研究生: |
陳建勳 Chen, Chien-Hsun |
---|---|
論文名稱: |
動態次結構系統之可次結構性與多控制模態分析 Analysis on substructurability and multiple control modes of dynamically substructured systems |
指導教授: |
左培倫
Tso, Pei-Lum |
口試委員: |
徐勝均
Xu, Sheng-Dong 林子剛 Lin, Tzu-Kang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 複合測試 、動態次結構系統測試 、可次結構性 、多控制模態 |
外文關鍵詞: | Hybrid testing, Dynamically substructured system testing, Substructurability, Multiple control modes |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
動態次結構系統測試為複合測試中的一種方法,結合了數值法和全比例測試法之優點,將受測的工程系統拆解成數值模型和物理原型兩個子系統,受測系統中容易建模或是線性元件,在測試時利用數值模擬,而具非線性特性或是欲觀測其響應之元件,則實際搭建測試。次結構間藉由傳動系統作為連結,使其運作能與原先系統相同,然而,傳動系統之不理想動態會使得測試失真或是發散,因此需要透過設計控制器和濾波技術,避免訊號在數值次結構和物理次結構間傳遞失真,以確保測試的穩定性和可靠度。
動態次結構系統測試並非只有控制器設計的問題,許多文獻在實驗的過程中發現,若拆解後的數值或物理次結構之原生動態不理想,如系統中包含低阻尼或是極點靠近虛軸等,容易造成測試不穩定或是訊號同步性不佳,造成測試結果失真、不可靠、不易重複等問題。因此動態次結構系統測試前最關鍵的工作為「可次結構性」分析,目的為探討受測系統拆解後,實行動態次結構系統測試之可行性與性能表現,概念類似於控制系統中可控性與可觀測性。可次結構性內涵包括次結構間參數的配置、測試控制模態選定與傳動系統選擇的問題,本論文主要著重在多控制模態研究與分析。
控制模態主要可以分為「位移控制」和「力控制」兩種,兩者的差別取決於數值次結構是輸出位移或是輸出力以作用於物理次結構。本論文使用質量-彈簧-阻尼元件建構被仿真系統,在相同拆解情境但不同控制模態下,藉由動態分析、模擬和實驗方式,驗證兩種控制模態之測試可行性。經由一系列研究工作之比較與發現,在相同測試條件下,力控制模態可能提供更好的同步控制性與測試強健性,為動態次結構系統測試提供了一個不同的實踐方案,期望本研究之多控制模態分析理論,能使複合測試更廣泛應用於各式工程系統之動態測試。
Dynamically substructured system testing (DSS) is one of the hybrid testing techniques, which combines the advantages of numerical analysis testing and full-size testing method. The known linear parameters will be simulated in numerical substructured, while the critical unknown parameters may involve nonlinear behavior will be naturally tested in physical substructured. During the testing, the transfer system carries out the unwanted dynamic arises synchronization error and unsuccessful testing. Therefore, the controller design and filter techniques are crucial for successful testing in real-time.
However, the dynamic properties of the substructures sometimes influences the synchronization stability and its accuracy. For example, low damping coefficient might cause the system unstable or testing inefficiency. The purpose of substructurability is analyzing the feasibility of DSS implementation and its concept is similar to controllability and observability in control theory. The substructurability of DSS can be divided into the configuration of the parameters between two substructured, the control mode of testing and choose of transfer system. This thesis mainly focuses on the control mode of DSS research and analysis.
The control mode consists of displacement and force control, the main difference depends on whether the actuator is utilizing displacement or force imposed on physical substructured. We utilize MSD-D system to verify the feasibility of force control mode of DSS by simulation and experiment. Under the same test conditions, the force control mode has better synchronization and robustness to dynamic constraints and provides different selection for DSS testing. The DSS testing is expected to apply widely by its multiple control modes analysis theorem to different engineering system testing.
1. J.Y. Jiang, The development of real-time finite element dynamically substructured systems. MS Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2013.
2. K.C. Tsai, P.C. Hsiao, K.J. Wang, Y.T. Weng, M.L. Lin, K.C. Lin, C.H. Chen, J.W. Lai, and S.L. Lin, Pseudo-dynamic tests of a full-scale CFT/BRB frame—Part I: Specimen design, experiment and analysis. Earthquake Engineering & Structural Dynamics, 2008. 37(7): pp. 1081-1098.
3. R. Trigui, B. Jeanneret, B. Malaquin, F. Badlin, and C. Plasse, Hardware in the loop simulation of a diesel parallel mild-hybrid electric vehicle. Vehicle Power and Propulsion Conference, VPPC, IEEE, 2007.
4. D.P. Stoten, J.Y. Tu, and G. Li, Synthesis and control of generalized dynamically substructured systems. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, 2009. 223(I3): pp. 371-392.
5. P.J. Gawthrop, S.A. Neild, A. Gonzalez-Buelga, and D.J. Wagg, Causality in real-time dynamic substructure testing. Mechatronics, 2009. 19(7): pp. 1105-1115.
6. A. Maghareh, S.J. Dyke, A. Prakash, and G.B. Bunting, Establishing a predictive performance indicator for real‐time hybrid simulation. Earthquake Engineering & Structural Dynamics, 2014. 43(15): pp. 2299-2318.
7. A. Maghareh, S.J. Dyke, S. Rabieniaharabar, and A. Prakash, Predictive stability indicator: a novel approach to configuring a real‐time hybrid simulation. Earthquake Engineering & Structural Dynamics, 2017. 46(1): pp. 95-116.
8. C.Y. Chen, Development and verification of state-based substructurability theory for dynamically substructured system, MS Thesis, Department of Power Mechanical Engineering. National Tsing Hua University, Hsinchu, Taiwan, 2014.
9. C.I. Huang, Substructurability index and substructuring fidelity, MS Thesis, Department of Power Mechanical Engineering. National Tsing Hua University, Hsinchu, Taiwan, 2016.
10. J.Y. Tu and J.Y. Jiang, Substructurability and exact synchronisation analysis. Structural Control and Health Monitoring, 2013. 20(12): pp. 1410-1423.
11. O.S. Bursi, C. Jia, L. Vulcan, S.A. Neild, and D.J. Wagg, Rosenbrock‐based algorithms and subcycling strategies for real‐time nonlinear substructure testing. Earthquake Engineering & Structural Dynamics, 2011. 40(1): pp. 1-19.
12. M.I. Wallace, J. Sieber, S.A. Neild, D.J. Wagg, and B. Krauskopf, Stability analysis of real‐time dynamic substructuring using delay differential equation models. Earthquake Engineering & Structural Dynamics, 2005. 34(15): pp. 1817-1832.
13. M.I. Wallace, D.J. Wagg, and S.A. Neild, An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 2005.
14. B. Wu, L. Deng, and X. Yang, Stability of central difference method for dynamic real‐time substructure testing. Earthquake Engineering & Structural Dynamics, 2009. 38(14): pp. 1649-1663.
15. C. Chen, J.M. Ricles, T.M. Marullo, and O. Mercan, Real‐time hybrid testing using the unconditionally stable explicit CR integration algorithm. Earthquake Engineering & Structural Dynamics, 2009. 38(1): pp. 23-44.
16. B. Wu, Z. Wang, and O.S. Bursi, Actuator dynamics compensation based on upper bound delay for real‐time hybrid simulation. Earthquake Engineering & Structural Dynamics, 2013. 42(12): pp. 1749-1765.
17. Z. Wang, B. Wu, G. Xu, and O.S. Bursi, An improved equivalent force control algorithm for hybrid seismic testing of nonlinear systems. Structural Control and Health Monitoring, 2018. 25(2): pp. e2076.
18. X. Gao, N. Castaneda, and S.J. Dyke, Real time hybrid simulation: from dynamic system, motion control to experimental error. Earthquake Engineering & Structural Dynamics, 2013. 42(6): pp. 815-832.
19. R. Enokida, D.P. Stoten, and K. Kajiwara, Application of the nonlinear substructuring control method to nonlinear 2-degree-of-freedom systems. Journal of Physics: Conference Series. 2016.
20. T. Yamaguchi and D.P. Stoten, Synthesised H∞/μ Control Design for Dynamically Substructured Systems. in Journal of Physics: Conference Series. 2016.
21. D.P. Stoten, A comparative study and unification of two methods for controlling dynamically substructured systems. Earthquake Engineering & Structural Dynamics, 2017. 46(2): pp. 317-339.
22. J.Y. Tu, D.P. Stoten, R.A. Hyde, and G. Li, A state-space approach for the control of multivariable dynamically substructured systems. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, 2011. 225(I7): pp. 935-953.
23. M. Leclerc, M. Molinari, N. Bouaanani, R. Tremblay, P. Leger, and O.D. Bursi, Effective strategies for real time hybrid simulation of near seismic collapse response of moment resisting frames. in American Control Conference (ACC), 2011.
24. T. Horiuchi, M. Inoue, T. Konno, and Y. Namita, Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber. Earthquake Engineering & Structural Dynamics, 1999. 28(10): pp. 1121-1141.
25. Y.N. Kyrychko, K.B. Blyuss, A. Gonzalez-Buelga, S.J. Hogan, and D.J. Wagg, Real-time dynamic substructuring in a coupled oscillator–pendulum system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006. 462(2068): pp. 1271-1294.
26. C. Chen and J.M. Ricles, Analysis of actuator delay compensation methods for real-time testing. Engineering Structures, 2009. 31(11): pp. 2643-2655.
27. F. Lin, A. Maghareh, S.J. Dyke, and X. Lu, Experimental implementation of predictive indicators for configuring a real-time hybrid simulation. Engineering Structures, 2015. 101: pp. 427-438.
28. C. Lee, Explore the integration of heterogeneous systems in hybrid dynamic testing technology, MS Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2014.
29. T.Y. Cheng, Using Duffing equation to model magnetorheological damper dynamics, MS Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2014.