研究生: |
吳威霖 Wu, Wei-Lin |
---|---|
論文名稱: |
單層過渡金屬二硫化物激子能態之研究 Temperature Dependent Photoluminescence Spectroscopy of Excitonic States in Transition Metal Dichalcogenide Monolayers |
指導教授: |
果尚志
Gwo, Shangjr |
口試委員: |
張文豪
Chang, Wen-Hao 安惠榮 Ahn, Hye-young 李奕賢 Lee, Yi-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 二維材料 、過渡金屬二硫屬化合物 、光激發螢光光譜 、暗激子能態 |
外文關鍵詞: | 2D material, Transition metal dichalcogenide (TMDC), Photoluminescence (PL) spectroscopy, Dark exciton states |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從科學上發現單一原子層的石墨烯擁有獨特的能帶特徵,科學家們便開始對於二維材料的研究產生極大的興趣。其中過渡金屬二硫化合物(transiton metal dichalcogenide, TMDC),例如MoS2、MoSe2、WS2以及WSe2等等,因為具有從塊材的非直接能隙半導體轉變成原子級單層厚度時,會轉變成直接能隙半導體的驚奇特性,所以也帶來極大的關注。由於單層材料維度的限制,使得過渡金屬二硫化合物材料擁有非常大束縛能的激子(exciton)產生,束縛能大約0.5 eV左右,以及產生許多特別的準粒子(quasiparticle)效應,然而對於準粒子間存在的交互作用以及形成的基本物理機制仍再深入的調查中。
而本文的實驗主要是探討過渡金屬二硫化合物材料中存在的暗激子(dark exciton)效應,暗激子為光學選擇率(selection rule)所禁止的能態。我們藉由使用間接金原子物理剝離法(gold-mediated exfoliation),此方法是運用金原子與硫族原子之間能形成強而有力的共價鍵,因此能夠從塊材分離出表面單層的材料,產生大約50-100 μm大小左右的單層過渡金屬二硫化合物,做為本文樣品的製備方式。我們使用改變溫度的光激發螢光光譜(temperature-dependent photoluminescence),探討暗激子對於低溫光激發螢光光譜發光效率的影響,並且證實鉬(Mo)系列與鎢(W)系列的過渡金屬二硫化合物具有不同的暗激子效應。這些使得我們對於材料的能帶結構以及多體效應(many-body effects)有了更深入的探索。
Atomically thin transition metal dichalcogenide (TMDC) semiconductors such as MoS2, MoSe2, WS2, WSe2, owning to the monolayer limit, have extraordinarily large exciton binding energies and exhibit many interesting excitonic effects. Here, we use temperature-dependent photoluminescence (PL) spectroscopy to investigate the existence of optically forbidden dark exciton states. We show that the intensity of low-temperature PL can be affected by the presence of dark states in TMDC monolayers. However, the dark state is lower than the optically bright state only 17 meV in the case WSe2 monolayer and only 26 meV in WS2 monolayer. Furthermore, we confirm that Mo-series and W-series TMDC monolayers have different temperature-dependent behavior. These temperature dependences allow us to have an in-depth exploration on the many-body effects of monolayer TMDC materials.
[1] Novoselov, K. S. et al., "Electric field effect in atomically thin carbon films," Science 306, 666-669, (2004)
[2] Coleman, J. N. et al., "Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science 331, 568-571, (2011)
[3] Shi, Y., Li, H. & Li, L. J., "Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744-2756, (2015)
[4] Zhang, Y. et al., "Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2," Nature Nanotech. 9, 111, (2013)
[5] Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A., "Two-dimensional material nanophotonics," Nature Photonics 8, 899-907, (2014)
[6] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A., "Single-layer MoS2 transistors," Nature Nanotech. 6, 147-150, (2011)
[7] Geim, A. K. & Grigorieva, I. V., "Van der Waals heterostructures," Nature 499, 419-425, (2013)
[8] Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. "Ultrasensitive photodetectors based on monolayer MoS2." Nature Nanotech. 8, 497-501, (2013)
[9] Wang, C.-Y. et al. In CLEO: Science and Innovations, pages STu4N–2. Optical Society of America, 2018
[10] Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. "Electrically switchable chiral light-emitting transistor." Science 344, 725-728, (2014)
[11] Zhang, Y. J., Yoshida, M., Suzuki, R. & Iwasa, Y., "2D crystals of transition metal dichalcogenide and their iontronic functionalities," 2D Materials 2, (2015).
[12] Li, Y. et al., "Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2," Physical Review B 90, (2014)
[13] Kośmider, K., González, J. W. & Fernández-Rossier, J., "Large spin splitting in the conduction band of transition metal dichalcogenide monolayers." Physical Review B 88, (2013)
[14] Kormányos, A. et al., "k·p theory for two-dimensional transition metal dichalcogenide semiconductors," 2D Materials 2, (2015)
[15] Echeverry, J. P., Urbaszek, B., Amand, T., Marie, X. & Gerber, I. C., "Splitting between bright and dark excitons in transition metal dichalcogenide monolayers," Physical Review B 93, (2016)
[16] Ye, Z. et al., "Probing excitonic dark states in single-layer tungsten disulphide," Nature 513, 214-218, (2014)
[17] Zhang, X. X., You, Y., Zhao, S. Y. & Heinz, T. F., "Experimental Evidence for Dark Excitons in Monolayer WSe2," Phys. Rev. Lett. 115, 257403, (2015)
[18] Zhang, X. X. et al., "Magnetic brightening and control of dark excitons in monolayer WSe2," Nature Nanotech. 12, 883-888, (2017)
[19] Molas, M. R. et al., "Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides," 2D Materials 4, (2017)
[20] Smoleński, T. et al., "Tuning Valley Polarization in a WSe2 Monolayer with a Tiny Magnetic Field," Physical Review X 6, (2016)
[21] McDonnell, L. P., Huang, C.-C., Cui, Q., Hewak, D. W. & Smith, D. C., "Probing Excitons, Trions, and Dark Excitons in Monolayer WS2 Using Resonance Raman Spectroscopy." Nano Letters 18, 1428-1434, (2018)
[22] Zhou, Y. et al., "Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons," Nature Nanotech. 12, 856-860, (2017)
[23] Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W. & Xiao, D., "Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides," Physical Review B 88, (2013)
[24] Mark Fox, Optical Properties of Solids, 2nd edition, Oxford University Press (2010)
[25] Aigen Li, ASP Conf. Ser. 309, 417 (2004)
[26] A. Ramirez-Torres, V. Turkowski, T.S. Rahman, "Time-dependent density-matrix functional theory for trion excitations: application to monolayer MoS2 and other transition-metal dichalcogenides," Phys. Rev. B 90(8), 085419, (2014)
[27] Y. P. Varshni, Physica 34, 149, (1967)
[28] Rudin, S., Reinecke, T. L. & Segall, B. "Temperature-dependent exciton linewidths in semiconductors." Physical Review B 42, 11218-11231, (1990)
[29] Shibata, H., "Negative Thermal Quenching Curves in Photoluminescence of Solids," Japanese Journal of Applied Physics 37, 550-553, (1998)
[30] 楊雲凱,"物理氣相沉積(PVD)介紹",奈米通訊,22卷No.4,33-35,(2015)
[31] Desai, S. B. et al., "Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers," Adv. Mater. 28, 4053-4058, (2016)
[32] H. Li, J. Wu, Z. Yin, H. Zhang, "Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets," Acc. Chem. Res. 47(4), 1067, (2014)
[33] Li, H. et al., "Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy," ACS Nano 7, 10344-10353, (2013)
[34] Splendiani, A. et al. "Emerging photoluminescence in monolayer MoS2." Nano Lett. 10, 1271-1275, (2010)
[35] Tonndorf, P. et al., "Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2." Opt Express 21, 4908-4916, (2013)
[36] Zhao, W. et al., "Evolution of electronic structure in atomically thin sheets of WS2 and WSe2." ACS Nano 7, 791-797, (2013)
[37] Zhao, W. et al., "Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2." Nanoscale 5, 9677-9683, (2013)
[38] Jones, A. M. et al., "Optical generation of excitonic valley coherence in monolayer WSe2." Nature Nanotech. 8, 634-638, (2013)
[39] Arora, A. et al., "Excitonic resonances in thin films of WSe2: from monolayer to bulk material." Nanoscale 7, 10421-10429, (2015)
[40] Plechinger, G. et al., "Low-temperature photoluminescence of oxide-covered single-layer MoS2." physica status solidi (RRL) - Rapid Research Letters 6, 126-128, (2012)
[41] He, K. et al., "Tightly bound excitons in monolayer WSe2." Phys. Rev. Lett. 113, 026803, (2014)
[42] Huang, J., Hoang, T. B. & Mikkelsen, M. H., "Probing the origin of excitonic states in monolayer WSe2." Sci. Rep. 6, 22414, (2016)
[43] Lundt, N. et al., "The interplay between excitons and trions in a monolayer of MoSe2." Applied Physics Letters 112, (2018)
[44] Ross, J. S. et al., "Electrical control of neutral and charged excitons in a monolayer semiconductor." Nat. Commun. 4, 1474, (2013)
[45] Arora, A., Nogajewski, K., Molas, M., Koperski, M. & Potemski, M., "Exciton band structure in layered MoSe2: from a monolayer to the bulk limit." Nanoscale 7, 20769-20775, (2015)
[46] Ugeda, M. M. et al., "Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor." Nature Mater. 13, 1091-1095, (2014)
[47] Berkdemir, A. et al., "Identification of individual and few layers of WS2 using Raman Spectroscopy." Scientific Reports 3, (2013)
[48] Lee, C. et al., "Anomalous lattice vibrations of single- and few-layer MoS2." ACS Nano 4, 2695-2700, (2010)
[49] Shang, J. et al., "Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor." ACS Nano 9, 647-655, (2015)
[50] Plechinger, G. et al., "Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide." Nat. Commun. 7, 12715, (2016)
[51] Plechinger, G. et al., "Identification of excitons, trions and biexcitons in single-layer WS2." physica status solidi (RRL) - Rapid Research Letters 9, 457-461, (2015)
[52] Chernikov, A. et al., "Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2." Phys. Rev. Lett. 113, 076802, (2014)
[53] Zhu, B., Chen, X. & Cui, X., "Exciton binding energy of monolayer WS2." Scientific Reports 5, 9218, (2015)
[54] Mak, K. F., He, K., Shan, J. & Heinz, T. F., "Control of valley polarization in monolayer MoS2 by optical helicity." Nature Nanotech. 7, 494-498, (2012)
[55] Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C., "Low-temperature photocarrier dynamics in monolayer MoS2." Applied Physics Letters 99, (2011)
[56] Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R., "Theory of neutral and charged excitons in monolayer transition metal dichalcogenides." Physical Review B 88, (2013)