., (1999), “Capacity Optimization Planning System (CAPS),” Interfaces, Vol. 29, No. 5, pp. 31-51.
Bitran, G. and Caldentey, R., (2003), “An Overview of Pricing Models for Revenue Management,” Manufacturing & Service Operations Management, Vol. 5, No. 3,pp.203-230.
Cohon, J. L., (1978), Multiobjective Programming and Planning, Academic Press, New York.
Clemen, R. T., (1996), Making Hard Decisions (2nd edition), Duxbury Press, Belmont, CA.
Cakanyildirim, M. and Roundy, R. O., (2002), “Evaluation of Capacity Planning Practices for the Semiconductor Industry,” IEEE Transactions on Semiconductor Manufacturing, Vol. 15, No. 3, pp. 331-340.
Çatay, B., Erenguc, S. S., and Vakharia, A. J., (2003), “Tool Capacity Planning in Semiconductor Manufacturing,” Computers and Operations Research, Vol. 30, No. 9, pp. 1349-1366.
Chern, C. C. and Hsieh, J. S., (2007), “A Heuristic Algorithm for Master Planning that Satisfies Multiple Objectives,” Computers and Operations Research, Vol. 34, pp. 3491-3513.
Chiang, W. C., Chen, J. C. H., Xu, X., (2007), “An Overview of Research on Revenue Management: Current Issues and Future Research,” International Journal of Revenue Management, Vol. 1, No. 1, pp. 97-128.
Chien, C. F., Chen, Y. J., and Peng J. T., (2010), “Manufacturing Intelligence for Semiconductor Demand Forecast Based on Technology Diffusion and Product Life Cycle,” International Journal of Prodcution Economics, Vol. 128, No. 2, pp. 496-509.
Chien, C.-F., Dauzère-Pérès, S., Ehm, H., Fowler, J. W., Jiang, Z., Krishnaswamy, S., Mönch, L., and Uzsoy, R. (2008), “Modeling and Analysis of Semiconductor Manufacturing in A Shrinking World: Challenges and Successes,” Proceedings of the 2008 Winter Simulation Conference, pp. 2093-2099.
Chien, C. F. and Hsu, C. Y., (2011), “UNISON Analysis to Model and Reduce Step-and-Scan Overlay Errors for Semiconductor Manufacturing,” Journal of Intelligent Manufacturing, Vol. 22, No. 3, pp. 399-412.
Chien, C. F., Wu, J. Z., Wu, C. C., (2011), “ A Two-stage Stochastic Programming Approach for New Tape-Out Allocation Decisions for Demand Dulfillment Planning in Semiconductor Manufacturing,” Flexible Services and Manufacturing Journal, Online.
Chien, C. F. and Zheng, J, N., (2011), “Mini–Max Regret Strategy for Robust Capacity Expansion Decisions in Semiconductor Manufacturing,” Journal of Intelligent Manufacturing, Online.
Czyak, P. and Jaskiewicz, A., (1998), “Pareto Simulated Annealing—A Meta-Heuristic Technique for Multiple Objective Combinatorial Optimization,” Journal of Multi-Criteria Decision Analysis, Vol. 7, No. 1, pp. 34-47.
Deb, K., (2001), Multiobjective Optimization Using Evolutionary Algorithms, Wiley, Chichester.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., (2002), “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182-197.
Elmaghraby, W. and Keskinocak, P., (2003), “Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions,” Management Science, Vol. 49, No. 10, pp.1287-1309.
Erkoc, M. and Wu, S. D., (2005), “Managing High-Tech Capacity Expansion via Reservation Contracts,” Production and Operations Management, Vol. 14, No. 2, pp. 232-251.
Fonseca, C. M. and Fleming, P. J., (1993), “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Gneralization,” Proceeding of 5th International Conference on GAs, pp. 416-423.
Fonseca, C. M. and Fleming, P. J., (1995), “An Overview of Evolutionary Algorithms in Multiobjective Optimization,” Evolutionary Computation, Vol. 3, No.1, pp. 1-16.
Gen, M. and Cheng, R. (1997), Genetic Algorithms and Engineering Design, John Wiley & Sons, New York.
Gen, M. and Cheng, R. (2000), Genetic Algorithms and Engineering Optimization, John Wiley & Sons, New York.
Gen, M., Cheng, R., and Lin, L. (2008), Network Models and Optimization: Multiobjective Genetic Algorithms, Springer, London.
Goldberg, D. E., (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Boston.
Ishibuchi, H. and Murata, T., (1998), “A Multilobjective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling,” IEEE Transactions on System, Man, and Cybernetics, Vol. 28, No. 3, pp. 392-403.
Kaldor, N., (1934), “A Classificatory Note on the Determinateness of Equilibrium,” Review of Economic Studies, Vol. 1, pp. 122-136.
Konak, A., Coit, D. W., and Smith, A. E., (2006),”Multi-Objective Optimization Using Genetic Algorithm: A Toturial,” Reliability Engineering & System Safety, Vol. 91, No. 9, pp. 992-1007.
Kornbluth, J. S. H. and Steuer, R. E., (1981), “Multiple Objective Linear Fractional Programming,” Management Science, Vol. 27, pp.1024-1039.
Li, B. B., Wang, L., and Liu B., (2008), “An Effective PSO-Based Hybrid Algorithm for Multiobjective Permutation Flow Shop Scheduling,” IEEE Transactions on System, Man, and Cybernetics-Part A: System and Humans, Vol. 38, No. 4, pp. 818-831.
Lin, L. and Gen, M., (2009), “Auto-Tuning Strategy for Evoluationary Algorithm: Balancing Between Exploration and Exploitation,” Soft Computation, Vol. 13, No. 2, pp. 157-168.
McGill, J. I. and van Ryzin, G., (1999), “Revenue Management: Research Overview and Prospects,” Transportation Science, Vol. 33, No. 2,pp.233-256.
Miettinen, K., (1999), Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston.
Pak, K. and Piersma, N., (2002), “Airline Revenue Management: An Overview of OR Techniques 1982–2001,”, Erasmus Research Institute of Management, Rotterdam School of Management, Netherlands, Econometric Institute Report EI 2002-2003 (ERS-2002-12-LIS).
Schaffer J. D., (1985), “Multiple Objective Optimization with Vector Evaluated Genetic Algorithm,” Proceeding of 1st International Conference on GAs, pp. 93-100.
Shachter, R. D., (1986), “Evaluating Influence Diagrams,” Operations Research, Vol. 34, No. 6, pp. 871-882.
Shachter, R. D., (1988), “Probabilistic Influence and Influence Diagrams,” Operations Research, Vol. 36, No. 4, pp. 589-604.
Srinivas, N. and Deb, K., (1994), “Multiobjective Function Optimization Using Nondominated Sorting Genetic Algorithm,” Evolutionary Computation, Vol. 2, No. 3, pp. 221-248.
Swaminathan, J. M., (2000), “Tool Capacity Planning for Semiconductor Fabrication Facilities under Demand Uncertainty,” European Journal of Operational Research, Vol. 120, No. 3, pp. 545-558.
Swaminathan, J. M., (2002), “Tool Procurement Planning for Wafer Fabrication Facilities: A Scenario-Based Approach,” IIE Transactions, Vol. 34, No. 2, pp. 145-155.
Talluri, K. and Ryzin, V. G. (2004), The Theory and Practice of Revenue Management, Kluwer Academic Publishers, Boston.
Tan, K. C., Goh, C. K., Yang, Y. J., and Lee, T. H., (2006), “Evolving Better Population Distribution and Exploration in Evolutionary Multi-Objective Optimization,” European Journal Operational Research, Vol. 171, No. 2, pp. 463-495.
Ulungu, E. L. and Teghem, J., (1994), “Multi-objective combinatorial optimization problems: A survey,” Journal of Multi-Criteria Decision Analysis, Vol. 3, No. 2, pp. 83-104.
Ulungu, E. L., Teghem, J., and Ost, C., (1998), “Efficiency of Interactive Multiobjective Simulated Annealing Through A Case Study,” Journal of Operational Research Society, Vol. 49, No. 10, pp. 1044-1050.
Wang, K. J. and Hou, T. C., (2003), “Modelling and Resolving the Joint Problem of Capacity Expansion and Allocation with Multiple Resources and A Limited Budget in the Semiconductor Testing Industry,” International Journal of Production Research, Vol. 41, No. 14, pp. 3217-3235.
Wang, K. J., Wang, S. M. , and Chen, J. C., (2008), “A Resource Portfolio Planning Model Using Sampling-Based Stochastic Programming and Genetic Algorithm,” European Journal of Operational Research, Vol. 184, No. 1, pp. 327-340
Weatherford, L. R. and Bodily, S. E., (1992), “A Taxonomy and Research Overview of Perishable-Asset Revenue Management: Yield management, Overbooking, and Pricing,” Operations Research, Vol. 40, No.5, pp.831-844.
Wu, J. Z. and Chien, C. F., (2008), “Modeling Strategic Semiconductor Assembly Outsourcing Decisions-Based on Empirical Settings,” OR Spectrum, Vol. 30, No. 3, pp. 401-430.
Wu, S. D., Erkoc, M., and Karabuk, S. (2005), “Managing Capacity in the High-Tech Industry: A Review of Literature,” The Engineering Economist, Vol. 50, No. 2, pp. 125-158.
Zhang, M. T., Niu, S., Deng, S., Zhang, Z., Li, Q., and Zheng, L., (2007), “Hierarchical Capacity Planning With Reconfigurable Kits in Global Semiconductor Assembly and Test Manufacturing,” IEEE Transactions on Automation Science and Engineering, Vol. 4, No. 4, pp. 543-552.
Zhang, Z., Zhang, M. T., Niu, S., and Zheng, L., (2006), “Capacity Planning with Reconfigurable Kits in Semiconductor Test Manufacturing,” International Journal of Production Research, Vol. 44 , No. 13 , pp. 2625-2644.
Zitzler, E. and Thiele, L., (1999), “Multiobjective Evolutionary Algorithms: A Comparative Case Study and Strength Pareto Approach,” IEEE Transactions on Evolutionary Computation, Vol. 3, No. 4, pp. 257-271.