研究生: |
吳建利 Chien-Li Wu |
---|---|
論文名稱: |
薄膜性質對於金屬奈米壓印成型之影響 Effects of Thin Film Properties on Metallic Pattern Formation by means of Direct Nanoimprint |
指導教授: |
宋震國
Cheng-Kuo Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 奈米壓印 、金屬薄膜 、塑性成型 |
相關次數: | 點閱:58 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究金屬薄膜性質,包括晶粒大小與微結構缺陷,對奈米壓印成型的影響。本文以鋁薄膜作為壓印成型材料,透過不同薄膜製程與製程參數的設計,有效地改變以晶粒大小為主的薄膜顯微結構。其後使用TEM與EDS分析薄膜厚度、內部缺陷與組成元素等相關資訊,並藉由奈米壓痕實驗了解薄膜之顯微結構與機械性質間的關係。隨後的奈米壓印實驗將以成型高度作為判斷鋁薄膜成型品質的依據,進一步對照薄膜機械性質與壓印成型結果之間的關係,並配合TEM進行壓印後薄膜微觀結構分析,可進一步釐清薄膜塑性變形的機制。此外為了瞭解在金屬直接奈米壓印製程中是否存在模具沾黏薄膜材料的行為,將針對壓印後模具進行EDS分析。
由各項實驗結果可以得到以下結論:鋁薄膜在離子束濺鍍過程中,適當調整其電壓可製作出非晶質或晶粒大小5~65奈米的各種薄膜;在相同膜厚下愈大的晶粒其硬度愈低,符合Hall-Petch理論,而非晶質薄膜則因為近似於氧化鋁的性質而反應出最高的硬度;大晶粒且硬度低的薄膜其壓印成型結果較佳,並可藉由填充率的計算推測薄膜壓印成型結果,填充率好的情況下薄膜成型表面將為單峰形貌,反之則為雙峰;利用高倍率TEM的分析可觀察到110奈米晶粒大小的薄膜受到塑性變形後內部存在差排,15奈米晶粒之薄膜則無,可間接證實大晶粒的薄膜以差排運動作為塑性成型機制,而小晶粒的薄膜則以晶界滑移為主;根據分析結果顯示金屬直接奈米壓印製程中模具沾黏薄膜材料行為是可以忽略的。
This thesis is focused on characterizing the mechanical properties of the thin film as function of grain size, defect and fabrication process, and investigating the effect of mechanical properties on formation of direct nanoimprint technique. Aluminum thin films will be used as the transferred material and the grain size and microstructures can be controlled by means of different deposition process and parameters. In order to analyze film thickness, internal defects, and composition, TEM and EDS are employed after the thin-film deposition process. The relationship between microstructures and mechanical properties of thin films can be characterized by nanoindentation experiments. Subsequently, formation height will be applied to analyze the formation qualities in the nanoimprint process and it can be compared with the mechanical properties of thin films. In addition, formation mechanism will be understood via observing microstructures of thin films after imprint process by TEM analysis. For the purpose of analyzing the adhesion behavior between thin film materials and silicon molds, EDS will be performed to detect the composition of the mold after imprint experiments.
Base on the experimental results, the following phenomena can be observed. Aluminum thin films with amorphous crystal structure and grain size between 5 to 65 nm could be achieved by ion-beam sputter deposition using different ion-beam voltage. At the same film thickness, lower hardness is observed when the grain size increases and this phenomenon is called Hall-Petch effect. The hardness of amorphous thin film is very high because its properties are similar to aluminum oxide. When the grain size of the thin film increases, the formation height is better and formation ratio could be used to estimate the surface topology of deformed thin films. Surface topology of deformed thin films should be single peak when the formation quality is good. Otherwise, it will be dual peak. Dislocation defect could be observed in the deformed thin films with 110 nm grain size but not in the thin films with 15 nm grain size. It could be concluded indirectly that dislocation motion is the dominant plastic deformation mechanism for the thin films with large grain, whereas grain boundary sliding is the major formation mechanism for the small grain materials. According to the EDS results, there’s no aluminum composition being found on the silicon molds and the adhesion behavior between molds and thin films could be negligible.
[1] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, 1995, “Imprint of Sub-25 nm Vias and Trenches in Polymers,” Applied Physics Letters, Vol. 67, No. 20, p. 3114–3116.
[2] Jiarui Tao, Yifang Chen, Xingzhong Zhao, Adnan Malik, and Zheng Cui, 2005, “Room Temperature Nanoimprint Lithography Using a Bilayer of HSQ/PMMA Resist Stack,“ Microelectronic Engineering, Vol. 78–79, p. 665–669.
[3] Seh-Won Ahn, Ki-Dong Lee, Jin-Sung Kim, Sang Hoon Kim, Sarng H. Lee, Joo-Do Park, and Phil-Won Yoon, 2005, “Fabrication of Subwavelength Aluminum Wire Grating Using Nanoimprint Lithography and Reactive Ion Etching,” Microelectronic Engineering, Vol. 78–79, p. 314–318.
[4] H.L. Chen, S.Y. Chuang, H.C. Cheng, C.H. Lin, T.C. Chu, 2006, “Directly Patterning Metal Films by Nanoimprint Lithography with Low-temperature and Low-pressure,” Microelectronic Engineering, Vol. 83, p. 893–896.
[5] 呂盈締, 2006, ”金屬直接奈米壓印之成型研究,” 國立清華大學碩士論文.
[6] 許源泉, 2005, ”塑性加工學,” 全華科技圖書股份有限公司.
[7] A.H. Chokshi, A. Rosen, J. Karch and H. Gleiter, 1989, “On The Validity of the Hall-Petch Relationship in Nanocrystalline Materials,” Scripta METALLURGICA, Vol. 23, p. 1679–1684.
[8] Hong-Wen Sun, Jing-Quan Liu, Di Chen, and Pan Gu, 2005, “Optimization and Experimentation of Nanoimprint Lithography Based on FIB Fabricated Stamp,” Microelectronic Engineering, Vol. 82, p. 175–179.
[9] 陳星佑, 2005, ”溫度與保壓時間效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗,” 國立清華大學碩士論文.
[10] Te-Hua Fang, Sheng-Rui Jian and Der-San Chuu, 2002, “Molecular Dynamics Analysis of Effects of Velocity and Loading on the Nanoindentation,” Jpn. J. Appl. Phys. Vol. 41, p. 1328–1331.
[11] 謝雲亮, 2005, “尺寸效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗,” 國立清華大學碩士論文.
[12] Quang-Cherng Hsu, Chen-Da Wu and Te-Hua Fang, 2004, “Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics,” Japanese Journal of Applied Physics, Vol. 43, No. 11A, p. 7665–7669.
[13] 李文福, 1992, “工程材料的本質與性質,” 國立編譯館.
[14] Sidney Yip, 1998, “The Strongest Size,” Nature, Vol. 391, p. 532–533.
[15] Hans Conrad and J. Narayan, 2002, “Mechanism for Grain Size Softening in Nanocrystalline Zn,” APPLIED PHYSICS LETTERS, Vol. 81, No. 12.
[16] 黃珩春、陳政寰、楊詔中、黃戎巖, ”奈米光柵之原理與應用,” 機械工業雜誌, 257期, p.156–162.
[17] 陳文照、曾春風、游信和譯, 2002, “材料科學與工程導論,” 高立圖書有限公司.
[18] Ranjana Saha and William D. Nix, 2002, “Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation,” Acta Materialia, Vol. 50, p. 23–38.
[19] William D. Nix and Huajian Gao, 1998, “Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity,” J. Mech. Phys. Solids, Vol. 46, No. 3, p. 411–425.
[20] E.O. Hall, 1951, “The Deformation and Ageing of Mild Steel: III Discussion of Results,” Proc. Phys. Lond. B64, p.747–753.
[21] T.G. Nieh and J. Wadsworth, 1991, “Hall-Petch Relation in Nanocrystalline Solids,” Scripta Metallurgica et Materiala, Vol. 25, p. 955–958.
[22] Mingwei Chen, En Ma, Kevin J. Hemker, Hongwei Sheng, Yinmin Wang, and Xuemei Cheng, 2003, “Deformation Twinning in Nanocrystalline Aluminum,“ Science, Vol. 300, p. 1275–1277.
[23] M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis, 1995, “Observation and Measurement of Grain Rotation and Plastic Strain in Nanostructured Metal Thin Films,” NanoStructured Materials, Vol. 5, No. 6, p. 689–697.
[24] M.A. Haque and M. T. A Saif, 2002, “Mechanical Behavior of 30-50nm Thick Aluminum Films Under Uniaxial Tension,” Scripta Materialia, Vol. 47, p. 863–867.
[25] G. Wei, J. Du, A. Rar, and J. A. Barnard, 2001,”Nanoindentation Studies of DC Sputtered Cu and Cu/Cr Thin Films,“ Materials Research Society Symp. Proc. Vol. 672.
[26] K. Kadau, T.C. Germann, P.S. Lomdahl, B.L. Holian, D. Kadau, P. Entel, M. Kreth, F. Westerhoff, and D.E. Wolf, 2004, “Molecular-Dynamics Study of Mechanical Deformation in Nano-Crystaline Aluminum, “ MATALLURGICAL AND MATERIALS TRANSACTIONS A, Vol. 35A, p. 2719–2723.
[27] Jakob Schiotz, Francesco D. Di Tolla, and Karsten W. Jacobsen, 1998, “Softening of Nanocrystalline Metals at Very Small Grain Sizes,“ Nature, Vol. 391, p. 561–563.
[28] Jakob Schiotz and Karsten W. Jacobsen, 2003, ”A Maximum in the Strength of Nanocrystalline Copper,“ Science, Vol. 301, p. 1357–1359.
[29] U. Erb, 1995, “Electrodeposited Nanocrystals: Synthesis, Properties and Industrial Applications,” NanoStructured Materials, Vol. 6, p. 533–538.
[30] Carl J. Youngdahl, Paul G. Sanders, Jeffery A. Eastman, and Julia R. Weertman, 1997, “Compressive Yield Strengths of Nanocrystalline Cu and Pd,” Scripta Materialia, Vol. 37, No. 6, p. 809–813.
[31] E. Arzt, 1998, “Size Effects in Materials Due to Microstructural and Dimensional Constrains: A Comparative Review,” Acta mater. Vol. 46, No. 16, p. 5611–5626.
[32] R. A. Masumura, P. M. Hazzledine, and C. S. Pande, 1998, “Yield Stress of Fine Grained Materials,” Acta mater. Vol. 46, No. 13, p.4527–4534.
[33] Kasturi Lal Chopra and Inderjeet Kaur, 1983, “Thin Film Device Applications,” Plenum Press.
[34] JEOL, 2006/12/11.
http://www.jeol.co.jp/technical/eo/touka/jem-2100f/top.htm
[35] JEOL, 2006/12/11.
http://www.jeol.com/PRODUCTS/ElectronOptics/ScanningElectronMicroscopesSEM/SemiinLensFE/JSM6701F/tabid/115/Default.aspx
[36] 工研院機械所
[37] MTS, 2007/6/15.
http://www.mtsnano.com/products/xpw/
[38] 國立清華大學奈微中心, 2006/12/11.
http://ustcnst.nthu.edu.tw/nodust_equip.php?act=DCSputterSystem
[39] Marian Vopsaroiu, M. J. Thwaites, S. Rand, P. J. Grundy, and K. O’Grady, 2004, “Novel Sputtering Technology for Grain-Size Control,” IEEE TRANSACTIONS ON MAGNETICS, Vol. 40, No. 4, p. 2443–2445.
[40] Carl C. Koch and J. Narayan, 2001, “The Inverse Hall-Petch Effect - Fact or Artifact?” Materials Research Society Vol. 634.
[41] Richard W. Siegel and Gretchen E. Fougere, 1993, “Mechanical Properties of Nanophase Materials”
[42] T. Volpp, E. Goring, W.-M. Kuschke and E. Arzt, 1997, “Grain Size Determination and Limits to Hall-Petch Behavior in Nanocrystalline NiAl Powders,” NanoStructured Materials, Vol. 8, No. 7, p. 855-865.
[43] Y. Zhou, U. Erb, K.T. Aust, and G. Palumbo, 2003, “The effects of triple junctions and grain boundaries on hardness and Young’s modulus in nanostructured Ni–P,” Scripta Materialia. Vol. 48, p. 825–830.
[44] K. Lu, H. Y. Zhang, Y. Zhong, and H. J. Fecht, 1997, “Grain Size Dependence of Mechanical Properties in Nanocrystalline Selenium,” J. Mater. Res., Vol. 12, No. 4.
[45] B. Taljat and G.M. Pharr, 2004, “Development of Pile-up During Spherical Indentation of Elastic–plastic Solids,” International Journal of Solids and Structures. Vol. 41, p. 3891–3904.
[46] Harry D Rowland, Amy C Sun, P Randy Schunk, and William P King, 2005, “Impact of Polymer Film Thickness and Cavity Size on Polymer Flow During Embossing: Toward Process Design Rules for Nanoimprint Lithography,” J. Micromech. Microeng. Vol. 15, p. 2414–2425.
[47] M.A. Haque and M.T.A. Saif, 2005, “In Situ Tensile Testing of Nanoscale Freestanding Thin Films Inside a Transmission Electron Microscope,” J. Mater. Res., Vol. 20, No. 7, p.1769–1777.