簡易檢索 / 詳目顯示

研究生: 易沛勳
Yi, Pei-Hsun
論文名稱: 具蓄電池/超電容混合式儲能與電網至車輛/車輛至電網功能之電動車輛切換式磁阻馬達驅動系統
AN ELECTRIC VEHICLE SWITCHED-RELUCTANCE MOTOR DRIVE WITH BATTERY/SUPER-CAPACITOR HYBRID ENERGY STORAGE AND GRID-TO-VEHICLE/VEHICLE-TO-GRID FUNCTIONS
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 李建興
謝欣然
陳盛基
廖聰明
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 187
中文關鍵詞: 切換式磁阻馬達電動車蓄電池再生煞車超電容單相三線式變頻器車上充電器功因校正電網至車輛車輛至家庭車輛至電網
外文關鍵詞: SRM, EV, battery, regenerative braking, super-capacitor, single-phase three-wire inverter, on-board charger, power factor correction, grid-to-vehicle, vehicle-to-home, vehicle-to-grid
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一具蓄電池/超電容混合式儲能之電動車切換式磁阻馬達驅動系統,兼具電網至車輛及車輛至電網操作功能。馬達驅動系統之電力電路由一雙象限前端直流/直流轉換器及一非對稱橋式轉換器構成。藉由適宜之切換、電流及速度控制,獲得良好之可反轉驅控與煞車特性。並使用換相前移及直流鏈電壓升壓技巧,進一步增進馬達於高速下之驅控性能。此外,應用功率型超電容儲能增補能量型蓄電池儲能,以得較佳之電動車總體儲能利用特性。特定而言,超電容可提供短期且快速之放電/充電操作,並有利蓄電池壽命之延長。
    當車輛處於閒置狀態,所提馬達驅動系統組態可重新安排建構形成集成式電力轉換器以執行下列功能:(1) 電網至車輛充電模式:以一降壓型直流/直流轉換器後接於單相全橋式升壓型切換式整流器對蓄電池充電,具功因校正能力。此外,由適當改接,所提馬達驅動系統亦可形成一單級降-升壓切換式整流器。(2) 聯網之車輛至電網放電模式:除本地負載外,可回送設定之實功至市電。(3) 獨立操控之車輛至家庭放電模式:組建一單相三線變頻器產生60Hz 220/110V之交流電源供給家電設備。應用所採之差模及共模控制策略,於未知及非線性負載下,具有良好之電壓波形品質。所開發馬達驅動系統中之所有電力轉換器之數位控制均由一共同數位處理器實現,並以一些模擬及實測結果驗證其於不同模式下之操作效能。


    This thesis develops an electric vehicle (EV) switched-reluctance motor (SRM) drive with battery/super-capacitor hybrid storage and incorporated with grid-to-vehicle (G2V) and vehicle-to-grid (V2G) functions. The power circuit of the motor drive is formed by a bidirectional two-quadrant front-end DC/DC converter and a SRM asymmetric bridge converter. Through proper switching control, current and speed controls, good reversible driving and braking characteristics are obtained. The commutation advanced shift as well as voltage boosting are further applied to enhance the driving performance under higher speed. In addition, by augmenting the energy type battery storage with the power type super-capacitor storage, better overall storage utilization of an EV is achieved. Specifically speaking, the short and fast discharging/charging operations can be served by the super-capacitor bank. This is also beneficial in lengthening battery life.
    In idle condition, the proposed motor drive schematic can be rearranged to construct the integrated power converter to perform the following functions: (1) G2V charging mode: a single-phase two-stage switch-mode rectifier (SMR) based charger is formed with power factor correction (PFC) capability. Its power circuit consists of a full-bridge boost SMR and a followed DC/DC buck converter. Moreover, a single-stage buck-boost SMR based charger can be established through proper arrangement; (2) Grid-connected V2G discharging mode: in addition to the local loads, the programmed real power can be sent back to the utility grid; (3) Autonomous V2H discharging mode: a single-phase three-wire (1P3W) inverter is established to generate the 60Hz 220V/110V AC sources to power home applications. Through applying the differential mode (DM) and common mode (CM) control approaches, good voltage waveform qualities are preserved under unknown and non-linear loads.
    All the digital controls of the constituted power stages in the developed SRM drive system are realized using a common digital signal processor (DSP). Some simulated and experimental results are provided to verify its operation performances under various modes.

    摘要…………………………………………………………………a 致謝…………………………………………………………………b 目錄…………………………………………………………………c 第一章、簡介……………………………………………………………………………………………d 第二章、切換式磁阻馬達與其電動車推進應用…………………………………f 第三章、所建切換式磁阻馬達驅動系統及其驅動操作模式……………g 第四章、所建切換式磁阻馬達驅動系統之電網至車輛操作模式……h 第五章、所建切換式磁阻馬達驅動系統之車輛至家庭與車輛至電網操作模式………………………………………………………………………………i 第六章、結論…………………………………………………………j 附錄: 英文論文……………………………………………………k

    [1] G. M. Masters, Renewable and efficient electric power systems, Wiley-Interscience, New Jersey, 2004.
    [2] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgrids,” IEEE Power Energy Mag., vol. 5, no. 4, pp. 78-94, 2007.
    [3] J. Arai, K. Iba, T. Funabashi, Y. Nakanishi, K. Koyanagi and R. Yokoyama, “Power electronics and its applications to renewable energy in Japan,” IEEE Circuits Syst. Mag., vol. 8, no. 3, pp. 52-66, 2008.
    [4] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp. 1369-1380.
    [5] J. Mitra and S. Suryanarayanan, “System analytics for smart microgrids,” in Proc. IEEE PES, 2010, pp. 1-4.
    [6] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, 2011.
    [7] N. Kawakami and Y. Iijima, “Overview of battery energy storage systems for stabilization of renewable energy in Japan,” in Proc. IEEE ICRERA, 2012, pp. 1-5.
    [8] G. Wu, S. Kodama, Y. Ono and Y. Monma, “A Hybrid microgrid system including renewable power generations and energy storages for supplying both the DC and AC loads,” in Proc. IEEE ICRERA, 2012, pp. 1-5.
    [9] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo and J. M. Carrasco, “Energy storage systems for transport and grid applications” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, 2010.
    [10] A. U. Saber and G. K. Venayaganiirthy, “Plug-in vehicles and renewable energy sources for cost and emission reductions,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1229-1238, 2011.
    [11] V.R. Roberto, L.G. Pau, H.P. Daniel, S. Andreas C. Ignasi, C.Z. Miguel and V. Narcís, “Electric vehicles in power systems with distributed generation: vehicle to microgrid (V2M) project,” in Proc. IEEE EPQU, 2011, pp. 1-6.
    [12] K. Yoshimi, M. Osawa, D. Yamashita, T. Niimura, R. Yokoyama, T. Masuda, H. Kondou and T. Hirota, “Practical storage and utilization of household photovoltaic energy by electric vehicle battery,” in Proc. IEEE ISGT, 2012, pp. 1-8.
    [13] C. C. Chan, “An overview of electric vehicle technology,” Proc. IEEE, vol. 81, no. 9, pp.1202-1213, 1993.
    [14] A. Emadi, K. Rajashekara, S. S. Williamson and S. M. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Trans. Veh. Technol., vol. 54, no. 2, pp. 736-770, 2005.
    [15] Y. Gao and M. Ehsani. “Design and control methodology of plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 633-640, 2010.
    [16] S. G. Wirasingha and A. Emadi “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
    [17] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [18] X. D. Xue, K. Cheng and N. C. Cheung, “Selection of electric motor drives for electric vehicles,” in Proc. IEEE AUPEC, 2008, pp. 1-6.
    [19] G. Nanda and N. C. Kar, “A survey and comparision of characteristics of motor drives used in electric vehicles,” in Proc. IEEE CCECE, 2006, pp. 811-814.
    [20] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
    [21] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
    [22] N. Hoshi, A. Chiba and M. Takemoto, “Characteristic measurements of switched reluctance motor on prototype electric vehicle,” in Proc. IEEE IEVC, 2012, pp. 1-8.
    [23] A. C. Pop, V. Petrus, C. S. Martis, V. Iancu and J. Gyselinck, “Comparative study of different torque sharing functions for losses minimization in Switched Reluctance Motors used in electric vehicles propulsion,” in Proc. IEEE OPTIM, 2012, pp. 356-365.
    [24] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
    [25] M. Brandl, H. Gall, M. Wenger, V. Lorentz, M. Giegerich, F. Baronti, G. Fantechi, L. Fanucci, R. Roncella, R. Saletti, S. Saponara, A. Thaler, M. Cifrain and W. Prochazka, “Batteries and battery management systems for electric vehicles,” in Proc. IEEE DATE, 2012, pp. 971-976.
    [26] H. Gao, Y. Gao and M. Ehsani, “Neural network based SRM drive control strategy for regenerative braking in EV and HEV,” in Proc. IEEE IEMDC, 2001, pp. 571-575.
    [27] A. Komatsuzaki, T. Bamba and I. Miki, “A position sensorless control for switched reluctance motor,” in Proc. IEEE PCC, 2007, pp. 867-873.
    B. Battery and Super-capacitor
    [28] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005.
    [29] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid and fuel cell vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007.
    [30] S. Lu, K. A. Corzine and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516-1523, 2007.
    [31] O. Onar and A. Khaligh, “Dynamic modeling and control of a cascaded active battery/ultra-capacitor based vehicular power system,” in Proc. IEEE VPPC, 2008, pp. 1-4.
    [32] S. Lambert, V. Pickert, J. Holden, W. Li and X. He, “Overview of supercapacitor voltage equalization circuits for an electric vehicle charging application,” in Proc. IEEE VPPC, 2010, pp. 1-7.
    [33] M. B. Camara, H. Gualous, F. Gustin and A. Berthon, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, 2010.
    [34] M. B. Camara, B. Dakyo, H. Gaulous and C. Nichita, “DC/DC converters control for embedded energy management-supercapacitors and battery,” in Proc. IEEE IECON, 2010, pp. 2323-2328.
    [35] M. B. Camara, H. Gaulous and B. Dakyo, “Supercapacitors modeling and integration in transport applications,” in Proc. IEEE IAS, 2011, pp. 1-7.
    [36] M. A. Tankari and M. B. Camara, “DC-bus voltage control for multi-sources systems- battery and supercapacitors,” in Proc. IEEE IECON, 2011, pp. 1270-1275.
    [37] W. F. Infante, A. F. Khan, N. J. C. Libatique, G. L. Tangonan and S. N. Y. Uy, “Performance evaluation of series hybrid and pure electric vehicles using lead-acid batteries and supercapacitors,” in Proc. IEEE TENCON, 2012, pp. 1-5.
    [38] M. Neenu and S. Muthukumaran, “A battery with ultracapacitor hybrid energy storage system in electric vehicles,” in Proc. IEEE ICAESM, 2012, pp. 731-735.
    [39] M. B. Camara, B. Dajyo and H. Gualous, “Polynomial control method of DC/DC converters for DC-bus voltage and currents management-battery and supercapacitors,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1455-1467, 2012.
    [40] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
    [41] A. Tina, M. B. Camara, B. Dakyo and Y. Azzouz, “DC/DC and DC/AC converters control for hybrid electric vehicles energy management-ultracapacitors and fuel cell,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 686-696, 2013.
    [42] A. Ostadi and S. K. Chen, “Hybrid energy storage system (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” in Proc. IEEE ITEC, 2013, pp. 1-7.
    C. Switched-Reluctance Motor Drive and Converter
    [43] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
    [44] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
    [45] A. M. Omekanda, “Switched reluctance machines for EV and HEV propulsion: state-of-the-art,” in Proc. IEEE DEMDCD, 2013, pp. 70-74.
    [46] S. Haghbin A. Rabiei and E. Grunditz, “Switched reluctance motor in electric or hybrid vehicle applications: a status review,” in Proc. IEEE ICIEA, 2013, pp. 1017-1022.
    [47] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
    [48] K. M. Rahman and S. E. Schulz, “Design of high efficiency and high density switched reluctance motor for vehicle propulsion,” in Proc. IEEE IAC, 2001, vol. 3, pp. 2104-2110.
    [49] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
    [50] S. Kachapornkul, P. Jitkreeyarn, P. Somsiri, K. Tungpimolrut, A. Chiba and T. Fukao, “A design of 15 kW switched reluctance motor for electric vehicle applications,” in Proc. IEEE ICEMS, 2007, pp. 1690-1693.
    [51] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kw IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
    [52] B. Bilgin, A. Emadi and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEV,” IEEE Trans. Ind. Electron., vol. 60, no.72, pp. 2564-2575, 2013.
    [53] A. Labak and N. C. Kar, “Designing and prototyping a novel five-phase pancake-shaped axial-flux SRM for electric vehicle application through dynamic FEA incorporating flux-tube modeling,” IEEE Trans. Ind. Appl., vol. 49, no.30, pp. 1276-1288, 2013.
    [54] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
    [55] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
    [56] S. Mir, I. Husain and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, pp. 912-921, 1997.
    [57] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” Proc. IEE-Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
    [58] D. H. Lee, G. Xu and J. W. Ahn, “Analysis of passive boost power converter for three-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2961-2971, 2010.
    [59] K. Chimata, N. Hoshi and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE Power Electron., 2012, pp. 1-6.
    [60] T. W. Ching, K. T. Chau and C. C. Chan, “A novel zero-voltage soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 899-904.
    [61] L. G. B. Rolim, W. I. Suemitsu, E. H. Watanable and R. Hanitsch, “Development of an improved switched reluctance motor drive using a soft-switching converter,” IET. Elect. Power Appl., vol. 146, no.5, pp. 1650-2352, 1990.
    [62] H. Goto, H. J. Guo and O. Ichinokura, “A novel drive method for switched reluctance using three-phase power modules,” in Proc. EPE-PEMC, 2006, pp. 1027-1031.
    [63] Y. C. Kim, Y. H. Yoon, B. K. Lee, J. Hur and C. Y. Won, “A new cost effective SRM drive using commercial 6-switch IGBT modules,” in Proc. IEEE PESC, 2006, pp. 1-7.
    [64] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
    [65] H. C. Chang, C. H. Chen, Y. H. Chiang and W. Y. Sean and C. M. Liaw, “Establishment and control of a three-phase switched reluctance motor drive using intelligent power modules,” IET Elect. Power Appl., vol. 4, no.9, pp. 772-782, 2010.
    [66] FCAS50SN60 smart power module for SRM, www.fairchildsemi.com/ds/FC/FCAS50SN60.pdf.
    [67] FCAS20DN60BB smart power module for SRM, www.fairchildsemi.com/ds/FC/FCAS20DN60BB.pdf.
    D. Modeling and Dynamic Control Methods
    [68] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000.
    [69] V. Vujicic and S. N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
    [70] B. C. Mecrow, C. Weiner and A. C. Clothier, “The modeling of switched reluctance machines with magnetically coupled windings,” IEEE Trans. Ind. Appl., vol. 37, no. 6, pp. 1675-1683, 2001.
    [71] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
    [72] X. Dexin, Y. Xiuke and Z. Yihuang, “A direct field-circuit-motion coupled modeling of switched reluctance motor,” IEEE Trans. Magn., vol. 40, no.2, pp. 573-576, 2004.
    [73] Z. Lin, D. S. Reay, B. W. Williams and X. He, “Online modeling for switched reluctance motors using B-Spline neural networks,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3317-3322, 2007.
    [74] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
    [75] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
    [76] G. Gallegos-Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines” in Proc. Ind. Appl., 2002, vol. 2, pp. 1212-1218.
    [77] R. B. Inderka, M. Menne and R. W. A. A. De Doncker, “Control of switched reluctance drives for electric vehicle applications” IEEE Trans. Ind. Electron., vol. 49, pp. 48-53, 2002.
    [78] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
    [79] Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based non-line estimated parameters,” IET Elect. Power Appl., vol. 4, no.1, pp. 67-74, 2010.
    [80] L. O. A. P. Henriques, P. J. C. Branco, L. G. B. Rolim and W. I. Suemitsu, “Proposition of an off line learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 665-676, 2002.
    [81] M. R. Benhadria, K. Kendouci and B. Mazari, “Torque ripple minimization of switched reluctance motor using hysteresis current control,” in Proc. IEEE ISIE, 2006, pp. 2158-2162.
    [82] R. Gobbi and K. Ramar, “Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors,” IET Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
    [83] Y. Kuwahara, H. Ono, T. Kosaka, N. Matsui and H. Shimada, “Precise pulsewise current drive of SRM under PWM control,” in Proc. IEEE PEDS, 2013, pp. 1049-1054.
    [84] M. W. Arba, E. Godoy, I. Bahri and M. Hilairet, “Current controller for switched reluctance motors using pole placement approach,” in Proc. IEEE IEMDC, 2013, pp. 1119-1125.
    [85] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
    [86] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” Proc. IEE-Elect. Power Appl., vol. 150, no. 2, pp. 193-200, 2003.
    [87] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
    [88] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” Proc. IET-Electric Power Appl., vol. 148, no. 4, pp345-353, 2001.
    [89] L. L. N. dos Reis, R. N. Almeida, W. A. Silva, G. M. P. de Mendes and O. M. Almeida, “Self-tuning control for current loop in a switched reluctance motor drive,” in Proc. IEEE COBEP, 2011, pp. 1076-1080.
    [90] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
    [91] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    [92] T. Koblara, “Implementation of speed controller for switched reluctance motor drive using fuzzy logic,” in Proc. IEEE OPTIM, 2008, pp. 101-105.
    [93] S. Bolognani and M. Zigiotto, “Fuzzy logic control of a switched reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 32, no.5, pp. 1063-1068, 1996.
    E. Commutation Instant Tuning Approaches
    [94] J. J. Gribble, P. C. Kjaer, C. Cossar and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
    [95] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
    [96] R. Orthmann and H. P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. IEE Conf. Power Electron. and Appl., 1993, vol. 6, pp. 20-25.
    [97] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
    [98] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
    [99] S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
    [100] J. Y. Chai and C. M. Liaw, “Reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling.” IET Electric Power Applications, vol. 4, no. 5, pp. 380-396, May 2010.
    F. Front-End Converters
    [101] J. Silvestre, “Half-bridge bidirectional DC-DC converter for small electric vehicle,” in Proc. IEEE Power Electron. 2008, pp. 884-888.
    [102] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC., 1994, vol. 1, pp. 381-389.
    [103] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
    [104] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
    [105] S. Lu, K. A. Corzine and M. Ferdowsi, “High efficiency energy storage system design for hybrid electric vehicle with motor drive integration,” in Proc. IEEE IAS, 2006, pp. 2560-2567.
    [106] L. Kumar and S. Jain, “A multiple input dc-dc converter for interfacing of battery/ultracapacitor in EVs/HEVs/FCVs,” in Proc. IEEE IICPE, 2012, pp. 1-6.
    [107] Y. Du, X. Zhou, S. Bai, S. Lukic, “Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks,” in Proc. IEEE APEC, 2010, pp.1145-1151.
    [108] O. C. Onar, J. Kobayashi and A. Khaligh, “A fully directional universal power electronic interface for EV, HEV, and PHEV Applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5489-5498, 2013.
    G. Switch-Mode Rectifiers and Grid-to-Vehicle Charging Operation
    [109] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
    [110] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D.P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
    [111] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [112] R. Morrison and M. G. Egan, “A new modulation strategy for a buck-boost input AC/DC converter,” IEEE Trans. Power Electron., vol. 16, pp. 34-45, 2001.
    [113] K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori and F. Ueda, “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36.
    [114] J. Chen, D. Maksimovic and R. W. Erickson, “Analysis and design of a low-stress buck-boost converter in universal-input PFC applications,” IEEE Trans. Power Electron., vol. 41, pp. 320-329, 2006.
    [115] L. Sollero, V. Serrao, M. Montuoro and A. Romanelli, “Low THD variable load buck PFC converter,” in Proc. PESC, 2008, pp. 906-912.
    [116] H. Laszlo, G. Liu and M. J. Milan, “Design-oriented analysis and performance evaluation of buck PFC front-end,” in Proc. APEC, 2009, pp. 1170-1176.
    [117] F. J. Perez-Pinal and I. Cervantes, “Multi-reconfigurable power system for EV applications,” in Proc. EPE-PEMC, 2006, pp. 491-495.
    [118] X. Zhou, S. Lukic, S. Bhattacharya and A. Huang, “Design and control of grid-connected converter in bi-directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE VPPC., 2009, pp. 1716-1721.
    [119] S. Lacroix, E. Laboure and M. Hilairet, “An integrated fast battery charger for electric vehicle,” in Proc. IEEE VPPC, 2010, pp. 1-6.
    [120] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no.5, pp. 2151-2169, 2012.
    [121] S. Haghbin, K. Khan, S. Lundmark, M. Alaküla, O. Carlson, M. Leksell and O. Wallmark, “Integrated chargers for EV’s and PHEV’s: examples and new solutions,” in Proc. ICEM, 2010, pp. 1-6.
    [122] S. Haghbin, S. Lundmark, M. Alakula and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., pp. 1-14, 2012.
    H. Inverters and Vehicle-to-Home Discharger Operation
    [123] Y. J. Lee, A. Khaligh and A. Emadi, “Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 58, no.8, pp. 3970-3980, 2012.
    [124] H. Oyobe, M. Nakamura, T. Ishikawa, S. Sasaki, Y. Minezawa, Y. Watanabe and K. Asano, “Development of ultra low-cost, high-capacity power generation system using drive motor and inverter for hybrid vehicle,” in Conf. Rec. IEEE-IAS Annu. Meeting, 2005, vol. 3, pp. 2029-2034.
    [125] X. Zhou, G. Wang, S. Lukic, S. Bhattacharya and A. Huang, “Multi-function bi-directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE ECCE., pp. 3930-3936, 2009.
    [126] F. Berthold, B. Blunier, D. Bouquain, S. Williamson and A. Miraoui, “PHEV control strategy including vehicle to home (V2H) and home to vehicle (H2V) functionalities,” in Proc. IEEE VPPC., 2011, pp. 1-6.
    [127] M. A. Khan, I. Husain and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power flow between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5774-5783, 2013.
    [128] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 1st ed. New York: John Wiley & Sons, 2003.
    [129] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002.
    [130] X. Yaosuo, C. Liuchen and S. Pinggang, “Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123.
    [131] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
    [132] B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
    [133] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” in IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
    [134] C. G. C. Branco, C. M. T. Cruz, R. P. Torrico-Bascope and F. L. M. Antunes, “A non-isolated single-phase UPS topology with 110V/220V input-output voltage,” in Proc. IEEE IECON, 2005, pp. 930-935.
    [135] L. Y. Lu, C. L. Wang, Ai Ming, T. Y. Chen, H. C. Chang and C. M. Liaw, “Development of a single-phase three-wire inverter and its robust waveform control,” R.O.C. 30th Symposium on Electrical Power Engineering, 2009, pp. E016-1-E016-6.
    I. Vehicle to Grid Discharging Operation
    [136] B. Kramer, S. Chakraborty and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
    [137] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, May 2012.
    [138] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, 2013.
    [139] M. C. Kisacikoglu, B. Ozpineci and L. M. Tolbert, “Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger,” in Proc. IEEE ECCE, 2010, pp. 870-876.
    [140] O. Hegazy, J. Van Mierlo and P. Lataire, “Design and control of bidirectional DC/AC and DC/DC converters for plug-in hybrid electric vehicles,” in Proc. POWERENG, 2011, pp. 1-7.
    [141] O. Onar, J. Kobayashi and A. Khaligh, “A multi-level grid interactive bi-directional AC/DC-DC/AC converter and a hybrid battery/ultra-capacitor energy storage system with integrated magnetics for plug-in hybrid electric vehicles,” in Proc. IEEE APEC., 2011, pp. 829-835.
    [142] A. K. Verma, B. Singh and D. T. Shahani, “Grid to vehicle and vehicle to grid energy transfer using single-phase bidirectional AC-DC converter and bidirectional DC-DC converter,” in Proc. IEEE ICEAS., 2011, pp. 1-5.
    [143] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, 2012.
    [144] M. A. Khan, I. Husain and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power flow between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
    [145] D. C. Erb, O. C. Onar and A. Khaligh, “Bi-directional charging topologies for plug-in hybrid electric vehicles,” in Proc. APEC, 2012, pp. 2066-2072.
    J. Others
    [146] IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Standard 1547, 2003.
    [147] M. J. Yeah, “A switched-reluctance motor drive for electric vehicles with grid-to-vehicle and vehicle-to-grid bidirectional operation capabilities,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE