簡易檢索 / 詳目顯示

研究生: 皮勒拉
Perera, Namal
論文名稱: 真菌牛樟芝和黑木耳的免疫增強多醣在化學及 生物學上的研究
Chemical and Biological Studies on Immunoenhancing Polysaccharides from Fungi: Antrodia cinnamomea and Auricularia aricula-judae
指導教授: 吳世雄
Wu, Shih-Hsiung
林俊成
Lin, Chun-Cheng
口試委員: 梁博煌
Liang, Po-Huang
花國鋒
Hua, Kuo-Feng
林曉青
Lin, Hsiao-Ching
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 175
中文關鍵詞: 多醣體牛樟芝黑木耳多醣體化學結構免疫刺激作用
外文關鍵詞: polysaccharides, Antrodia cinnamomea, Auricularia auricula-judae, Polysaccharides, Chemical structure, Immunostimulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然界存在的複合性碳水化合物,為不同結構特性的大分子,同時也具備著不同類型的生物活性。幾十年來,它們的免疫增強活性引發了越來越多的科學關注。然而,由於其結構的複雜性,以及缺乏結構與活性關係的相關研究,以及個別多醣的生物活性作用機制不同,使得它們在臨床發展貢獻上受到限制。在本研究中,選用了二種真菌: 具有高藥物作用的牛樟芝,以及食用的黑木耳,探討它們的免疫刺激多醣體的化學結構及詳細活性作用機制。
    從上述二種真菌的冷水萃取物中分離出多醣體,通過分子篩及離子交換層析管柱進行一連串純化。純化多醣的化學結構是通過氣相層析質譜儀(GC-MS)和核磁共振光譜(NMR)進行分析決定。免疫刺激活性則針對細胞中促進發炎細胞因子(TNF-α,IL-6)和一氧化氮(NO)產生能力進行探討。
    牛樟芝的免疫活性多醣體 (ACP; 分子量大於7萬) 的化學結構鑑定為galactomannan,為八醣重複序列組成的多醣體,結構解析為{→6)-D-Manp-(α1→2)-D-Manp-(α1→2)[D-Manp-(α1→3)-D-Manp-(α1→2)-D-Manp-(α1→6)-D-Galp (α1→6)]-D-Manp-(α1→6)-D-Galp-(α1→}。牛樟芝多醣體ACP可活化小鼠巨噬細胞J774A.1、骨髓來源的小鼠巨噬細胞、以及人類單核細胞衍生的樹突狀細胞,具濃度依賴性的方式產生TNF-α和IL-6。類鐸受體4 (Toll-like receptor 4) 則被鑑定為ACP誘導巨噬細胞活化的主要細胞受體。除了能刺激免疫細胞活化外,ACP也能增強巨噬細胞的吞噬作用以及殺菌能力,同時也會增強對細菌內毒素LPS的耐受力 (LPS tolerance) 。
    黑木耳的免疫刺激多醣體(AAPS,分子量大於7萬)的化學結構,鑑定為具有七醣重複單元結構的glucuronoxylomannan: {→3)-D-Manp-(α1→3)-[D-Xylp-(β1→6)]-D-Manp-(α1→3)-D-Manp-(α1→3)-[D-GlcAp-(β1→2)]-D-Manp-(α1→3)-D-Manp-(α1→}。在AAPS中,偵測到甘露糖及木糖上都具有O-乙醯基化修飾,而葡萄醣醛酸上則沒有乙醯基化修飾。AAPS在刺激TNF-α,IL-6和NO上,也具有劑量依賴性的特性,鑑定出類鐸受體4 (TLR4) 是主要參與在AAPS誘導巨噬細胞活化的細胞受體。而在AAPS誘導小鼠巨噬細胞的一氧化氮產生中,三個可能刺激一氧化氮產生的刺激訊息途徑: 包括TLR4→ROS→NF-κB→NO; TLR4→ROS→PI3K→Akt→NO 以及 TLR4→MAPK→NF-κB→NO。類似情況下,AAPS在誘導細胞因子產生,則藉由兩種可能的信號通路:TLR4→ROS→PI3K→Akt→TNF-α/IL-6 以及 TLR4→MAPK→ TNF-α/IL-6。
    黑木耳多醣體AAPS,以濃度依賴性的方式增強巨噬細胞的吞噬和殺菌能力。此外,AAPS也能增強對內毒素LPS的耐受性。進行去乙醯基化修飾和羧基還原的AAPS中,則觀察到免疫刺激活性的消失,表明免疫刺激過程中乙醯基化修飾和羧基官能團的重要性。分子模擬數據則進一步證明了乙醯基化修飾和羧基部分在受體結合中的作用方式。我們的研究結果為兩種實用真菌的免疫增強性質,提供了堅實的科學依據,並且這兩種免疫多醣的開發潛力,在不久的將來,做為開發出新的治療免疫相關疾病的碳水化合物營養補充劑及佐劑的有力候選物。


    Naturally occurring complex carbohydrates represent a structurally diverse group of macromolecules which shows a broad range of biological activities. Over decades they, have attracted growing scientific interest for their immunoenhancing properties. However, their clinical contribution is still limited because of the structural complexity, lack of studies on structure activity relationship and underlying mechanisms of biological activity of individual polysaccharide components. In the present study two mushroom species with high medicinal, dietary and economical reputation, Antrodia cinnamomea and Auricularia auricula-juadae, were selected for the investigation of their chemical structures of immunostimulatory polysaccharides and action mechanisms in detail.
    Polysaccharides were isolated from the cold water extracts of above two fungal species, and sequentially purified by size exclusion chromatography and ion exchange chromatography. Chemical structures of purified polysaccharides were elucidated by Gas Chromatography-Mass spectroscopy (GC-MS), and Nuclear Magnetic Resonance (NMR) spectroscopy. Immunostimulatory properties of each polysaccharide were investigated targeting the proinflammatory cytokines (TNF-α, IL-6) and nitric oxide (NO) producing abilities in selected immune cell models.
    Immunologically active polysaccharide of A. cinnamomea (ACP; MW>70 kDa) was chemically identified as galactomnnan, which was composed of branched octasaccharide repeating unit, {→6)-D-Manp-(α1→2)-D-Manp-(α1→2)[D-Manp-(α1→3)-D-Manp-(α1→2)-D-Manp-(α1→6)-D-Galp (α1→6)]-D-Manp-(α1→6)-D-Galp-(α1→}. ACP activated J774A.1 murine macrophage, bone marrow-derived murine macrophages and human monocyte derived dendritic cells to produce, TNF- and IL-6, in a concentration dependent manner. Toll like receptor 4 was identified as the main receptor involved in ACP mediated macrophage activation. Further to immune cell activation, ACP enhanced the phagocytic activity, bactericidal potential of macrophages and elicited the endotoxin tolerance like effect against lipopolysaccharides (LPS)
    Immunostimulatory polysaccharide of A. auricula-judae (AAPS, MW>70 kDa) was identified as glucuronoxylomannan with the repeating unit structure {→3)-D-Manp-(α1→3)-[D-Xylp-(β1→6)]-D-Manp-(α1→3)-D-Manp-(α1→3)-[D-GlcAp-(β1→2)]-D-Manp-(α1→3)-D-Manp-(α1→}. O-acetyl modification at mannose and xylose residues was observed in AAPS while glucuronic acid residues remained unacetylated. Native AAPS showed dose dependent immunostimulatory activity to secrete TNF-α, IL-6 and NO in Raw 264.7 cells. TLR4 was identified as the sole receptor involved in AAPS induced macrophage activation. Three possible signaling pathways, TLR4→ROS→NF-κB→NO; TLR4→ROS→PI3K→Akt→NO and TLR4→MAPK→NF-κB→NO were identified in AAPS induced NO production in murine macrophages. In similar vein, two possible signaling pathways identified in AAPS induced cytokine production: TLR4→ROS→PI3K→Akt→TNF-α/IL-6 and TLR4→MAPK→ TNF-α/IL-6.
    AAPS enhanced the phagocytosis and bactericidal potential of macrophages in concentration dependent manner. Further, AAPS elicited the endotoxin tolerance like effect against LPS. Complete abrogation of immunostimulatory properties was observed in deacetylated and carboxyl reduced AAPS indicating the essentiality of both acetyl and carboxylic functionalities in immunostimulatory process. Molecular modelling data further demonstrated the role of acetyl and caroboxyl moieties in receptor binding. Our findings have provided firm scientific evidences for the immunoenhancing properties of two mushroom species, and the potential of these two polysaccharides to be strong candidates for the development of new carbohydrate-based nutraceutical supplements and adjuvants in the treatment of immunity related disorders in near future.

    LIST OF CONTENTS Acknowledgments………………………………………………………….i Abstract (English)…………………………………………………………. iii Abstract (Chinese)………………………………………………………….vi List of Contents …………………………………………………………… viii List of Figures……………………………………………………………... xiv List of Tables………………………………………………………………. xvii List of Abbreviations……………………………………………………… xviii Chapter 1 General Introduction……………………………………………………..01 Chapter 2 Literature Review………………………………………………………… 03 2.1 Mushroom as a functional food……………………………………..03 2.2 Fungal polysaccharides……………………………………………... 03 2.3 Immunomodulatotion………………………………………………. 09 2.3.1 Human innate immunity system…………………………..10 2.3.2 Cellular components of innate immunity system…………11 2.3.3. Cytokines………………………………………………….13 2.3.4 Phagocytosis……………………………………………....14 2.3.5 Innate immunity receptors………………………………...15 2.3.6 Reactive oxygen species (ROS) and nitric oxide (NO)16 2.3.7 Immunomodulators………………………………………..17 2.3.8 Fungal polysaccharides as immunostimulators………18 2.4 Structural analysis of polysaccharides……………………………… 20 2.4.1 Extraction and purification of polysaccharides………21 2.4.2 Separation of polysaccharides…………………………….. 22 2.4.3 Analysis of monosaccharide composition………………… 22 2.4.4 Analysis of glycosidic linkages…………………………… 23 2.4.5. Nuclear magnetic resonance (NMR) spectroscopy in polysaccharide analysis....................................................…24 2.4.6 Mass spectrometry………………………………………... 26 Chapter 3 Structure and immunostimulatory activity of galactomannan from Antrodia cinnamomea………………27 3.1 Introduction………………………………………………………….27 3.1.1 Antrodia cinnamomea…………………………………………. 27 3.1.2 Morphology of A. cinnamomea……………………………….27 3.1.3 Taxonomy of A. cinnamomea………………………………… 28 3.1.4 Ethnomedical significance of A. cinnamomea ………29 3.1.5 Chemical constituents of A. cinnamomea……………… 29 3.1.6 Biological activities of A. cinnamomea polysaccharides...........................................................…. 30 3.2 Research objectives………………………………………………… 32 3.3 Methods and methodology…………………………………………. 33 3.3.1 Materials…………………………………………………..... 33 3.3.2 Cell cultures………………………………………………. 33 3.3.3 Isolation of mouse peritoneal macrophages........34 3.3.4 Generation of human monocyte-derived dendritic cells…........................................................................... 34 3.3.5 Extraction of A. cinnamomea polysaccharides (ACP) ....................................................................……... 34 3.3.6 Purification of A. cinnamomea polysaccharides (ACP).... 35 3.3.7 Sugar composition and linkage analysis of ACP…………. 35 3.3.8 Nuclear magnetic resonance (NMR) spectroscopy………. 36 3.3.9 Cytokine detection-ELISA assay…………………………. 37 3.3.10 Western blot assay………………………………………... 37 3.3.11 NF-κB reporter assay……………………………………... 38 3.3.12 Bacterial infection of macrophages………………………. 38 3.4 Results………………………………………………………………. 39 3.4.1 Separation and structural determination of immunological active polysaccharide (ACP) from A. cinnamomea………. 39 3.4.2 ACP induced TNF- and IL-6 secretion in mouse macrophages and human monocyte-derived dendritic cells ................................................................................................................47 3.4.3 ACP induced cytokine expression through TLR4……….. 49 3.4.4 ACP induced cytokine secretion through mitogen activated protein kinases (MAPKs)..................................………………………51 3.4.5 ACP induced cytokine secretion through protein kinase C (PKC)................................................................................................ 52 3.4.6 ACP induced endotoxin tolerance like effect in macrophages.........................................................................… 54 3.4.7 ACP enhanced the phagocytosis and the bactericidal activity of macrophages…………………………………... 56 3.5 Discussion…………………………………………………………... 58 3.6 Conclusion………………………………………………………….. 66 Chapter 4 Elucidation of structure, and immunostimulatory mechanism of glucuronoxylomannan from Auriculara auricula-judae……………….. 67 4.1 Introduction…………………………………………………………. 67 4.1.1. Auricularia auricula-judae…………………………………… 67 4.1.2 Taxonomy………………………………………………… 67 4.1.3 Ethnomedical importance………………………………… 68 4.1.4 Chemical constituents found in A. auricula-judae and their pharmacological significance……………………….. 69 4.2 Research objectives…………………………………………………. 74 4.3 Method and methodology…………………………………………... 75 4.3.1 Materials………………………………………………….. 75 4.3.2 Collection of mushroom………………………………….. 75 4.3.3 Cell culture……………………………………………….. 75 4.3.4 Extraction and purification of A. auricula-judae polysaccharides…………………………………………… 76 4.3.5 Purification of the A. auricula-judae polysaccharides by gel filtration chromatography (GFC)……………………… 77 4.3.6 Purification of A. auricula-judae polysaccharides by ion exchange chromatography (IEC)…………………………. 78 4.3.7 Sugar composition analysis of AAPS…………………….. 78 4.3.8 Linkage analysis of AAPS………………………………... 79 4.3.9 Determination of uronic acid content of AAPS…………… 79 4.3.10 Reduction of uronic acid residues………………………… 80 4.3.11 Determination of O-acetylation level in A. auricula-judae polysaccharides…………………………………………… 80 4.3.12 Deacetylation of A. auricula-judae polysaccharides……… 80 4.3.13 Nuclear magnetic resonance (NMR) spectroscopy………. 81 4.3.14 Macrophage activation-nitric oxide (NO) assay………….. 81 4.3.15 Cytokine measurement……………………………………. 82 4.3.16 Nuclear factor B (NF-B) assay………………………… 82 4.3.17 Bacterial infection of macrophages……………………….. 82 4.4 Results………………………………………………………………. 83 4.4.1 Extraction and purification of AAPS……………………… 83 4.4.2 Sugar composition and linkage analysis of AAPS………… 83 4.4.3 Acetylation positions of native AAPS……………………. 86 4.4.4 Determination of the sugar residues and their sequence of deacetylated AAPS by NMR……………………………... 92 4.4.5 Characterization of deacetylated AAPS by mass spectrometry……………………………………………… 98 4.4.6. Native AAPS stimulated macrophages to secrete pro inflammatory cytokines, and NO………………………… 100 4.4.7 Native AAPS exerted immunostimulatory activity through the production of reactive oxygen species (ROS) in murine macrophages……………………………………... 101 4.4.8 Both acetyl and carboxylic functionalities were essential for the immunostimulatio..……………………………….. 103 4.4.9 TLR4 was the natural receptor for native AAPS binding…104 4.4.10 Native AAPS induced cytokine secretion through MAPK phosphorylation…………………………………………... 105 4.4.11 Native AAPS induced cytokine secretion through protein kinase C (PKC) phosphorylation…………………………. 106 4.4.12 AAPS induced pro-inflammatory cytokine production through phosphatidylinositol 3-kinases (PI3Ks)………….. 108 4.4.13 Native AAPS induced the transcription factor nuclear factor κB (NF-κB)………………………………………... 109 4.4.14 Native AAPS enhanced the phagocytosis and the bactericidal potential of macrophages……………………. 112 4.4.15 Native AAPS exerted endotoxins tolerance like effect in macrophages……………………………………………… 115 4.4.16 AAPS was endotoxin free………………………………… 117 4.5 Discussion…………………………………………………………... 119 4.6 Conclusion………………………………………………………….. 132 Future perspectives…………………………………………………………………….. 133 Publications …………………………………………………………………………….. 134 References………………………………………………………………………………. 135 Appendix-NMR spectra………………………………………………………………... 161

    1 Berman, A. F. Herbs and dietary supplements in the prevention and treatment of cardiovascular disease. Prev. Cardiol. 3, 24-32 (2000).
    2 Moss, J. W. E. & Ramji, D. P. Nutraceutical therapies for atherosclerosis. Nat. Rev. Cardiol. 13, 513-532 (2016).
    3 Donaldson, M. S. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr. J. 3, 19 (2004).
    4 Espín, J. C., García-Conesa, M. T. & Tomás-Barberán, F. A. Carbohydr Polym. Phytochemistry 68, 2986-3008 (2007).
    5 McCarty, M. F. Nutraceutical resources for diabetes prevention--an update. Med. Hypotheses 64, 151-158 (2005).
    6 Ramberg, J. E., Nelson, E. D. & Sinnott, R. A. Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr. J. 9, 54 (2010).
    7 Borchers, A. T., Hackman, R. M., Keen, C. L., Stern, J. S. & Gershwin, M. E. Complementary medicine: a review of immunomodulatory effects of Chinese herbal medicines. The Am. J. Clin. Nutr. 66, 1303-1312 (1997).
    8 Dai, Z. et al. Immunomodulatory activity in vitro and in vivo of verbascose from mung beans (Phaseolus aureus). J. Agric. Food Chem. 62, 10727-10735 (2014).
    9 Ditamo, Y. et al. In vivo immunomodulatory effect of the lectin from edible mushroom Agaricus bisporus. Food Funct. 7, 262-269 (2016).
    10 Dhama, K. et al. Effect of immunomodulation and immunomodulatory agents on health with some bioactive principles, modes of action and potent biomedical applications. Int. J. Pharm. 11, 253-290 (2015).
    11 Hancock, R. E., Nijnik, A. & Philpott, D. J. Modulating immunity as a therapy for bacterial infections. Nat. Rev. Microbiol. 10, 243-254 (2012).
    12 Gjini, E. & Brito, P. H. Integrating antimicrobial therapy with host immunity to fight drug-resistant infections: Classical vs. Adaptive treatment. PLoS Comput. Biol. 12, e1004857 (2016).
    13 Zhang, Y. & Wang, F. Carbohydrate drugs: current status and development prospect. Drug Discov. Ther. 9, 79-87 (2015).
    14 Li, P. & Wang, F. Polysaccharides: Candidates of promising vaccine adjuvants. Drug Discov. Ther. 9, 88-93 (2015).
    15 Valverde, M. et al. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int. J. Microbiol. 2015, 14 (2015).
    16 Roupas, P., Keogh, J., Noakes, M., Margetts, C. & Taylor, P. The role of edible mushrooms in health: Evaluation of the evidence. J. Funct. Foods 4, 687-709 (2012).
    17 Friedman, M. Mushroom polysaccharides: Chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells,rodents, and humans. Foods 5, 80 (2016).
    18 Ohno, N. et al. Antitumor beta glucan from the cultured fruit body of Agaricus blazei. Biol. Pharm. Bull. 24, 820-828 (2001).
    19 Kozarski, M. et al. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem. 129, 1667-1675 (2011).
    20 Mizuno, T. et al. Antitumor activity and some properties of water-soluble polysaccharides from “Himematsutake,” the fruiting body of Agavicus blazei Murill. Agric. Biol. Chem. 54, 2889-2896 (1990).
    21 Kim, G. Y. et al. Effect of water-soluble proteoglycan isolated from Agaricus blazei on the maturation of murine bone marrow-derived dendritic cells. Int. Immunopharmacol. 5, 1523-1532 (2005).
    22 Hetland, G. et al. Effects of the medicinal mushroom Agaricus blazei Murill on immunity, infection and cancer. Scand. J. Immunol. 68, 363-370 (2008).
    23 Hu, T., Jiang, C., Huang, Q. & Sun, F. A comb-like branched β-D-glucan produced by a Cordyceps sinensis fungus and its protective effect against cyclophosphamide-induced immunosuppression in mice. Carbohydr. Polym. 142, 259-267 (2016).
    24 Yalin, W., Ishurd, O., Cuirong, S. & Yuanjiang, P. Structure analysis and antitumor activity of (1-->3)-beta-D-glucans (cordyglucans) from the mycelia of Cordyceps sinensis. Planta Med. 71, 381-384 (2005).
    25 Nie, S., Zhang, H., Li, W. & Xie, M. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. Bioact. Carbohydr. Dietary Fibre 1, 10-20 (2013).
    26 Wang, Y. et al. Structural characterization and immuno-enhancing activity of a highly branched water-soluble beta-glucan from the spores of Ganoderma lucidum. Carbohydr Polym 167, 337-344 (2017).
    27 Bao, X., Liu, C., Fang, J. & Li, X. Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydr. Res. 332, 67-74 (2001).
    28 Bao, X., Fang, J. & Li, X. Structural characterization and immunomodulating activity of a complex glucan from spores of Ganoderma lucidum. Biosci. Biotechnol. Biochem. 65, 2384-2391 (2001).
    29 Dong, Q. et al. A novel water-soluble beta-D-glucan isolated from the spores of Ganoderma lucidum. Carbohydr. Res. 353, 100-105 (2012).
    30 Guo, L. et al. Characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum. Int. Immunopharmacol. 9, 1175-1182 (2009).
    31 Sliva, D. Ganoderma lucidum (Reishi) in cancer treatment. Integr. Cancer Ther. 2, 358-364 (2003).
    32 Fang, J. et al. Structure of a beta-glucan from Grifola frondosa and its antitumor effect by activating Dectin-1/Syk/NF-kappaB signaling. Glycoconj. J. 29, 365-377 (2012).
    33 Kodama, N., Murata, Y. & Nanba, H. Administration of a polysaccharide from Grifola frondosa stimulates immune function of normal mice. J. Med. Food 7, 141-145 (2004).
    34 He, X. et al. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion's Mane) mushroom: A review. Int. J. Biol. Macromol. 97, 228-237 (2017).
    35 Cheng, J. H., Tsai, C. L., Lien, Y. Y., Lee, M. S. & Sheu, S. C. High molecular weight of polysaccharides from Hericium erinaceus against amyloid beta-induced neurotoxicity. BMC Complement. Altern. Med. 16, 170 (2016).
    36 Wang, M. et al. A unique polysaccharide purified from Hericium erinaceus mycelium prevents oxidative stress induced by H2O2 in human gastric mucosa epithelium cell. PLoS One 12, e0181546 (2017).
    37 Rhee, S. J., Cho, S. Y., Kim, K. M., Cha, D.-S. & Park, H.-J. A comparative study of analytical methods for alkali-soluble β-glucan in medicinal mushroom, Chaga (Inonotus obliquus). LWT-Food Sci. Technol. 41, 545-549 (2008).
    38 Hu, Y. et al. Inonotus obliquus polysaccharide regulates gut microbiota of chronic pancreatitis in mice. AMB Express 7, 39 (2017).
    39 Wang, J. et al. Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PLoS One 12, e0180476 (2017).
    40 Chou, Y. J. et al. Renal protective effects of low molecular weight of Inonotus obliquus polysaccharide (LIOP) on HFD/STZ-Induced nephropathy in mice. Int. J. Mol. Sci. 17 (2016).
    41 Kim, Y. O. et al. Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. Life Sci. 77, 2438-2456 (2005).
    42 Ma, L., Chen, H., Zhu, W. & Wang, Z. Effect of different drying methods on physicochemical properties and antioxidant activities of polysaccharides extracted from mushroom Inonotus obliquus. Food Res. Int. 50, 633-640 (2013).
    43 Zhang, Y., Li, S., Wang, X., Zhang, L. & Cheung, P. C. K. Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocoll. 25, 196-206 (2011).
    44 Ina, K., Kataoka, T. & Ando, T. The use of lentinan for treating gastric cancer. Anticancer Agents Med. Chem. 13, 681-688 (2013).
    45 Hamuro, J., Takatsuki, F., Suga, T., Kikuchi, T. & Suzuki, M. Synergistic antimetastatic effects of lentinan and interleukin 2 with pre-and post-operative treatments. Jpn. J. Cancer Res. 85, 1288-1297 (1994).
    46 Yoshino, S. et al. Immunoregulatory effects of the antitumor polysaccharide lentinan on Th1/Th2 balance in patients with digestive cancers. Anticancer Res. 20, 4707-4711 (2000).
    47 Patel, Y., Naraian, R. & Singh, V. K. Medicinal Properties of Pleurotus Species (Oyster Mushroom): A Review. World J. Fungal & Plant Biol. 3 01-12 ( 2012).
    48 Karácsonyi, Š. & Kuniak, Ľ. Polysaccharides of Pleurotus ostreatus: Isolation and structure of pleuran, an alkali-insoluble β-d-glucan. Carbohydr. Polym. 24, 107-111 (1994).
    49 Carbonero, E. R. et al. A β-glucan from the fruit bodies of edible mushrooms Pleurotus eryngii and Pleurotus ostreatoroseus. Carbohydr. Polym. 66, 252-257 (2006).
    50 Wang, Y., Yu, Y. & Mao, J. Carboxymethylated β-glucan derived from Poria cocos with biological activities. J. Agric. Food Chem. 57, 10913-10915 (2009).
    51 Sun, Y. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives. Int. J. Biol. Macromol. 68, 131-134 (2014).
    52 Zhang, Y., Kong, H., Fang, Y., Nishinari, K. & Phillips, G. O. Schizophyllan: A review on its structure, properties, bioactivities and recent developments. Bioact. Carbohydr. Dietary Fibre 1, 53-71 (2013).
    53 Sakagami, Y. et al. Effects of an anti-tumor polysaccharide, schizophyllan, on interferon-gamma and interleukin 2 production by peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 155, 650-655 (1988).
    54 Ohno, N., Miura, N. N., Nakajima, M. & Yadomae, T. Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa. Biol. Pharm. Bull. 23, 866-872 (2000).
    55 Sun, C., Rosendahl, A. H., Wang, X. D., Wu, D. Q. & Andersson, R. Polysaccharide-K (PSK) in cancer-old story, new possibilities? Curr. Med. Chem. 19, 757-762 (2012).
    56 Krzysztof Sobieralski, M. S., Jolanta Lisiecka Małgorzata Jędryczka Iwona Sas-Golak, Dorota Frużyńska-Jóźwiak. Fungi-derived b-glucans as a component of functional food Acta Sci. Pol., Hortorum Cultus 11, 111-128 (2012, ).
    57 Synytsya, A. & Novak, M. Structural diversity of fungal glucans. Carbohydr. Polym. 92, 792-809 (2013).
    58 Kataoka, K., Muta, T., Yamazaki, S. & Takeshige, K. Activation of macrophages by linear (1→3)-β-D-glucans: Implications for the recognition of fungi by innate immunity. J. Biol. Chem. 277, 36825-36831 (2002).
    59 Sletmoen, M. & Stokke, B. T. Higher order structure of (1,3)-b-D-glucans and its influence on their biological activities and complexation abilities. Biopolymers 89, 310-321 (2008).
    60 Novak, M. & Vetvicka, V. Glucans as biological response modifiers. Endocr. Metab. Immune Disord. Drug Targets 9, 67-75 (2009).
    61 Ma, Z., Wang, J., Zhang, L., Zhang, Y. & Ding, K. Evaluation of water soluble β-D-glucan from Auricularia auricular-judae as potential anti-tumor agent. Carbohydr. Polym. 80, 977-983 (2010).
    62 Kitamura, S. et al. An antitumor, branched (1→3)-β-D-glucan from a water extract of fruiting bodies of Cryptoporus volvatus. Carbohydr. Res. 263, 111-121 (1994).
    63 Aimanianda, V. et al. Cell wall beta-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis. J. Biol. Chem. 284, 13401-13412 (2009).
    64 De Baets, S. & Vandamme, E. J. Extracellular Tremella polysaccharides: structure, properties and applications. Biotechnol. Lett. 23, 1361-1366 (2001).
    65 Cheng, J. J., Lu, M. K., Lin, C. Y. & Chang, C. C. Characterization and functional elucidation of a fucosylated 1,6-α-D-mannogalactan polysaccharide from Antrodia cinnamomea. Carbohydr. Polym. 83, 545-553 (2011).
    66 Ukai, S. et al. Polysaccharides in fungi. Xiii. Antitumor activity of various polysaccharides isolated from Dictyophora indusiata, Ganoderma japonicum, Cordyceps cicadae, Auricularia auricula-judae, and Auricularia Species. Chem. Pharm. Bull. (Tokyo) 31, 741-744 (1983).
    67 Sun, Y. X., Liu, J. C. & Kennedy, J. F. Purification, composition analysis and antioxidant activity of different polysaccharide conjugates (APPs) from the fruiting bodies of Auricularia polytricha. Carbohydr. Polym. 82, 299-304 (2010).
    68 Cherniak, R., Morris, L. C., Belay, T., Spitzer, E. D. & Casadevall, A. Variation in the structure of glucuronoxylomannan in isolates from patients with recurrent Cryptococcal meningitis. Infect. Immun. 63, 1899-1905 (1995).
    69 Kobayashi, H. et al. Structure of a cell wall mannan from the pathogenic yeast, Candida catenulata: assignment of 1H nuclear magnetic resonance chemical shifts of the inner alpha-1,6-linked mannose residues substituted by a side chain. Arch. Biochem. Biophys. 341, 70-74 (1997).
    70 Cherniak, R., Morris, L. C., Anderson, B. C. & Meyer, S. A. Facilitated isolation, purification, and analysis of glucuronoxylomannan of Cryptococcus neoformans. Infect. Immun. 59, 59-64 (1991).
    71 Vinogradov, E., Petersen, B. O., Duus, J. O. & Wasser, S. The structure of the glucuronoxylomannan produced by culinary-medicinal yellow brain mushroom (Tremella mesenterica Ritz.:Fr., Heterobasidiomycetes) grown as one cell biomass in submerged culture. Carbohydr. Res. 339, 1483-1489 (2004).
    72 Kiho, T. et al. Structural features of an anti-diabetic polysaccharide (TAP) from Tremella aurantia. Chem. Pharm. Bull. (Tokyo) 48, 1793-1795 (2000).
    73 Du, X. et al. Chemical modification of an acidic polysaccharide (TAPA1) from Tremella aurantialba and potential biological activities. Food Chem. 143, 336-340 (2014).
    74 Ahrazem, O., Prieto, A., Leal, J., Jimenez-Barbero, J. & Bernabe, M. Fungal cell wall galactomannan isolated from Apodus deciduus. Carbohydr. Res. 337, 1503-1506 (2002).
    75 Miyazaki, T., Oikawa, N. & Yamada, H. Studies on fungal polysaccharides. Xx. galactomannan of Cordyceps sinensis. Chem. Pharm. Bull. (Tokyo) 25, 3324-3328 (1977).
    76 Ahrazem, O., Prieto, A., Leal, J. A., Jiménez-Barbero, J. & Bernabé, M. Fungal cell-wall galactomannans isolated from Geotrichum spp. and their teleomorphs, Dipodascus and Galactomyces. Carbohydr. Res. 337, 2347-2351 (2002).
    77 Fontaine, T. et al. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog. 7, e1002372 (2011).
    78 Alquini, G., Carbonero, E. R., Rosado, F. R., Cosentino, C. & Iacomini, M. Polysaccharides from the fruit bodies of the basidiomycete Laetiporus sulphureus (Bull.: Fr.) Murr. FEMS Microbiol. Lett. 230, 47-52 (2004).
    79 Smiderle, F. R. et al. A 3-O-methylated mannogalactan from Pleurotus pulmonarius: structure and antinociceptive effect. Phytochemistry 69, 2731-2736 (2008).
    80 Gea-Banacloche, J. C. Immunomodulation. In: Runge M.S., Patterson C. (eds) Humana Press. 893-904 (Humana Press, 2006).
    81 Isaacs, D. Infectious risks associated with biologics. Adv. Exp. Med. Biol. 764, 151-158 (2013).
    82 Dinarello, C. A. Proinflammatory cytokines. Chest 118, 503-508 (2000).
    83 Scheller, J., Chalaris, A., Schmidt-Arras, D. & Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813, 878-888 (2011).
    84 Tzianabos, A. O. polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin. Microbiol. Rev. 13, 523-533 (2000).
    85 Turvey, S. E. & Broide, D. H. Chapter 2: Innate Immunity. J. Allergy clin. immunol. 125, S24-S32 (2010).
    86 Cheroutre, H. & Lefrancois, L. in Mucosal Immunology (Fourth Edition) 733-748 (Academic Press, 2015).
    87 Takeuchi, C. & Wentworth, P. in Reviews in Cell Biology and Molecular Medicine (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).
    88 Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723-737 (2011).
    89 Laskin, D. L. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem. Res. Toxicol. 22, 1376-1385 (2009).
    90 Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958-969 (2008).
    91 Lipscomb, M. F. & Masten, B. J. Dendritic cells: immune regulators in health and disease. Physiol. Rev. 82, 97-130 (2002).
    92 Krystel-Whittemore, M., Dileepan, K. N. & Wood, J. G. Mast cell: A multi-functional master cell. Front. Immunol. 6, 620 (2015).
    93 Mandal, A. & Viswanathan, C. Natural killer cells: In health and disease. Hematol. Oncol. Stem Cell Ther. 8, 47-55 (2015).
    94 Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503-510 (2008).
    95 Kelso, A. Cytokines: structure, function and synthesis. Curr. Opin. Immunol. 2, 215-225 (1989).
    96 Turner, M. D., Nedjai, B., Hurst, T. & Pennington, D. J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843, 2563-2582 (2014).
    97 Flannagan, R. S., Jaumouille, V. & Grinstein, S. The cell biology of phagocytosis. Annu. Rev. Pathol. 7, 61-98 (2012).
    98 Rosales, C. & Uribe-Querol, E. Phagocytosis: A fundamental process in immunity. BioMed Res. Int. 2017, 18 (2017).
    99 Aderem, A. Phagocytosis and the inflammatory response. J. Infect. Dis. 187 Suppl 2, S340-345 (2003).
    100 Thompson, M. R., Kaminski, J. J., Kurt-Jones, E. A. & Fitzgerald, K. A. Pattern recognition receptors and the innate immune response to viral infection. Viruses 3, 920-940 (2011).
    101 Marzabadi, C. H. & Franck, R. W. Small-molecule carbohydrate-based immunostimulants. Chemistry 23, 1728-1742 (2017).
    102 Elia, P. P., Tolentino, Y. F. M., Bernardazzi, C. & de Souza, H. S. P. The role of innate immunity receptors in the pathogenesis of inflammatory bowel disease. Mediators Inflamm. 2015, 10 (2015).
    103 Botos, I., Segal, D. M. & Davies, D. R. The structural biology of Toll-like receptors. Structure 19, 447-459 (2011).
    104 Vaure, C. & Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol. 5, 316 (2014).
    105 Dan, D. J., Alvarez, L. A., Zhang, X. & Soldati, T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 6, 472-485 (2015).
    106 Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181-189 (2004).
    107 Spooner, R. & Yilmaz, O. The role of reactive-oxygen-species in microbial persistence and inflammation. Int. J. Mol. Sci. 12, 334-352 (2011).
    108 Zhang, J. et al. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016, 18 (2016).
    109 Bogdan, C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 36, 161-178 (2015).
    110 Chakravortty, D. & Hensel, M. Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect. 5, 621-627 (2003).
    111 Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343-353 (2015).
    112 Jantan, I., Ahmad, W. & Bukhari, S. N. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci. 6, 655 (2015).
    113 Schepetkin, I. A. & Quinn, M. T. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6, 317-333 (2006).
    114 Lee, C. J., Huo, Y. S., Lee, L. H., Lu, C. H. & Koizumi, K. Immunomodulating fungal and plant polysaccharides; Biochemistry, immunologic activity and clinical application. J. Trad. Med. 21, 67-80 (2004).
    115 Giavasis, I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr. Opin. Biotechnol. 26, 162-173 (2014).
    116 Huang, X. & Nie, S. The structure of mushroom polysaccharides and their beneficial role in health. Food Funct. 6, 3205-3217 (2015).
    117 Villares, A., Mateo-Vivaracho, L. & Guillamón, E. Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture 2 (2012).
    118 Paterson, R. R. & Lima, N. Biomedical effects of mushrooms with emphasis on pure compounds. Biomed. J. 37, 357-368 (2014).
    119 Gao, Q., Killie, M. K., Chen, H., Jiang, R. & Seljelid, R. Characterization and cytokine-stimulating activities of acidic heteroglycans from Tremella fuciformis. Planta Med. 63, 457-460 (1997).
    120 Mizuno, M. et al. Fucogalactan isolated from Sarcodon aspratus elicits release of tumor necrosis factor-alpha and nitric oxide from murine macrophages. Immunopharmacology 46, 113-121 (2000).
    121 Duncan, C. J., Pugh, N., Pasco, D. S. & Ross, S. A. Isolation of a galactomannan that enhances macrophage activation from the edible fungus Morchella esculenta. J. Agric. Food Chem. 50, 5683-5685 (2002).
    122 Hsu, H. Y. et al. Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. J. Immunol. 173, 5989-5999 (2004).
    123 Smiderle, F. R. et al. Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC Complement. Altern. Med. 11, 58 (2011).
    124 Liao, W. et al. Structure characterization of a novel polysaccharide from Dictyophora indusiata and its macrophage immunomodulatory activities. J. Agric. Food Chem. 63, 535-544 (2015).
    125 Cui, S. W. in Food Carbohydrates (ed Steve W Cui) (CRC Press, 2005).
    126 Liu, J., Willför, S. & Xu, C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact. Carbohydr. Dietary Fibre 5, 31-61 (2015).
    127 Mejanelle, P., Bleton, J., Tchapla, A. & Goursaud, S. in Journal of Chromatography Library Vol. 66 (ed Ziad El Rassi) 845-902 (Elsevier, 2002).
    128 Clou, D. & S N, W. in Proc. S. Afr. Sug. Technol. Ass. Vol. 83 392-409 (2010).
    129 Ruiz-Matute, A. I., Hernández-Hernández, O., Rodríguez-Sánchez, S., Sanz, M. L. & Martínez-Castro, I. Derivatization of carbohydrates for GC and GC–MS analyses. J. Chromatogr. B 879, 1226-1240 (2011).
    130 Hakomori, S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem. 55, 205-208 (1964).
    131 Prehm, P. Methylation of carbohydrates by methyl trifluoromethanesulfonate in trimethyl phosphate. Carbohydr. Res. 78, 372-374 (1980).
    132 Roslund, M. U., Tähtinen, P., Niemitz, M. & Sjöholm, R. Complete assignments of the 1H and 13C chemical shifts and JH,H coupling constants in NMR spectra of d-glucopyranose and all d-glucopyranosyl-d-glucopyranosides. Carbohydr. Res. 343, 101-112 (2008).
    133 Marion, D. An introduction to biological NMR spectroscopy. Mol. Cell. Proteomics 12, 3006-3025 (2013).
    134 Agrawal, P. K. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 31, 3307-3330 (1992).
    135 Bubb, W. A. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts Magn. Reson. Part A 19A, 1-19 (2003).
    136 Cheng, H. N. & Neiss, T. G. Solution NMR spectroscopy of food polysaccharides. Polym. Rev. 52, 81-114 (2012).
    137 Kailemia, M. J., Ruhaak, L. R., Lebrilla, C. B. & Amster, I. J. Oligosaccharide analysis by mass spectrometry: A review of recent developments. Anal. Chem. 86, 196-212 (2014).
    138 Banerjee, S. & Mazumdar, S. Electrospray ionization mass spectrometry: A technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem. 2012, 40 (2012).
    139 Wu, S. H., Ryvarden, L. & Chang, T. T. Antrodia camphorata ("niu-chang-chih"), new combination of a medicinal fungus in Taiwan. Bot. Bull. Acad. Sin. 38, 273-275 (1997).
    140 Chang, T. T. & Chou, W. N. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol. Res. 99, 756-758 (1995).
    141 Jong, S. C. The legitimate scientific name of the valuable medicinal mushroom “Niu-ChangChih” known only from Taiwan. Micol. Apl. Int., Med Hypotheses 24, 43-52 (2012).
    142 Lu, M. C. et al. Recent research and development of Antrodia cinnamomea. Pharmacol. Ther. 139, 124-156 (2013).
    143 Geethangili, M. & Tzeng, Y. M. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid. Based Complement. Alternat. Med. 2011, 17 (2011).
    144 Ao, Z. H. et al. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J. Ethnopharmacol. 121, 194-212 (2009).
    145 Chien, S. C. et al. Anti-inflammatory activities of new succinic and maleic derivatives from the fruiting body of Antrodia camphorata. J. Agric. Food Chem. 56, 7017-7022 (2008).
    146 Hsieh, Y. H. et al. Antrocamphin A, an anti-inflammatory principal from the fruiting body of Taiwanofungus camphoratus, and its mechanisms. J. Agric. Food Chem. 58, 3153-3158 (2010).
    147 Lin, T. Y. et al. Metabolite profiles for Antrodia cinnamomea fruiting bodies harvested at different culture ages and from different wood substrates. J. Agric. Food Chem. 59, 7626-7635 (2011).
    148 Wang, H.-C. et al. Establishment of the metabolite profile for an Antrodia cinnamomea health food product and investigation of its chemoprevention activity. J. Agric. Food Chem. 61, 8556-8564 (2013).
    149 Chen, J. J., Lin, W. J., Liao, C. H. & Shieh, P. C. Anti-inflammatory Benzenoids from antrodia camphorata. J. Nat. Prod. 70, 989-992 (2007).
    150 Chen, C. C. et al. Chemical characterization and anti-inflammatory effect of polysaccharides fractionated from submerge-cultured Antrodia camphorata mycelia. J. Agric. Food Chem. 55, 5007-5012 (2007).
    151 Cheng, J. J., Huang, N. K., Chang, T. T., Wang, D. L. & Lu, M. K. Study for anti-angiogenic activities of polysaccharides isolated from Antrodia cinnamomea in endothelial cells. Life Sci. 76, 3029-3042 (2005).
    152 Lin, C. C. et al. The adjuvant effects of high-molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines. PLoS One 10, e0116191 (2015).
    153 Liu, J. J. et al. Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicol. Appl. Pharmacol. 201, 186-193 (2004).
    154 Tsai, M. C., Song, T. Y., Shih, P. H. & Yen, G. C. Antioxidant properties of water-soluble polysaccharides from Antrodia cinnamomea in submerged culture. Food Chem. 104, 1115-1122 (2007).
    155 Liu, Y. et al. A novel heterogalactan from Antrodia camphorata and anti-angiogenic activity of its sulfated derivative. Polymers 9, 228 (2017).
    156 Yang, C. M., Zhou, Y. J., Wang, R. J. & Hu, M. L. Anti-angiogenic effects and mechanisms of polysaccharides from Antrodia cinnamomea with different molecular weights. J. Ethnopharmacol. 123, 407-412 (2009).
    157 Chen, Y. J. et al. Polysaccharides from Antrodia camphorata mycelia extracts possess immunomodulatory activity and inhibits infection of Schistosoma mansoni. Int. Immunopharmacol. 8, 458-467 (2008).
    158 Lee, I. H. et al. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol. Lett. 209, 63-67 (2002).
    159 Ker, Y. B., Peng, C. C., Chang, W. L., Chyau, C. C. & Peng, R. Y. Hepatoprotective boactivity of the glycoprotein, Antrodan, isolated from Antrodia cinnamomea mycelia. PLoS One 9, e93191 (2014).
    160 Han, H. F. et al. Protective effects of a neutral polysaccharide isolated from the mycelium of Antrodia cinnamomea on Propionibacterium acnes and lipopolysaccharide induced hepatic injury in mice. Chem. Pharm. Bull. 54, 496-500 (2006).
    161 Li, C. Y. et al. Honokiol inhibits LPS-induced maturation and inflammatory response of human monocyte-derived dendritic cells. J. Cell. Physiol. 226, 2338-2349 (2011).
    162 DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-356 (1956).
    163 Masuko, T. et al. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 339, 69-72 (2005).
    164 Liu, J. Y. et al. Polysaccharides from Dioscorea batatas induce tumor necrosis factor-α secretion via toll-like receptor 4-mediated protein kinase signaling pathways. J. Agric. Food Chem. 56, 9892-9898 (2008).
    165 Hsu, H. Y. et al. Immunostimulatory bioactivity of algal polysaccharides from Chlorella pyrenoidosa activates macrophages via Toll-like receptor 4. J. Agric. Food Chem. 58, 927-936 (2010).
    166 Yang, F. L. et al. Structure and immunological characterization of the capsular polysaccharide of a pyrogenic liver abscess caused by Klebsiella pneumoniae: activation of macrophages through Toll-like receptor 4. J. Biol. Chem. 286, 21041-21051 (2011).
    167 Lin, M. H. et al. A novel exopolysaccharide from the biofilm of Thermus aquaticus YT-1 induces the immune response through Toll-like receptor 2. J. Biol. Chem. 286, 17736-17745 (2011).
    168 Tsai, C. C. et al. Oligosaccharide and peptidoglycan of Ganoderma lucidum activate the immune response in human mononuclear cells. J. Agric. Food Chem. 60, 2830-2837 (2012).
    169 Cargnello, M. & Roux, P. P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75, 50-83 (2011).
    170 Loegering, D. J. & Lennartz, M. R. Protein kinase c and toll-like receptor signaling. Enzyme Res. 2011, 7 (2011).
    171 Fan, H. & Cook, J. A. Molecular mechanisms of endotoxin tolerance. J. Endotoxin Res. 10, 71-84 (2004).
    172 Ferreira, S. S., Passos, C. P., Madureira, P., Vilanova, M. & Coimbra, M. A. Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 132, 378-396 (2015).
    173 Lu, M. K. et al. Characterization of a sulfated galactoglucan from Antrodia cinnamomea and its anticancer mechanism via TGFbeta/FAK/Slug axis suppression. Carbohydr. Polym. 167, 229-239 (2017).
    174 Rangarajan, M., Aduse-Opoku, J., Hashim, A., Paramonov, N. & Curtis, M. A. Characterization of the α- and β-Mannosidases of Porphyromonas gingivalis. J. Bacteriol. 195, 5297-5307 (2013).
    175 Bardalaye, P. C. & Nordin, J. H. Chemical structure of the galactomannan from the cell wall of Aspergillus niger. J. Biol. Chem. 252, 2584-2591 (1977).
    176 Nakajima, T. & Ichishima, E. Chemical structure of the galactomannan moiety in the cell wall glycoproteins of Aspergillus oryzae. J. Ferment. Bioeng. 78, 472-475 (1994).
    177 Latgé, J. P. et al. Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect. Immun. 62, 5424-5433 (1994).
    178 Dey, P. M. in Adv. Carbohydr. Chem. Biochem. 35 341-376 (1978).
    179 Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335-376 (2003).
    180 Meng, L. M., Pai, M. H., Liu, J. J. & Yeh, S. L. Polysaccharides from extracts of Antrodia camphorata mycelia and fruiting bodies modulate inflammatory mediator expression in mice with polymicrobial sepsis. Nutrition 28, 942-949 (2012).
    181 Chiu, C.-H. et al. Physicochemical characteristics and anti-inflammatory activities of antrodan, a novel glycoprotein isolated from Antrodia cinnamomea mycelia. Molecules 19, 22-40 (2014).
    182 Fa, K. N. et al. Anti-metastatic effects of antrodan, the Antrodia cinnamomea mycelia glycoprotein, in lung carcinoma cells. Int. J. Biol. Macromol. 74, 476-482 (2015).
    183 Zhang, X., Qi, C., Guo, Y., Zhou, W. & Zhang, Y. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models. Carbohydr. Polym. 149, 186-206 (2016).
    184 Cario, E., Gerken, G. & Podolsky, D. K. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127, 224-238 (2004).
    185 Wheeler, D. S. et al. Induction of endotoxin tolerance enhances bacterial clearance and survival in murine polymicrobial sepsis. Shock 30, 267-273 (2008).
    186 Kovacs-Nolan, J., Kanatani, H., Nakamura, A., Ibuki, M. & Mine, Y. b-1,4-mannobiose stimulates innate immune responses and induces TLR4-dependent activation of mouse macrophages but reduces severity of inflammation during endotoxemia in mice. J. Nutr. 143, 384-391 (2013).
    187 Lekstrom-Himes, J. A. & Gallin, J. I. Immunodeficiency diseases caused by defects in phagocytes. N. Engl. J. Med. 343, 1703-1714 (2000).
    188 Lehmann, A. K., Sornes, S. & Halstensen, A. Phagocytosis: measurement by flow cytometry. J. Immunol. Methods 243, 229-242 (2000).
    189 Wu, F. et al. Global diversity and taxonomy of the Auricularia auricula-judae complex (Auriculariales, Basidiomycota). ‎Mycol. Prog. 14, 95 (2015).
    190 Li, L., Zhong, C. H. & Bian, Y.B. The molecular diversity analysis of Auricularia auricula-judae in China by nuclear ribosomal DNA intergenic spacer. Electron. J. Biotechnol.17,27-33 (2014).
    191 Anna Bonell. Potential of fungi used in traditional chinese medicine: Auricularia http://www.davidmoore.org.uk/Sec04_07.htm (2011).
    192 Reza, A. et al. Comparative antitumor activity of different solvent fractions from an Auricularia auricula-judae ethanol extract in p388d1 and sarcoma 180 cells. Toxicol. Res. 27, 77-83 (2011).
    193 Unekwu, H. R., Audu, J. A., Makun, M. H. & Chidi, E. E. Phytochemical screening and antioxidant activity of methanolic extract of selected wild edible Nigerian mushrooms. Asian Pac. J. Trop. Dis. 4, S153-S157 (2014).
    194 Kho, Y. S., Vikineswary, S., Abdullah, N., Kuppusamy, U. R. & Oh, H. I. Antioxidant capacity of fresh and processed fruit bodies and mycelium of Auricularia auricula-judae (Fr.) Quél. J. Med. Food 12, 167-174 (2009).
    195 Chen, G. et al. Hypocholesterolemic effects of Auricularia auricula ethanol extract in ICR mice fed a cholesterol-enriched diet. J. Food Sci. Technol. 48, 692-698 (2011).
    196 Damte, D., Reza, M. A., Lee, S. J., Jo, W. S. & Park, S. C. Anti-inflammatory activity of dichloromethane extract of Auricularia auricula-judae in Raw 264.7 cells. Toxicol. Res. 27, 11-14 (2011).
    197 Giri, S., Biswas, G., Pradhan, P., Mandal, S., Acharya, K. Antimicrobial activities of basidiocarps of wild edible mushrooms of West Bengal, India. Int. J. Pharm. Tech. Res 4, 1554-1560 (2012).
    198 Yu, S.C. & Oh, T.J. Antioxidant activities and antimicrobial effects of extracts from Auricularia auricula-judae. J. Korean Soc. Food Sci. Nutr. 45, 327-332((2016).
    199 Bin, L., Wei, L., Xiaohong, C., Mei, J. & Mingsheng, D. In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom. Ann. Microbiol. 62, 1523-1530 (2012).
    200 Ma, Z., Wang, J. & Zhang, L. Structure and chain conformation of beta-glucan isolated from Auricularia auricula-judae. Biopolymers 89, 614-622 (2008).
    201 Sone, Y., Kakuta, M. & Misaki, A. Isolation and characterization of polysaccharides of “kikurage,” fruit body of Auricularia auricula-judae. Agric. Biol. Chem. 42, 417-425 (1978).
    202 Zeng, F. et al. Chemical properties of a polysaccharide purified from solid-state fermentation of Auricularia auricular and its biological activity as a hypolipidemic agent. J. Food Sci. 78, H1470-1475 (2013).
    203 Zhang, L., Yang, L., Ding, Q. & Chen, X. Studies on molecular weights of polysaccharides of Auricularia auricula-judae. Carbohydr. Res. 270, 1-10 (1995).
    204 Yoon, S. J. et al. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thromb. Res. 112, 151-158 (2003).
    205 Wu, Q. et al. Chemical characterization of Auricularia auricula polysaccharides and its pharmacological effect on heart antioxidant enzyme activities and left ventricular function in aged mice. Int. J. Biol. Macromol. 46, 284-288 (2010).
    206 Ma, Z. et al. The molecular structure and solution conformation of an acidic heteropolysaccharide from Auricularia auricula-judae. Biopolymers 95, 217-227 (2011).
    207 Yang, L. et al. Carboxymethylation of polysaccharides from Auricularia auricula and their antioxidant activities in vitro. Int. J. Biol. Macromol. 49, 1124-1130 (2011).
    208 Zhang, H., Wang, Z.-Y., Zhang, Z. & Wang, X. Purified Auricularia auricular-judae polysaccharide (AAP I-a) prevents oxidative stress in an ageing mouse model. Carbohydr. Polym. 84, 638-648 (2011).
    209 Hao, H. Effect effects of Auricularia auricula polysaccharides on exhaustive swimming exercise-induced oxidative stress in mice. Trop. J.Pharm. Res. 13 1845-1851 (2014).
    210 Bai, H. et al. Synergistic radiation protective effect of purified Auricularia auricular-judae polysaccharide (AAP IV) with grape seed procyanidins. Molecules 19, 20675-20694 (2014).
    211 Zhang, H. et al. In vitro antioxidant activities of sulfated derivatives of polysaccharides extracted from Auricularia auricular. Int. J. Mol. Sci. 12, 3288-3302 (2011).
    212 Nguyen, T. L. et al. Immuno-enhancing activity of sulfated Auricularia auricula polysaccharides. Carbohydr. Polym. 89, 1117-1122 (2012).
    213 Yuan, Z., He, P., Cui, J. & Takeuchi, H. Hypoglycemic effect of water-soluble polysaccharide from Auricularia auricula-judae Quel. on genetically diabetic KK-Ay mice. Biosci. Biotechnol. Biochem. 62, 1898-1903 (1998).
    214 Li, C., Mao, X. & Xu, B. Pulsed electric field extraction enhanced anti-coagulant effect of fungal polysaccharide from Jew's ear (Auricularia auricula). Phytochem. Anal. 24, 36-40 (2013).
    215 Yu, M. et al. Isolation of an anti-tumor polysaccharide from Auricularia polytricha (jew’s ear) and its effects on macrophage activation. Eur. Food Res. Technol. 228, 477 (2008).
    216 Filisetti-Cozzi, T. M. & Carpita, N. C. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 197, 157-162 (1991).
    217 Hestrin, S. The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J. Biol. Chem. 180, 249-261 (1949).
    218 Taylor, R. L. & Conrad, H. E. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl group. Biochemistry 11, 1383-1388 (1972).
    219 Fukao, T. & Koyasu, S. PI3K and negative regulation of TLR signaling. Trends Immunol. 24, 358-363 (2003).
    220 Hawkins, P. T. & Stephens, L. R. PI3K signalling in inflammation. Biochim. biophys. acta, mol. cell. biol. lipids 1851, 882-897 (2015).
    221 Zhang, Y. et al. Kinase AKT controls innate immune cell development and function. Immunology 140, 143-152 (2013).
    222 Tornatore, L., Thotakura, A. K., Bennett, J., Moretti, M. & Franzoso, G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 22, 557-566 (2012).
    223 Hayden, M. S., West, A. P. & Ghosh, S. NF-kappaB and the immune response. Oncogene 25, 6758-6780 (2006).
    224 Gille, S. & Pauly, M. O-Acetylation of plant cell wall polysaccharides. Front. Plant. Sci. 3, 12 (2012).
    225 Kabel, M. A., de Waard, P., Schols, H. A. & Voragen, A. G. Location of O-acetyl substituents in xylo-oligosaccharides obtained from hydrothermally treated Eucalyptus wood. Carbohydr. Res. 338, 69-77 (2003).
    226 Li, Z. et al. Preparation of a novel glucuronomannan from Auricularia auricala and its immunological activity. Nat. Prod. Commun. 7, 1507-1510 (2012).
    227 Fonseca, F. L. et al. Immunomodulatory effects of serotype b glucuronoxylomannan from Cryptococcus gattii correlate with polysaccharide diameter. Infect. Immun. 78, 3861-3870 (2010).
    228 Shoham, S., Huang, C., Chen, J. M., Golenbock, D. T. & Levitz, S. M. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J. Immunol. 166, 4620-4626 (2001).
    229 Chaka, W. et al. Cryptococcus neoformans and cryptococcal glucuronoxylomannan, galactoxylomannan, and mannoprotein induce different levels of tumor necrosis factor alpha in human peripheral blood mononuclear cells. Infect. Immun. 65, 272-278 (1997).
    230 Cosentino-Gomes, D., Rocco-Machado, N. & Meyer-Fernandes, J. R. Cell signaling through protein kinase C oxidation and activation. Int. J. Mol. Sci. 13, 10697-10721 (2012).
    231 Xie, S. et al. Identification of a role for the PI3K/AKT/mTOR signaling pathway in innate immune cells. PLoS One 9, e94496 (2014).
    232 Morgan, M. J. & Liu, Z.-g. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21, 103-115 (2011).
    233 Chernikov, O. V. et al. A GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus modulates immune response in macrophages and in mice. Sci. Rep. 7, 6315 (2017).
    234 Li, Y. et al. Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species. J. Biol. Chem. 288, 16225-16234 (2013).
    235 Kim, H. M. et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130, 906-917 (2007).
    236 Kubler-Kielb, J., Vinogradov, E., Chu, C. & Schneerson, R. O-Acetylation in the O-specific polysaccharide isolated from Shigella flexneri serotype 2a. Carbohydr. Res. 342, 643-647 (2007).
    237 Ellerbroek, P. M. et al. O-acetylation of cryptococcal capsular glucuronoxylomannan is essential for interference with neutrophil migration. J. Immunol. 173, 7513-7520 (2004).
    238 Vassallo, R. & Limper, A. H. Fungal b-glucan can yield false-positive results with the Limulus amebocyte lysate endotoxin assay. Chest 116, 583-584 (1999).
    239 Hirano, M., Matsumoto, T., Kiyohara, H. & Yamada, H. Lipopolysaccharide independent Limulus amebocyte lysate activating, mitogenic and anti-complementary activities of pectic polysaccharides from Chinese herbs. Planta Med. 60, 248-252 (1994).
    240 Schepetkin, I. A. et al. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha. Int. Immunopharmacol. 8, 1455-1466 (2008).

    QR CODE