研究生: |
何依萍 Yi Ping Ho |
---|---|
論文名稱: |
利用雷射直寫佈植金屬導線之研究 Formation of Metal Lines by Laser Direct Writing Technique |
指導教授: |
楊士禮
Sidney Yang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 雷射直寫 、臭氧電漿 、甲酸銅 、醋酸銀 、奈米銀 |
外文關鍵詞: | laser direct writing, ozone plasma, copper formate, silver acetate, nano-sized silver |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近十年,由於薄膜顯示技術的蓬勃發展下,面板的尺寸已邁入比人還要高的階段,文獻中嘗試多種方法來達到降低成本的目的。本文我們提出以雷射直寫的技術於玻璃基板上藉由旋轉塗佈甲酸銅、醋酸銀及奈米銀溶液佈植金屬線之可能機制。此外我們也利用奈米銀溶液比較不同雷射架設方式所得之金屬導線結果。
首先,我們添加適當的甘油於甲酸銅水溶液內,以抑制甲酸銅薄膜的結晶現象;然後在基板和甲酸銅水溶液之間,鍍上一層Ozone Plasma,以改善玻璃基板的表面張力,使甲酸銅水溶液可均勻的塗佈在玻璃基板上,接著在80 ℃下,放置15分鐘,讓水分蒸發,使甲酸銅成膜於基板上。我們嘗試利用事先撰寫好的LabVIEW程式,使電腦精確的控制移動平台速度,將波長532 nm Nd:YAG脈衝光束,聚焦並掃描於覆蓋有甲酸銅薄膜之玻璃基板上,甲酸銅薄膜因為吸收頻率為50 Hz之雷射光能量,熱解溫度上升到190℃ 至250℃之間,當雷射掃描速率為0.25 mm/s時,甲酸銅產生熱裂解反應而得直寫後之均勻且平滑的銅線沉積。我們嘗試量測此銅線電性,得到線寬為10.59 μm、厚度為30 nm、兩點量測的距離為10 μm時電阻率為5 Ω-m 。金屬線電阻值偏高是因為高溫下所產生之銅線容易氧化。
由於甲酸銅溶液所得到之銅線的電阻率極高,因此我們嘗試改用醋酸銀溶液進行雷射直寫,得到金屬銀線,並且利用EDTA螯合劑清洗未經雷射直寫的部份,再利用四點探針量測其電阻,實驗結果得到銀線的線寬為99.53μm,兩點量測的距離為500μm時,銀線的電阻約為 578 KΩ,電阻率為1.15×10-2 Ω-m。金屬線電阻值偏高是因為醋酸銀的溶解率不高。
最後我們利用奈米銀為薄膜材料來進行雷射直寫得到金屬銀,並且比較雷射直寫之方向只從基板前方或後方和從兩邊同時進行之結果。從實驗結果可以發現若從薄膜的前方及後方同時進行雷射直寫則可以得到較好電性且較細線寬的金屬導線。
In the last decade, there has been a rapid growth of development of thin film display techniques. In this research, we demonstrated the laser direct writing technique and reported experimental results of depositing copper from the coated copper formate thin film on glass. On the same way, silver acetate was utilized to deposit silver on glass substrate. Moreover, a technique of using frequency doubling solid state Q-switched Nd: YAG pulse laser direct writing from solid film of nano-sized silver on glass substrates was also presented in this study.
First of all, crystallization of the copper formate was eliminated by adding proper amount of glycerol into the water solution. To suppress the surface tension of water against the glass substrate, ozone plasma was coated between the substrate and copper formate layer. Scan speed was accurately controlled by using LabVIEW program. Moreover, Nd: YAG laser pulses (532 nm) was focused and scanned on the glass substrates covered by copper formate film. With scan speed at 0.25 mm/s and appropriate laser pulse energy, copper lines were deposited after the copper formate decomposed thermally between 190 °C and 250 °C. The deposited 10.59 μm copper line showed good adhesion, good uniformity, and low edge roughness.
However, Cu was oxidized easily under the high temperature of laser direct writing process. Therefore, silver acetate replaced copper formate because the activity of silver is less than copper. The electrical resistivity of silver lines after laser-treated process was not good enough because silver acetate was hard to be dissolved in solution. Finally, we utilized nano-sized silver colloids on glass substrates, through optimizing alignments and comparing the different experimental setup corresponding to different linewidths and electrical resistivities, the silver lines showed good adhesion, good uniformity, and low electrical resistivity. However, the silver line did not provide as low electrical resistivity as in bulk silver; therefore, we may try the electroless plating process to improve it in the future.
1.3 Reference
1. S. M. Metev and V. P. Veiko, Laser-Assisted Micro-technology, 2nd ed, 1998.
2. H. M. Smith and A. F. Turner, Appl. Opt., Vol. 4, pp. 147, 1965.
3. E. Hetch, Optics, Addison-Wesley, Reading, Massachusetts, 1990.
4.http://www.wisegeek.com/what-are-the-different-types-of-lasers.htm.
5. D. B. Chrisey, A. Pique, J. Fitz-Gerald, R. C. Y. Auyeung, R. A. McGill, H. D. Wu, M. Duignan, “New approach to laser direct writing active and passive mesoscopic circuit elements,” Appl. Surf. Sci. Vol. 154-155, pp. 593-600, 2000.
6. J. Lawrence and L. Li, “Laser modification of the wettability characteristics of engineering materials,” Professional Engineering Publishing, Ch.1, 2000.
7. Yariv, Amnon, Quantum Electronics, 3rd Edition, Wiley, 1989.
8. Siegman, Anthony E, Lasers. University Science Books, 1986.
9. Koechner, Walter, Solid-State Laser Engineering, 2nd Edition, Springer-Verlag, 1988.
10. R. Linsker, R. Srinivasan, J. J. Wynne, and D. R. Alonso, “Far-ultraviolet laser ablation of atherosclerotic lesions,” Lasers Surg. Med. Vol. 4, pp. 201-206, 1984.
11. R.J. Von Gutfeld, E. E. Tynan, R. L. Melcher, and S. E. Blum, Applied Physics Letters, Vol. 35, pp. 651, 1979.
12. F. A. Houle, C. R. Jones, T. Baum, C. Pico, and C. A. Kovac, Appl. Phys. Lett, Vol. 46, pp. 204, 1985.
13. T. A. Baum and C. R. Jones, Appl. Phys. Lett., Vol. 47, pp. 538, 1985.
14. R. F. Karlicek, V. M. Donnelly, and G.J. Collins, J. Appl. Phys., Vol. 53, pp. 1084, 1982.
15. S. Tamir and J. Zahavi, J. Vac, Sci. Technol, Vol. 3, pp. 2312, 1985.
16. R. K. Montgomery and T. D. Mantei, Appl. Phys. Lett., Vol. 48, pp. 493, 1985.
17. G. J. Fisanick, M. E. Gross, J. B. Hopkins, M.D. Fennell, K. J. Schnoes, and A. Latzir, J. Appl. Phys., Vol. 57, pp. 1139, 1985.
18. M. E. Gross, G. J. Fisanick, P. K. Gallagher, K. J. Schnoes, and M. D. Fennell, J. Appl. Phys. Lett., Vol. 47, pp. 923, 1985.
19. G. Aqavalingam, M. M. Oprysko, and J. E. Hurst Jr., “Compact laser source for metal deposition,’’ MRS Symp. Proc., 1988.
20. G. J. Fisanick, M. E. Gross, J. B. Hopkins, M. D. Fennell, K. J. Schnoes, and A. Katzir, “Laser-initiated microchemistry in thin films: Development of new types of periodic structures,” J. Appl. Phys., Vol. 57, pp.1139, 1985.
21. G. J. Fisanick, J. B. Hopkins, M. E. Gross, M. D. Fennell, and K. J. Schnoes, “Laser-initiated microchemistry: Dynamic probes of metallopolymer thin-film decomposition,” Appl. Phys. Left., Vol. 46, pp. 1184 , 1985.
22. M. E. Gross, G. J. Fisanick, P. K. Gallagher, K. J. Schnoes, and M. D. Fennell, “Laser-initiated deposition reactions: Microchemistry in organogold polymer films,” Appl. Phys. Len., Vol. 47, pp. 923, 1985.
23. M. E. Gross, A. Appelbaum, and K. J. Schnoes, “A chemical and mechanistic view of reaction profiles in laser direct-write.metallization in metal-organic films gold,” J. Appl. Phys., Vol. 60, pp.529, 1986.
24. M. E. Gross, “Laser direct-write metallization in thin metallo-organic films,” Chemtronics, Vol. 4, pp. 197, 1989.
25. V. H. Houlding, N. S. Clements, and K. W. Beeson, “Photolytic decomposition of gold metallopolymer thin films by W laser direct writing,” J. Appl. Phys., Vol. 62, pp.1070, 1987.
26. K. W. Beeson, and N. S Clements, “Fast -photolytic writing of gold lines’ on a prenucleated substrate,” Appl. Phys. Len., Vol. 53, pp. 547, 1988.
27. J. A. Sell, M. S. Mayer, and G. P. Meisner, “Laser deposition of gold,” MRS Symp. Proc., 1988.
28. B. Haba, B. W. Hussey, A. Gupta, and R. J. Baseman, “Copper vapor laser used in etching and depostion,” MRS Symp. Proc., 1990.
29. J. P. Partridge, J. Chen, and A. Gupta, “Repair of circuits by laser seeding and constriction induced plating,” IEEE Trans. Comp., Hybrids, Manufact. Technol., Vol. 15, pp. 252, 1992.
30. A. Auerbach, “Copper conductors by reduction of copper complex in a host polymer,” Appl. Phys. Left., Vol. 47, pp. 669, 1985.
31. A. Gupta and R. Jagannathan, “Laser writing of copper lines from metalorganic films,” Appl. Phys. Left., Vol. 51, pp.2254, 1987.
32. “Direct writing of copper lines from copper formate film,” in MRS Symp. Proc., 1988.
33. C. M. Harish, V. Kumar, and A. Rabhakar, “Direct writing- of copper film pattems by laser-induced decomposition of copper acetate,” J. Electrochem. Soc., Vol. 135, pp.2903, 1988.
34. P. Hoffman, B. Lecohier, S. Goldoni, and H. Van den Bergh, “Fast laser writing of copper and iridium lines from thin solid surface layers of metalorganic compounds,” Appl. Surf: Sci., Vol. 43, pp.54, 1989.
35. H. G. Muller, “YAG laser direct writing of copper from copper formate films,” Appl. Phys. Lett., Vol. 56, pp. 904, 1990.
36. H. G. Muller, K. Buschick, S. Shuler, and A. Paredes, “Laser direct writing. of copoer on various thin-film substrate materials,” A.d. Surf. Sei., Vol. 46, pp. 143, 1990.
37. H. G. Muller, C. T. Galanakis, S. C. Sommerfeldt, T. J. Hirsch, and R. F. Miracky, ‘‘Laser process for personalization and repair of multi-chipmodules,” SPIE Proc., 1991.
38. M. E. Gross, A. Appelbaum, and P. K. Gallagher, “Laser direct-write metallization in thin palladium acetate films,” J. Appf. Phys., Vol. 61, pp. 1628, 1987.
39. M. E. Gross, W. L. Brown, J. Limos, L. R. Hamott, K. D. Cummings,and H. 0. Funsten, “Photon and ion beam-induced chemistry of palladium acetate films,” in MRS Symp. Proc., 1987.
40. L. Baufay and M. E. Gross, “Periodic structure formation during laser direct-writing of palladium acetate films: An optically regulated mechanism,” in MRS Symp. Proc., 1988.
41. Y. S. Liu and H. S. Cole, “Laser-based area-selective processing techniques for high density interconnects,” in MRS Symp. Proc., 1990.
42. Y. S. Liu and H. S. Cole, “Laser surface modification for copper deposition on polyimide,” Chemtronics, Vol. 4, pp. 209, 1989.
43. M-H. Bernier, R. Izquierdo, and M. Meunier, “Laser processing of palladium for selective electroless copper plating,” in SPZE Proc., 1993.
44. R. C. Sausa and A. Gupta, “Laser decomposition of platinum metalloorganic films for electroless copper plating,” J. Electrochem. Soc., Vol. 134, pp. 2707, 1987.
45. A. Gupta, R. C. Sausa, and J. R. White, “Laser-induced thermal decomposition of platinum metallo-organic films,” in MRS Symp. Proc., Vol. 75, 1987.
46. A. Gupta and C. J. Chen, “High-conductance customized copper interconnections produced by laser seeding and selective electrodeposition,” Appl. Phys. Lett., Vol. 56, pp. 2516, 1990.
2.4 Reference
1. M. V. Allmen, A. Blatter, “Laser Beam Interactions with Materials,” 2nd education, Springer Ser. Mater. Sci., Vol. 2, 1998.
2. G. V. Rosenberg, “Optics of Thin-Film Coatings,” Fismatgis, Moscow, 1958.
3. M. N. Libenson, “Fizikai Khimiya Obrabotki Materialov,” Vol. 9, pp. 5, 1970 .
4. V. C. Paek, A. Kestenbaum, J. Appl. Phys. Vol. 44, pp. 2260, 1983.
5. G. L. Gurevitch, V. A. Muravev, Fizika I Khimiya Obrabotki Material, Vol. 5, pp. 3, 1973.
6. M. O. Aboel Fotoh, R. S. von Gutfeld, J. Appl. Phys. Vol. 43, pp. 3789, 1972.
7. M. Simeon Metev, Vadim P. Veiko, “Laser-Assisted Microtechnology”, second, Updated Edition.
8. V. P. Veiko, M. N. Libenson, “Laser treatment,” Lenizdat, Leningrad, 1973.
9. A. Gupta and R. Jagannathan, “Laser writing of copper lines from metalorganic films,” Appl. Phys. Lett. Vol. 51, pp. 26-28, 1987.
10. G. O. Heinrich Muller, US Patent No. 5176744.
11. Liu Xianghuai, Surface and Coatings Technology, Vol.131, pp.261-266, 2002.
12. J.R. Conrad, J.L. Radtke, R.A. Dodd et al., J. Appl. Phys. Vol. 62, 1987.
13. J.R. Conrad, J.L. Radtke, R.A. Dodd, F.J. Worzala and N.C. Tran, J. Appl. Phys., Vol. 62, pp. 4591, 1987.
14. D.J. Rej, Handbook of Thin Film Process Technology, IOP Publishing Ltd, 1996.