簡易檢索 / 詳目顯示

研究生: 吳建利
Chien-Li Wu
論文名稱: 薄膜性質對於金屬奈米壓印成型之影響
Effects of Thin Film Properties on Metallic Pattern Formation by means of Direct Nanoimprint
指導教授: 宋震國
Cheng-Kuo Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 122
中文關鍵詞: 奈米壓印金屬薄膜塑性成型
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究金屬薄膜性質,包括晶粒大小與微結構缺陷,對奈米壓印成型的影響。本文以鋁薄膜作為壓印成型材料,透過不同薄膜製程與製程參數的設計,有效地改變以晶粒大小為主的薄膜顯微結構。其後使用TEM與EDS分析薄膜厚度、內部缺陷與組成元素等相關資訊,並藉由奈米壓痕實驗了解薄膜之顯微結構與機械性質間的關係。隨後的奈米壓印實驗將以成型高度作為判斷鋁薄膜成型品質的依據,進一步對照薄膜機械性質與壓印成型結果之間的關係,並配合TEM進行壓印後薄膜微觀結構分析,可進一步釐清薄膜塑性變形的機制。此外為了瞭解在金屬直接奈米壓印製程中是否存在模具沾黏薄膜材料的行為,將針對壓印後模具進行EDS分析。

    由各項實驗結果可以得到以下結論:鋁薄膜在離子束濺鍍過程中,適當調整其電壓可製作出非晶質或晶粒大小5~65奈米的各種薄膜;在相同膜厚下愈大的晶粒其硬度愈低,符合Hall-Petch理論,而非晶質薄膜則因為近似於氧化鋁的性質而反應出最高的硬度;大晶粒且硬度低的薄膜其壓印成型結果較佳,並可藉由填充率的計算推測薄膜壓印成型結果,填充率好的情況下薄膜成型表面將為單峰形貌,反之則為雙峰;利用高倍率TEM的分析可觀察到110奈米晶粒大小的薄膜受到塑性變形後內部存在差排,15奈米晶粒之薄膜則無,可間接證實大晶粒的薄膜以差排運動作為塑性成型機制,而小晶粒的薄膜則以晶界滑移為主;根據分析結果顯示金屬直接奈米壓印製程中模具沾黏薄膜材料行為是可以忽略的。


    This thesis is focused on characterizing the mechanical properties of the thin film as function of grain size, defect and fabrication process, and investigating the effect of mechanical properties on formation of direct nanoimprint technique. Aluminum thin films will be used as the transferred material and the grain size and microstructures can be controlled by means of different deposition process and parameters. In order to analyze film thickness, internal defects, and composition, TEM and EDS are employed after the thin-film deposition process. The relationship between microstructures and mechanical properties of thin films can be characterized by nanoindentation experiments. Subsequently, formation height will be applied to analyze the formation qualities in the nanoimprint process and it can be compared with the mechanical properties of thin films. In addition, formation mechanism will be understood via observing microstructures of thin films after imprint process by TEM analysis. For the purpose of analyzing the adhesion behavior between thin film materials and silicon molds, EDS will be performed to detect the composition of the mold after imprint experiments.

    Base on the experimental results, the following phenomena can be observed. Aluminum thin films with amorphous crystal structure and grain size between 5 to 65 nm could be achieved by ion-beam sputter deposition using different ion-beam voltage. At the same film thickness, lower hardness is observed when the grain size increases and this phenomenon is called Hall-Petch effect. The hardness of amorphous thin film is very high because its properties are similar to aluminum oxide. When the grain size of the thin film increases, the formation height is better and formation ratio could be used to estimate the surface topology of deformed thin films. Surface topology of deformed thin films should be single peak when the formation quality is good. Otherwise, it will be dual peak. Dislocation defect could be observed in the deformed thin films with 110 nm grain size but not in the thin films with 15 nm grain size. It could be concluded indirectly that dislocation motion is the dominant plastic deformation mechanism for the thin films with large grain, whereas grain boundary sliding is the major formation mechanism for the small grain materials. According to the EDS results, there’s no aluminum composition being found on the silicon molds and the adhesion behavior between molds and thin films could be negligible.

    目錄 中文摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 6 1.2.1 影響金屬薄膜成型行為的各種因素 6 1.2.2 增加金屬薄膜成型性的方法 9 1.3 研究動機與本文內容 11 第二章 奈米壓印成型理論 13 2.1 影響金屬薄膜壓印成型之重要因素 13 2.2 差排運動與滑移系統 14 2.3 晶粒滾動與晶界滑移 20 2.4 回彈現象 22 2.5 基材效應 22 2.6 Hall-Petch Effect & Inverse Hall-Petch Effect 23 第三章 實驗儀器介紹與實驗準備 33 3.1 實驗設備介紹 33 3.2 薄膜製作與模具製作 41 3.2.1 薄膜製程 41 3.2.2 模具製程 48 3.3 實驗量測項目 51 3.4 實驗參數設定 52 3.4.1 薄膜參數 53 3.4.2 壓痕實驗參數 54 3.4.3 壓印實驗參數 55 3.5 實驗流程 56 第四章 實驗結果與討論 58 4.1 壓印實驗前量測 58 4.1.1 薄膜晶粒大小與膜厚 58 4.1.2 薄膜組成元素與內部缺陷 75 4.1.3 薄膜機械性質 79 4.1.4 不同薄膜製程差異比較 85 4.1.5 模具幾何參數 88 4.2 壓印實驗後量測 90 4.2.1 薄膜成型高度 90 4.2.2 薄膜成型表面堆積現象 96 4.2.3 薄膜顯微結構 99 4.2.4 薄膜材料沾黏模具現象 111 第五章 結論與未來工作 114 5.1 結論 114 5.2 未來工作 116 參考文獻 119 圖目錄 圖1-1 NIL流程圖 2 圖1-2 利用雙層光阻進行NIL製程 3 圖1-3 利用蝕刻阻擋層進行NIL製程 4 圖1-4 Nanoimprint in metal/polymer bi-layer製程 5 圖1-5 金屬直接壓印 5 圖1-6 不同厚度之金薄膜硬度 9 圖1-7 奈米結晶鋅的inverse Hall-Petch行為 11 圖2-1 圍繞刃狀差排的原子位置示意圖 15 圖2-2 晶體內部之螺旋差排 15 圖2-3 混合差排示意圖 16 圖2-4 刃狀差排受剪應力作用移動圖 17 圖2-5 FCC單位晶格的滑移系統示意圖 19 圖2-6 低角度晶界 21 圖2-7 不同角度晶界與其鄰近原子示意圖 21 圖2-7 差排在晶界的堆積行為 25 圖2-8 晶粒大小與材料強度關係圖 27 圖2-9 Hall-Petch效應與inverse Hall-Petch效應 28 圖2-10 利用差排理論(虛線)求得的臨界晶粒尺寸 31 圖2-11 銅的降伏應力(τ)與平均晶粒尺寸(d)關係圖 32 圖3-1 直流濺鍍示意圖 42 圖3-2 離子束薄膜沉積示意圖 43 圖3-3 電子束蒸鍍示意圖 45 圖3-4 影響晶粒大小因素之定性示意圖 46 圖3-5 薄膜製程參數與其晶粒大小關係圖 47 圖3-6 製程壓力與薄膜晶粒大小關係圖 47 圖3-7 模具製程示意圖 48 圖3-8 模具圖案設計示意圖 49 圖3-9 壓印實驗力量與時間關係之示意圖 56 圖3-10 實驗流程圖 57 圖4-1 SEM試片 59 圖4-2 利用SEM量測薄膜厚度 60 圖4-3 鋁薄膜SEM等角視圖 61 圖4-4 膜厚380奈米鋁薄膜 61 圖4-5 電子束蒸鍍製作之鋁薄膜 73 圖4-6 薄膜高倍率TEM顯微結構分析(倍率600k) 78 圖4-7薄膜高倍率TEM顯微結構分析 78 圖4-8 薄膜硬度與壓深/膜厚比例關係圖 79 圖4-9 薄膜彈性係數與壓深/膜厚比例關係圖 80 圖4-10 薄膜晶粒大小與硬度關係圖 81 圖4-11 薄膜彈性係數與晶粒大小關係圖 83 圖4-12 基材效應與Hall-Petch效應關係圖 84 圖4-13 薄膜晶粒大小與成型高度比關係圖 93 圖4-14 薄膜硬度與壓印成型高度比關係圖 95 圖4-15 薄膜成型表面堆積現象 96 圖4-16 薄膜pile-up及sink-in示意圖 96 圖4-17 薄膜成型截面圖(試片A1) 97 圖4-18 壓印後鋁薄膜TEM橫截面分析(倍率8k) 100 圖4-19 壓印後鋁薄膜TEM橫截面分析(倍率25k) 102 圖4-20 壓印後鋁薄膜TEM橫截面分析(倍率10k) 102 圖4-21 壓印後鋁薄膜TEM橫截面分析(倍率25k) 103 圖4-22 壓印後鋁薄膜TEM橫截面分析(倍率80k) 103 圖4-23 壓印後鋁薄膜TEM橫截面分析(倍率200k) 104 圖4-24 壓印後鋁薄膜殘留層TEM橫截面分析(倍率40k) 105 圖4-25 壓印後鋁薄膜殘留層TEM橫截面分析(倍率60k) 107 圖4-26 壓印後鋁薄膜殘留層TEM橫截面分析(倍率200k) 108 圖4-27 壓印後鋁薄膜殘留層TEM橫截面分析(倍率600k) 108 圖4-28 壓印後鋁薄膜殘留層TEM橫截面分析(倍率800k) 109 圖4-29 非晶質薄膜殘餘層結構(倍率800k) 110 圖4-30 晶粒15奈米薄膜殘餘層結構(倍率800k) 110 圖4-31 壓印後模具SEM分析 112 圖4-32 壓印前模具SEM分析 113 表目錄 表2-1 各種金屬材料的滑移系統 18 表2-2 各種多晶金屬的臨界晶粒尺寸與相關係數 26 表2-3 各種多晶材料的Hall-Petch效應臨界晶粒尺寸 30 表3-1 實驗使用設備 34 表3-2 穿透式電子顯微鏡 35 表3-3 掃描式電子顯微鏡 35 表3-4 原子力顯微鏡 36 表3-5 奈米壓痕機 36 表3-6 真空直流濺鍍機 37 表3-7 高真空微濺鍍機 37 表3-8 離子束濺鍍機 38 表3-9 電子槍真空蒸鍍系統 38 表3-9 電子槍真空蒸鍍系統 38 表3-10 奈米壓印機 39 表3-11電子束直寫機 40 表3-12 乾式蝕刻機 40 表3-13 模具圖案設計分配表 50 表3-14 預定模穴寬度與節距比參數表(L=200 nm) 50 表3-15 預定模穴寬度與節距比參數表(L=50 nm) 50 表3-16 預定深寬比參數表 50 表3-17 實驗前後量測項目 52 表3-18 壓印鋁薄膜材料參數表 53 表3-19 壓痕實驗相關數據設定 55 表4-1 鋁薄膜TEM plane view 63 表4-2 鋁薄膜TEM cross section view 64 表4-3 鋁薄膜TEM cross section view 65 表4-4 鋁薄膜TEM plane view 66 表4-5 鋁薄膜TEM cross section view 67 表4-6 鋁薄膜TEM cross section view 68 表4-7 鋁薄膜TEM cross section view 70 表4-8 薄膜晶粒大小與厚度、製程參數對照表(離子束濺鍍) 72 表4-9 非晶質鋁薄膜EDS分析(試片22) 76 表4-10 薄膜壓痕實驗分析結果(離子束濺鍍) 85 表4-11 薄膜製程比較表 87 表4-12 模具之模穴寬度與節距比參數 88 表4-13 模具深寬比參數 88 表4-14 模具之模穴寬度與節距比參數圖(Λ=0.680) 89 表4-15 不同晶粒大小薄膜之壓印成型結果 91 表4-16 不同膜厚薄膜之壓印成型結果 92 表4-17 薄膜壓痕實驗分析結果(直流濺鍍) 94 表4-18 模穴半寬與薄膜厚度比關係表 98 表4-19 壓印後模具利用SEM之EDS分析 112

    [1] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, 1995, “Imprint of Sub-25 nm Vias and Trenches in Polymers,” Applied Physics Letters, Vol. 67, No. 20, p. 3114–3116.
    [2] Jiarui Tao, Yifang Chen, Xingzhong Zhao, Adnan Malik, and Zheng Cui, 2005, “Room Temperature Nanoimprint Lithography Using a Bilayer of HSQ/PMMA Resist Stack,“ Microelectronic Engineering, Vol. 78–79, p. 665–669.
    [3] Seh-Won Ahn, Ki-Dong Lee, Jin-Sung Kim, Sang Hoon Kim, Sarng H. Lee, Joo-Do Park, and Phil-Won Yoon, 2005, “Fabrication of Subwavelength Aluminum Wire Grating Using Nanoimprint Lithography and Reactive Ion Etching,” Microelectronic Engineering, Vol. 78–79, p. 314–318.
    [4] H.L. Chen, S.Y. Chuang, H.C. Cheng, C.H. Lin, T.C. Chu, 2006, “Directly Patterning Metal Films by Nanoimprint Lithography with Low-temperature and Low-pressure,” Microelectronic Engineering, Vol. 83, p. 893–896.
    [5] 呂盈締, 2006, ”金屬直接奈米壓印之成型研究,” 國立清華大學碩士論文.
    [6] 許源泉, 2005, ”塑性加工學,” 全華科技圖書股份有限公司.
    [7] A.H. Chokshi, A. Rosen, J. Karch and H. Gleiter, 1989, “On The Validity of the Hall-Petch Relationship in Nanocrystalline Materials,” Scripta METALLURGICA, Vol. 23, p. 1679–1684.
    [8] Hong-Wen Sun, Jing-Quan Liu, Di Chen, and Pan Gu, 2005, “Optimization and Experimentation of Nanoimprint Lithography Based on FIB Fabricated Stamp,” Microelectronic Engineering, Vol. 82, p. 175–179.
    [9] 陳星佑, 2005, ”溫度與保壓時間效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗,” 國立清華大學碩士論文.
    [10] Te-Hua Fang, Sheng-Rui Jian and Der-San Chuu, 2002, “Molecular Dynamics Analysis of Effects of Velocity and Loading on the Nanoindentation,” Jpn. J. Appl. Phys. Vol. 41, p. 1328–1331.
    [11] 謝雲亮, 2005, “尺寸效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗,” 國立清華大學碩士論文.
    [12] Quang-Cherng Hsu, Chen-Da Wu and Te-Hua Fang, 2004, “Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics,” Japanese Journal of Applied Physics, Vol. 43, No. 11A, p. 7665–7669.
    [13] 李文福, 1992, “工程材料的本質與性質,” 國立編譯館.
    [14] Sidney Yip, 1998, “The Strongest Size,” Nature, Vol. 391, p. 532–533.
    [15] Hans Conrad and J. Narayan, 2002, “Mechanism for Grain Size Softening in Nanocrystalline Zn,” APPLIED PHYSICS LETTERS, Vol. 81, No. 12.
    [16] 黃珩春、陳政寰、楊詔中、黃戎巖, ”奈米光柵之原理與應用,” 機械工業雜誌, 257期, p.156–162.
    [17] 陳文照、曾春風、游信和譯, 2002, “材料科學與工程導論,” 高立圖書有限公司.
    [18] Ranjana Saha and William D. Nix, 2002, “Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation,” Acta Materialia, Vol. 50, p. 23–38.
    [19] William D. Nix and Huajian Gao, 1998, “Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity,” J. Mech. Phys. Solids, Vol. 46, No. 3, p. 411–425.
    [20] E.O. Hall, 1951, “The Deformation and Ageing of Mild Steel: III Discussion of Results,” Proc. Phys. Lond. B64, p.747–753.
    [21] T.G. Nieh and J. Wadsworth, 1991, “Hall-Petch Relation in Nanocrystalline Solids,” Scripta Metallurgica et Materiala, Vol. 25, p. 955–958.
    [22] Mingwei Chen, En Ma, Kevin J. Hemker, Hongwei Sheng, Yinmin Wang, and Xuemei Cheng, 2003, “Deformation Twinning in Nanocrystalline Aluminum,“ Science, Vol. 300, p. 1275–1277.
    [23] M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis, 1995, “Observation and Measurement of Grain Rotation and Plastic Strain in Nanostructured Metal Thin Films,” NanoStructured Materials, Vol. 5, No. 6, p. 689–697.
    [24] M.A. Haque and M. T. A Saif, 2002, “Mechanical Behavior of 30-50nm Thick Aluminum Films Under Uniaxial Tension,” Scripta Materialia, Vol. 47, p. 863–867.
    [25] G. Wei, J. Du, A. Rar, and J. A. Barnard, 2001,”Nanoindentation Studies of DC Sputtered Cu and Cu/Cr Thin Films,“ Materials Research Society Symp. Proc. Vol. 672.
    [26] K. Kadau, T.C. Germann, P.S. Lomdahl, B.L. Holian, D. Kadau, P. Entel, M. Kreth, F. Westerhoff, and D.E. Wolf, 2004, “Molecular-Dynamics Study of Mechanical Deformation in Nano-Crystaline Aluminum, “ MATALLURGICAL AND MATERIALS TRANSACTIONS A, Vol. 35A, p. 2719–2723.
    [27] Jakob Schiotz, Francesco D. Di Tolla, and Karsten W. Jacobsen, 1998, “Softening of Nanocrystalline Metals at Very Small Grain Sizes,“ Nature, Vol. 391, p. 561–563.
    [28] Jakob Schiotz and Karsten W. Jacobsen, 2003, ”A Maximum in the Strength of Nanocrystalline Copper,“ Science, Vol. 301, p. 1357–1359.
    [29] U. Erb, 1995, “Electrodeposited Nanocrystals: Synthesis, Properties and Industrial Applications,” NanoStructured Materials, Vol. 6, p. 533–538.
    [30] Carl J. Youngdahl, Paul G. Sanders, Jeffery A. Eastman, and Julia R. Weertman, 1997, “Compressive Yield Strengths of Nanocrystalline Cu and Pd,” Scripta Materialia, Vol. 37, No. 6, p. 809–813.
    [31] E. Arzt, 1998, “Size Effects in Materials Due to Microstructural and Dimensional Constrains: A Comparative Review,” Acta mater. Vol. 46, No. 16, p. 5611–5626.
    [32] R. A. Masumura, P. M. Hazzledine, and C. S. Pande, 1998, “Yield Stress of Fine Grained Materials,” Acta mater. Vol. 46, No. 13, p.4527–4534.
    [33] Kasturi Lal Chopra and Inderjeet Kaur, 1983, “Thin Film Device Applications,” Plenum Press.
    [34] JEOL, 2006/12/11.
    http://www.jeol.co.jp/technical/eo/touka/jem-2100f/top.htm
    [35] JEOL, 2006/12/11.
    http://www.jeol.com/PRODUCTS/ElectronOptics/ScanningElectronMicroscopesSEM/SemiinLensFE/JSM6701F/tabid/115/Default.aspx
    [36] 工研院機械所
    [37] MTS, 2007/6/15.
    http://www.mtsnano.com/products/xpw/
    [38] 國立清華大學奈微中心, 2006/12/11.
    http://ustcnst.nthu.edu.tw/nodust_equip.php?act=DCSputterSystem
    [39] Marian Vopsaroiu, M. J. Thwaites, S. Rand, P. J. Grundy, and K. O’Grady, 2004, “Novel Sputtering Technology for Grain-Size Control,” IEEE TRANSACTIONS ON MAGNETICS, Vol. 40, No. 4, p. 2443–2445.
    [40] Carl C. Koch and J. Narayan, 2001, “The Inverse Hall-Petch Effect - Fact or Artifact?” Materials Research Society Vol. 634.
    [41] Richard W. Siegel and Gretchen E. Fougere, 1993, “Mechanical Properties of Nanophase Materials”
    [42] T. Volpp, E. Goring, W.-M. Kuschke and E. Arzt, 1997, “Grain Size Determination and Limits to Hall-Petch Behavior in Nanocrystalline NiAl Powders,” NanoStructured Materials, Vol. 8, No. 7, p. 855-865.
    [43] Y. Zhou, U. Erb, K.T. Aust, and G. Palumbo, 2003, “The effects of triple junctions and grain boundaries on hardness and Young’s modulus in nanostructured Ni–P,” Scripta Materialia. Vol. 48, p. 825–830.
    [44] K. Lu, H. Y. Zhang, Y. Zhong, and H. J. Fecht, 1997, “Grain Size Dependence of Mechanical Properties in Nanocrystalline Selenium,” J. Mater. Res., Vol. 12, No. 4.
    [45] B. Taljat and G.M. Pharr, 2004, “Development of Pile-up During Spherical Indentation of Elastic–plastic Solids,” International Journal of Solids and Structures. Vol. 41, p. 3891–3904.
    [46] Harry D Rowland, Amy C Sun, P Randy Schunk, and William P King, 2005, “Impact of Polymer Film Thickness and Cavity Size on Polymer Flow During Embossing: Toward Process Design Rules for Nanoimprint Lithography,” J. Micromech. Microeng. Vol. 15, p. 2414–2425.
    [47] M.A. Haque and M.T.A. Saif, 2005, “In Situ Tensile Testing of Nanoscale Freestanding Thin Films Inside a Transmission Electron Microscope,” J. Mater. Res., Vol. 20, No. 7, p.1769–1777.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE