簡易檢索 / 詳目顯示

研究生: 蔡佑昌
Yu-Chang Tsai
論文名稱: 自組裝樹枝狀分子性質之研究
The Study of the Properties of Dendrimer Self-assembling
指導教授: 朱鐵吉
Tieh-Chi Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 95
中文關鍵詞: 樹枝狀分子接觸角穩定性電流-電壓導電性
外文關鍵詞: dendrimer, contact angle, stability, I-V, conductivuty
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    樹枝狀分子大約在1984年由D. A. Tomalia等人所發現的一種新型的聚合物,它具有單一分子量分佈(monodispersity)、具多孔性的內部、高溶解度、低黏度及結構設計多樣化等優點,這對於醫藥、生物科技、光學等領域而言都有很大的潛力,因此近幾年來很受到科學家的重視。

    本篇論文的研究重點在於將樹枝狀分子長在矽基材上後,探討樹枝狀分子半數代和整數代的穩定性:溫度對表面能變化的影響;並佐以熱脫附常壓游離質譜儀來佐證論點。之後在把樹枝狀分子應用到電極式生物感測器元件上,將金奈米粒子以自組裝方式固著於電極間隙,進行電性量測,此方式可提供吾人一簡單、快速且低成本的應用領域。


    Abstract
    The poly(amidoamine) dendrimer is a new type polymer which discovered by D. A. Tomalia et al. in 1984. The dendrimer has attracted scientist’s attention for the recent years. It possesses some important advantages, like monodispersity, porosity, high aqueous resolution, low viscosity, variety of structure design, and has a number of potential applications for medical science, biotechnology and optics science yet.

    The key points of investigation are to study the chemical change of dendrimer under thermal condition to obtain the surface energy change;we use Thermal Desorption-Atmospheric Pressure Ionization Mass-spectroscopy to support reason. The poly(amidoamine) dendrimer self-assembling on a silicon wafer between nano-gap gold electrodes,then gold nanoparticles is established on the surface between electrodes.This method provide us a simple、fast and cheaper way.

    目錄 謝誌………………………………………………...…………………….I 摘要……………………………………………………………………..Ⅱ 目錄………………………………………………...…………………Ⅳ 圖表目錄………………………………………………...……………Ⅶ 第一章 緒論……………………………………………...………...……1 1.1奈米材料……………………………………………………………...1 1.2奈米材料性質…………………………………………………...........2 1.3奈米材料在生物方面研究進展.............................2 1.4 Dendrimer 為廣受注意的奈米尺度結構材料……………………...5 1.5樹枝狀分子的歷史介紹……………………………………………...6 第二章 文獻回顧………………………………………………………10 2.1 自組裝薄膜技術原理……………………………………………...10 2.2 樹枝狀分子之自組裝……………………………………………...15 2.3合成Dendrimer的方法………………………………………………...19 2.3.1 以NH3為核心…………………………………………………19 2.3.2 以Fe3O4奈米粒子為基材……………………………………23 2.4表面能分析………………………………………………………….25 2.4.1 Oss&Good 理論……………………………………………..26 2.5生物感測器的應用………………………………………………….30 第三章 樹枝狀分子的合成及實驗方法………………………………36 3.1 實驗藥品與儀器…………………………………………………...36 3.2 樹枝狀分子的合成………………………………………………...40 3.3 實驗步驟…………………………………………………………...44 3.3.1 AEEA晶片的表面能分析………………………………...44 3.3.2 G0.5 、G1 、G1.5 、 G2 、 G2.5 、 G3 晶片的表面能 分析…………………………………………………………44 3.3.3元件製作部分………………………………………………..45 第四章 結果與討論……………………………………………………48 4.1 表面能特性………………………………………………………...48 4.1.1 矽晶圓之表面能……………………………………………48 4.1.2 自組裝上AEEA薄膜之表面能……………………………48 4.1.3自組裝上G 0.5、G 1之表面能……………………………...51 4.1.4自組裝上G 1.5、G 2之表面能……………………………...53 4.1.5自組裝上G 2.5、G 3之表面能……………………………...55 4.1.6 整數代和半數代樹枝狀分子表面能比較…………………57 4.2 以TDS-APIMS分析物種………………………………………..59 4.2.1若為G 1分解………………………………………………...59 4.2.2若為G 3分解………………………………………………...62 4.3 生物感測器元件製作量測………………………………………...66 4.3.1 自組裝AEEA、G1、G3於奈米間隙電極…………………...68 4.3.2 G3的奈米金電極……………………………………………76 4.3.3 樹枝狀分子的粗糙度………………………………………78 第五章 結論……………………………………………………………91 參考文獻………………………………………………………………..92 圖表目錄 圖1.1:Tomalia's PAMAM dendrimers的發散式合成流程圖………….7 圖1.2:Fre ' chet 收斂式合成流程圖…………………………………..8 表1.1:PAMAM dendrimers的一些數值……………………………….9 圖2.1:一種單層自組裝示意圖………………………………………...12 圖2.2:脂肪酸單層在氧化銀(AgO)及氧化鋁(Al2O3)表面組合狀 況……………………………………………………………..13 圖2.3:分子組裝用於金屬離子的電位偵測…………………………………14 圖2.4:分子組裝用於蛋白質的分離………………………………….14 圖2.5:由最小的分子漸行而上至組合材料之示意圖………………...16 圖2.6:液晶自組裝方式………………………………………………..18 圖2.7 : 球型Dendrimer的合成流程圖………………………………..19 圖2.8 : 環胺化的反應圖(1)……………………………………………21 圖2. 9: 環胺化反應圖(2)………………………………………………22 圖2.10 : 將dendrimer長在磁性奈米粒子後的示意圖……………….23 表2.1:測試液體的表面能成份………………………………………...28 圖2.11:液滴在不同表面上親疏水性的差異性……………………….29 圖2.12:奈米金粒子的合成反應示意圖……………………………….32 圖2.13:未聚集金粒子吸收峰在520 nm;聚集的則在700 nm具有紅位移吸收…………………………………………32 圖2.14:穿遂效應示意圖……………………………………………….34 圖3.1 由矽晶片合成到G1 dendrimer的流程圖……………………...42 圖3.2:設計好的電極圖案……………………………………………...46 圖3.3:元件製作流程圖………………………………………………...47 表4.1:室溫下矽晶圓之表面能………………………………………...48 表4.2:自組裝上AEEA薄膜之表面能………………………………...49 圖4.1:自組裝上AEEA薄膜之表面能………………………………...49 圖4.2:以熱重分析儀分析AEEA的分解溫度………………………...50 表4.3:自組裝上G 0.5之表面能……………………………………….51 表4.4:自組裝上G 1之表面能…………………………………………51 圖4.3:G 0.5、G 1之表面能…………………………………………….52 表4.5:自組裝上G 1.5之表面能……………………………………….53 表4.6:自組裝上G 2之表面能…………………………………………53 圖4.4:G 1.5、G 2之表面能…………………………………………….54 表4.7:自組裝上G 2.5之表面能……………………………………….55 表4.8:自組裝上G 3之表面能…………………………………………55 圖4.5:G 2.5、G 3之表面能…………………………………………….56 圖4.6:G 0.5、G 1.5、G 2.5之表面能…………………………………...57 圖4.7:G 1、G 2、G 3之表面能…………………………………………58 圖4.8 : 分析的分子量分別為72AMU及86AMU……………………60 圖4.9 : 分析的分子量分別為114AMU……………………………….61 圖4.10 : 分析的分子量分別為72AMU、86 AMU…………………….63 圖4.11 : 分析的分子量分別為114AMU、186 AMU………………….64 圖4.12 : 分析的分子量分別為228AMU……………………………...65 圖4.13:G1接上奈米金的示意圖……………………………………...66 圖4.14:奈米間隙電極結構示意圖…………………………………….67 圖4.15:不同間隙的金電極(1)…………………………………………69 圖4.15:不同間隙的金電極(2)…………………………………………70 圖4.16:空電極的I-V圖………………………………………………..71 圖4.17:AEEA+10nm Au 的I-V圖……………………………………71 圖4.18:AEEA+10nm Au 的I-V圖……………………………………72 圖4.19:G1+10nm Au 的I-V和SEM………………………………….73 圖4.20:G3+10nm Au 的I-V和SEM………………………………….74 圖4.21:AEEA、G1、G3的I-V圖……………………………………….75 圖4.22:溫度不同時的I-V圖…………………………………………..77 表4.9 粗糙度統整……………………………………………………...78 圖4.23:G1之AFM圖…………………………………………………..80 圖4.24:G1接金粒子之AFM圖………………………………………..82 圖4.25:G2之AFM圖…………………………………………………..84 圖4.26:G2接金粒子之AFM圖………………………………………..86 圖4.27:G3之AFM圖…………………………………………………..88 圖4.28:G3接金粒子之AFM圖………………………………………..90

    參考文獻

    1. http://www.biopharm.org.tw/media/bioera/2002_6/main.html
    2.http://www.st-pioneer.org.tw/modules.php?name=magazine&pa=showp
    age&tid=319
    3. Denkewalter, R. G.; Kolc, J.; Lukasavage, W. J. U.S. Pat.,
    “Macromolecular highly branched homogeneous compound based on lysine units”, p.4-289, (1981).
    4. Denkewalter, R. G.; Kolc, J.; Lukasavage, W. J. U.S. Pat., “Macromolecular highly branched a,w-diamino carboxylic acids”,
    p.4-410, (1983).
    5. Aharoni, S. M.; Crosby, C. R., III; Walsh, E. K., “Size and solution properties of globular tert-butyloxycarbonyl –poly (ε-L-lysine) ” ,Macromolecules , 15, 1093-1098 (1982).
    6. Tomalia, D. A.; Baker, H.; Dewald, J. R.; Hall, M.; Kallos, G.; Martin,
    S.; Roeck, J.; Ryder, J.; Smith, “A new class of polymers: Starburst-Dendrimeritic macromolecules.”P. Polym. J.,17, 117-132(1985).
    7. Tomalia, D. A.; Baker, H.; Dewald, J. R.; Hall, M.; Kallos, G.;Martin,
    S.; Roeck, J.; Ryder, J.; Smith, P., “Dendritic macromolecules:
    synthesis of starburst dendrimers”, Macromolecules, 19, 2466-2468 (1986).
    8. Newkome, G. R.; Yao, Z.-Q.; Baker, G. R.; Gupta, K., “Cascade molecules: a new approach to micelles”, J. Org.Chem. , 50, 2003-2004 (1985)
    9. http://nano.cyut.net.tw/3.htm
    10. V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D.
    Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp,
    H.-W. Spiess, S. D. Hudsonk, H. Duank, “Self-organization of supramolecular helical dendrimers into complex electronic materials”, Nature, 419, 384-387 (2002).
    11. V. Percec, M. Glodde, G. Johansson, V. S. K. Balagurusamy, and P.
    A. Heiney, “Transformation of a Spherical Supramolecular Dendrimer into a Pyramidal Columnar Supramolecular Dendrimer Mediated by the Fluorophobic Effect”, Angew. Chem. Int. Ed. 42, 4338-4342 (2003).
    12. D. A. Tomalia, “Supramolecular chemistry: Fluorine makes a difference”, Nature Materials, 2, 711-712 (2003).
    13. G. R. Newkome, E. He, C. N. Moorefield, “Dendrimers and
    Dendrons”, WILEY-VCH, p.191, Germany(2001).
    14.Brandon Yoza, Atsushi Arakaki, Tadashi Matsunaga, “DNA
    extraction using bacterial magnetic particles modified with
    hyperbranched polyamidoamine dendrimer”, Journal of Biotechnology,
    p.101 (2003).
    15. Matsunaga, T., “Surface free energy analysis of polymers and its relation to surface composition”, J. Appl. Polym. Sci. 21, 2847 (1977).
    16. Ko, Y. C.; Rather, B. D.; Hoffman, A. S., “Characterization of hydrophilic-hydrophobic polymeric surfaces by contact angle measurements”, J. Colloid Int. Sci.82, 25-37 (1981).
    17. Ruckenstein, E.; Lee, S. H., “Stability of polymeric surfaces subjected to ultraviolet irradiation”, J. Colloid Int. Sci. 117, 172 (1987).
    18. Tretinnikov, O. N., “Selective Accumulation of Functional Groups at the Film Surfaces of Stereoregular Poly(methyl methacrylate)s ”
    ,Langmuir, 13, 2988 (1997)
    19. Correia, N. T.; Ramos, J. J. M.; Saramago, N. J. V.; Calado, J. C.G., “Estimation of the Surface Tension of a Solid: Application to a Liquid Crystalline”, Polymer J.Colloid Int. Sci. 189, 361 (1997).
    20. Fowkes, F. M., “Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces”, J. Phys. Chem. 66, 382 (1962).
    21. Fowkes, F. M.,” Comments on calculation of cohesive and adhesive energies” J. Phys. Chem. 72, 3700 (1968).
    22. Van Oss, C. J.; Chaudhury, M. K.; Good, R., “The mechanism of phase separation of polymers in organic media-apolar and polar systems”, J. Chem. Rev. 88, 927 (1988).
    23. Van Oss, C. J.; Ju, L.; Chaudhury, M. K.; Good, R. J., “Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels”,J. Colloid Interface Sci. 128, 313 (1989).
    24. Fowkes, F. M., “Etermination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces”, J. Phys. Chem. 66, 382 (1962).
    25.Handbook of surface and colloid chemistry edited by K. S .Bird .,CRC Press,New York, p.292 ( 1977).
    26. Hyatt, M. A., “Colloidal Gold: Principles, Methods and Applications”, Academic Press, New York ,3 , 352-356 (1989).
    27. Nie, S., and Emory, S. R., "Probing single Molecules and
    Single Nanoparticles by Surface-Enhanced Raman Scattering",
    Science, 275, 1102-1106 (1997).
    28. Brown, K. R., Fox, A. P., and Natan, M. J., "Morphology-dependent electrochemistry of Cytochrome C at Au colloid-modified SnO2 electrodes", J. Am. Chem. Soc.118, 1154-1157 (1997).
    29. Lyon, L.A., Musick, M. D., and Natan, M.J., "Colloidal Au-enhanced surface plasmon resonance immunosensing", Anal. Chem., 70, 5177-5183 (1998).
    30. Lyon, L. A., Musick, M. D., Smith, P. C., Reiss, B. D., Pena, D.J.,
    and Natan, M. J., "Surface plasmon resonance of colloidal Au-modified gold films ", Sens. Actuators B, 54, 118-125 (1999).
    31. Mirkin, C. A., Letsinger, R. L., Mucic, R. C., and Storhoff, J. J.,
    "A DNA-based method for rationally assembling nanoparticles
    Into macro-scopic materials", Nature, 382, 607-609 (1996).
    32. Hayat, M. A., Colloidal Gold: Principles, Methods, and
    Applications; Academic Press, San Diego. 3, 236-238 (1991).
    33. Creighton, J. A., Blatchford, C. G., and Albrecht, M. G., "Plasma resonance enhancement of Raman scattering by pyridine
    adsorbed on silver or gold sol particles of size comparable to the
    excitation wavelength", J. Chem. Soc., Faraday Tr ans., 2 , 75, 790-798 (1979).
    34. Henglein, A., Ershov, B. G., and Malow, M., "Absorption
    spectrum and some chemical reactions of colloidal platinum in
    aqueous solution", J.Phys. Chem., 99, 14129-14136 (1995).
    35. Curtis, A. C., Duff, D. G., Edwards, P. P., Jefferson, D. A., Johnson,
    B. F. G., Kirkland, A. I., and Wallace, A. S., "Phosphaalkynes - syntheses, reactions, coordination behavior [New Synthetic Methods]", Angew. Chem., Int. Ed. Engl., 27, 1530-1533 (1988).
    36. Frens, G., "Controlled nucleation for the regulation of the particle size in monodisperse gold solutions", Nature Phys. Sci., 241, 20-22(1973).
    37. Grabar, K. C., Freeman, R. G., Hommer, M. B., and Natan, M. J., "Preparation and characterization of Au colloid monolayers", Anal. Chem., 67, 735-743 (1995).
    38. Chen. C. C., Tsai .C. Y., KO. F. H., Pun. C. C., "Room Temperature Operation of a Coulomb Blockade Sensor Fabricated by Self-Assembled Gold Nanoparticles using Deoxyribonucleic Acid
    Hybridization" Japanese Journal of Applied Physics ,43, No. 6B, 3843–3848 (2004).
    39. Hideo T., Mingqi Z., Lane, A. B., "Preparation and Characterization of Dendrimer Monolayers and Dendrimer-Alkanethiol Mixed Monolayers Adsorbed to Gold" J. Am. Chem. Soc. 120, 4492-4501 (1998).
    40.Jing, F.W., Xinru J., Hong Z.,"Self-Assembled Multilayer Films Based on Dendrimers with Covalent Interlayer Linkage"
    Chem. Mater. 14,2854-2858 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE