簡易檢索 / 詳目顯示

研究生: 周吉恩
Chou, Chi-En
論文名稱: 聚對苯二甲酸乙二酯人造肌肉的熱致收縮性質及潛變的探討
Thermal actuation and creep performance of Polyethylene terephthalate (PET) artificial muscle
指導教授: 李三保
Lee, San-Boh
口試委員: 貢中元
Kung, Chung-Yuan
裴呈志
Pei, Cheng-Chih
歐陽浩
Ouyang, Hao
蔣東堯
Chiang, Don-Yau
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 110
中文關鍵詞: 聚對苯二甲酸乙二酯人造肌肉潛變熱收縮潛變應力鬆弛
外文關鍵詞: thermal actuation, DMA, standard linear model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用高分子纖維藉由扭轉的方法來製作彈簧狀人造肌肉,已經被廣泛的討論及研究,並利用其結構特有的熱致收縮性質,或稱為負膨脹特性,來達到類似人類手臂的動作。本篇論文將探討改變訓練拉力、纖維粗細、轉速等,研究其熱收縮特性、潛變、應力鬆弛及拉伸測試。
    在熱致收縮實驗,在溫度80℃至140℃間,收縮距離隨溫度增加而增加,並且我們將繼續探討前段所提及的因素對收縮距離的影響。
    接著在拉伸實驗中,我們不僅研究PET線材基本物理性質,更對其拉伸行為做探討,並利用XRD與DSC做分析。我們更發現在拉伸過程中,有應力或應力引發結晶行為的發生。
    我們利用 standard linear solid model 去模擬潛變以及應力鬆弛的實驗。另外,我們利用阿瑞尼士方程式來描述這些熱相關的行為,並得到活化能。活化能會隨training load增加而下降,但活化能會隨轉速上升而增加。粗的PET線材擁有的活化能較細的PET線材大。
    為了取得PET線材的分子量,我們利用黏度測量實驗來分析。實驗結果顯示黏度跟分子力成正相關,代表細的PET線材擁有相較於粗PET線材大的分子量。這個實驗結果也吻合潛變的實驗結果。


    Twisted-coiled actuator (TCA) made by polymer fiber has a characteristic behavior called thermal actuation. We choose polyethylene terephthalate (PET) as material due to its great hardness, toughness, low cost and light weight. We investigated the thermal actuation distance, creep performance, tensile tests, and stress relaxation tests of TCA by applying different training loads, fiber’s diameters, and rotational speeds.
    In thermal actuation tests, the contracted length increases with increasing temperature ranging from 80 ℃ to 140 ℃, and discuss the effect of parameters we mentioned in the first paragraph.
    Next, in tensile test, we investigated PET fibers not only mechanical properties, but also stretching behavior by using XRD and DSC. Stress induced crystallization is found during tensile process.
    We use standard linear solid model to fit the creep and stress relaxation data. Besides, the thermal activation process can be described well by using Arrhenius equation. The activation energies of creep and stress relaxation tests decrease with increasing training loads, but increases with increasing rotational speed. The activation energy is larger in PET fibers of larger diameter.
    To estimate the molecular weight of PET fibers with different diameters, viscosity measurement is introduced. We found that diameter 0.25 mm PET fibers have larger viscosity, which matched creep results that diameter 0.25 mm PET fiber have larger viscosity coefficient than diameter 0.45 mm PET fiber.

    Acknowledgments I Abstract II 摘要 III List of Tables VII Figure Captions XII Chapter 1 Introduction 1 Chapter 2 Theory 6 2.1 Creep Model for TCA 6 2.2 Creep Model for PET fiber 8 2.3 Stress Relaxation Model for TCA 9 2.4 Stress Relaxation Model for PET fiber 10 Chapter 3 Experimental Procedure 12 3.1 Specimen Preparation 12 3.1.1 Materials 12 3.1.2 Fabrication of PET Artificial Muscle (or Twisted-Coiled Actuator, TCA) 12 3.2 Optical Microscope 13 3.3 Thermal Actuation Test 14 3.4 Tensile Test 15 3.5 DSC Measurement 15 3.6 X-ray Diffraction Measurement 16 3.7 Creep Test 16 3.8 Stress Relaxation Test 17 3.9 Viscosity Measurement 17 Chapter 4 Results and Discussion 20 4.1 Optical Microscope Observation 20 4.2 Thermal Actuation Test 21 4.2.1 Heating by Electrical Heating Belt 21 4.3 Tensile Test 24 4.3.1 Curve Analysis 24 4.3.2 DSC Analysis 25 4.3.3 XRD Analysis 25 4.4 Creep test 26 4.4.1 Effect of training loads on artificial muscle made of 0.48 mm PET fiber 28 4.4.2 Effect of rotational speed on artificial muscle made of 0.48 mm PET fiber 29 4.4.3 Effect of training loads on artificial muscle made of 0.25 mm PET fiber 30 4.4.4 Comparing between TCA without training and primitive PET fibers 31 4.4.5 Crystallinity 32 4.5 Viscosity Test 33 4.6 Stress Relaxation Test 34 4.6.1 Effect of training loads on artificial muscle made of 0.48 mm PET fiber 34 4.6.2 Comparing between TCA without training and primitive PET fibers 35 Chapter 5 Conclusion 37 References 39 Tables 48 Figures 72 Appendix 100 A.1 Experimental Procedure 100 Silver Painted TCA 100 A.2 Results 100 A.2.1 Thermal actuation 100 A.2.2 Tensile tests 101 A.2.3 Creep tests 101 A.3 Conclusion 103 A.4 Tables 104 A.5 Figures 108

    1. R. Pelrine, R. D. Kornbluh, Q. Pei, S. Stanford, S. Oh, J. Eckerle, R. J. Full, M. A. Rosenthal, K. Meijer, in SPIE's 9th Annual International Symposium on Smart Structures and Materials. (SPIE, San Diego, California, USA, 2002), vol. 4695, 126-137.
    2. H. Arazoe, D. Miyajima, K. Akaike, F. Araoka, E. Sato, T. Hikima, M. Kawamoto, T. Aida, An autonomous actuator driven by fluctuations in ambient humidity. Nature Materials 15, 1084 (2016).
    3. D. Kim, H. S. Lee, J. Yoon, Highly bendable bilayer-type photo-actuators comprising of reduced graphene oxide dispersed in hydrogels. Scientific Reports 6, 20921 (2016).
    4. J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, I. W. Hunter, Artificial muscle technology: physical principles and naval prospects. IEEE Journal of Oceanic Engineering 29, 706-728 (2004).
    5. S. M. Mirvakili, I. W. Hunter, Artificial muscles: Mechanisms, applications, and challenges. Advanced Materials 30, 1704407 (2018).
    6. L. Chen, C. Liu, K. Liu, C. Meng, C. Hu, J. Wang, S. Fan, High-Performance, Low-Voltage, and Easy-Operable Bending Actuator Based on Aligned Carbon Nanotube/Polymer Composites. ACS Nano 5, 1588-1593 (2011).
    7. J. Mu, C. Hou, B. Zhu, H. Wang, Y. Li, Q. Zhang, A multi-responsive water-driven actuator with instant and powerful performance for versatile applications. Scientific Reports 5, 9503 (2015).
    8. P. Sungjin, A. Jinho, S. J. Won, R. S. Ruoff, Graphene-Based Actuators. Small 6, 210-212 (2010).
    9. M. R. Islam, X. Li, K. Smyth, M. J. Serpe, Polymer-Based Muscle Expansion and Contraction. Angewandte Chemie International Edition 52, 10330-10333 (2013).
    10. M. Ma, L. Guo, D. G. Anderson, R. Langer, Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients. Science 339, 186 (2013).
    11. C. Jo, D. Pugal, I. K. Oh, K. J. Kim, K. Asaka, Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Progress in Polymer Science 38, 1037-1066 (2013).
    12. S. Nemat-Nasser, Micromechanics of actuation of ionic polymer-metal composites. Journal of Applied Physics 92, 2899-2915 (2002).
    13. R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%. Science 287, 836-839 (2000).
    14. T. A. Skotheim, Handbook of Conducting Polymers, 3rd Edition. CRC Press, New York, NY, USA 16-11-16-27(1997).
    15. Z. Liu, P. Calvert, Multilayer Hydrogels as Muscle-Like Actuators. Advanced Materials 12, 288-291 (2000).
    16. M. R. Karafi, Y. Hojjat, F. Sassani, M. Ghodsi, A novel magnetostrictive torsional resonant transducer. Sensors and Actuators A: Physical 195, 71-78 (2013).
    17. Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nature Communications 3, 1270 (2012).
    18. Z. L. Wang, J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 312, 242-246 (2006).
    19. G. Krishnan, J. Bishop-Moser, C. Kim, S. Kota, Kinematics of a Generalized Class of Pneumatic Artificial Muscles. Journal of Mechanisms and Robotics 7, 041014 (2015).
    20. F. Daerden, D. Lefeber, Pneumatic artificial muscles: actuators for robotics and automation. European Journal of Mechanical and Environmental Engineering 47, 11-21 (2002).
    21. V. de Michaël , R. Dominiek, Pneumatic and hydraulic microactuators: a review. Journal of Micromechanics and Microengineering 20, 043001 (2010).
    22. A. Ölander, An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society 54, 3819-3833 (1932).
    23. M. Kohl, Shape Memory Microactuators. Springer Science & Business Media, Springer-Verlag, Berlin, Germany, 62-95(2004).
    24. J. M. Jani, M. Leary, A. Subic, M. A. Gibson, A review of shape memory alloy research, applications and opportunities. Materials & Design 56, 1078-1113 (2014).
    25. W. Huang, On the selection of shape memory alloys for actuators. Materials & Design 23, 11-19 (2002).
    26. S. M. Mirvakili, I. W. Hunter, Fast Torsional Artificial Muscles from NiTi Twisted Yarns. ACS Applied Materials & Interfaces 9, 16321-16326 (2017).
    27. I. Hunter, S. R. Lafontaine, Shape memory alloy fibers having rapid twitch response. US5092901 A(1992).
    28. A. T. Tung, B.-H. Park, D. H. Liang, G. Niemeyer, Laser-machined shape memory alloy sensors for position feedback in active catheters. Sensors and Actuators A: Physical 147, 83-92 (2008).
    29. S. H. Song, J. Y. Lee, H. Rodrigue, I. S. Choi, Y. J. Kang, S. H. Ahn, 35 Hz shape memory alloy actuator with bending-twisting mode. Scientific Reports 6, 21118 (2016).
    30. Y. Song, X. Chen, V. Dabade, T. W. Shield, R. D. James, Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502, 85 (2013).
    31. C. S. Haines, M. D. Lima, N. Li, G. M. Spinks, J. Foroughi, J. D. W. Madden, S. H. Kim, S. Fang, M. Jung de Andrade, F. Göktepe, Ö. Göktepe, S. M. Mirvakili, S. Naficy, X. Lepró, J. Oh, M. E. Kozlov, S. J. Kim, X. Xu, B. J. Swedlove, G. G. Wallace, R. H. Baughman, Artificial Muscles from Fishing Line and Sewing Thread. Science 343, 868-872 (2014).
    32. S. M. Mirvakili, I. W. Hunter, in Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring. (SPIE, Las Vegas, Nevada, United States, 2016), vol. 9798, 97981L.
    33. S. M. Mirvakili, I. W. Hunter, Multidirectional Artificial Muscles from Nylon. Advanced Materials 29, 1604734 (2017).
    34. C. S. Haines, N. Li, G. M. Spinks, A. E. Aliev, J. Di, R. H. Baughman, New twist on artificial muscles. Proceedings of the National Academy of Sciences 113, 11709 (2016).
    35. S. Sharafi, G. Li, A multiscale approach for modeling actuation response of polymeric artificial muscles. Soft matter 11, 3833-3843 (2015).
    36. S. M. Mirvakili, A. R. Ravandi, I. W. Hunter, C. S. Haines, N. Li, J. Foroughi, S. Naficy, G. M. Spinks, R. H. Baughman, J. D. W. Madden, in SPIE Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring. (SPIE, San Diego, California, United States, 2014), vol. 9056, 90560I.
    37. T. Arakawa, K. Takagi, K. Tahara, K. Asaka, in SPIE Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring. (SPIE, Las Vegas, Nevada, United States, 2016), vol. 9798, 97982W.
    38. M. D. Lima, N. Li, M. Jung de Andrade, S. Fang, J. Oh, G. M. Spinks, M. E. Kozlov, C. S. Haines, D. Suh, J. Foroughi, S. J. Kim, Y. Chen, T. Ware, M. K. Shin, L. D. Machado, A. F. Fonseca, J. D. W. Madden, W. E. Voit, D. S. Galvão, R. H. Baughman, Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles. Science 338, 928-932 (2012).
    39. S. M. Mirvakili, A. Pazukha, W. Sikkema, C. W. Sinclair, G. M. Spinks, R. H. Baughman, J. D. W. Madden, Niobium Nanowire Yarns and their Application as Artificial Muscles. Advanced Functional Materials 23, 4311-4316 (2013).
    40. K. Y. Chun, S. Hyeong Kim, M. Kyoon Shin, C. Hoon Kwon, J. Park, Y. Tae Kim, G. M. Spinks, M. D. Lima, C. S. Haines, R. H. Baughman, S. Jeong Kim, Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk. Nature Communications 5, 3322 (2014).
    41. Q. Yang, G. Li, A top-down multi-scale modeling for actuation response of polymeric artificial muscles. Journal of the Mechanics and Physics of Solids 92, 237-259 (2016).
    42. J. Foroughi, G. M. Spinks, G. G. Wallace, J. Oh, M. E. Kozlov, S. Fang, T. Mirfakhrai, J. D. W. Madden, M. K. Shin, S. J. Kim, R. H. Baughman, Torsional Carbon Nanotube Artificial Muscles. Science 334, 494-497 (2011).
    43. J. A. Lee, N. Li, C. S. Haines, K. J. Kim, X. Lepró, R. Ovalle-Robles, S. J. Kim, R. H. Baughman, Electrochemically Powered, Energy-Conserving Carbon Nanotube Artificial Muscles. Advanced Materials 29, 1700870 (2017).
    44. S. Y. Yang, K. H. Cho, Y. Kim, M. G. Song, H. S. Jung, J. W. Yoo, H. Moon, J. C. Koo, J. d. Nam, H. R. Choi, High performance twisted and coiled soft actuator with spandex fiber for artificial muscles. Smart Materials and Structures 26, 105025 (2017).
    45. B. C. Yoseph, Electroactive polymers as artificial muscles: capabilities, potentials and challenges. American Society of Civil Engineers, Albuquerque, New Mexico, USA, 188-196(2000).
    46. J. Park, J. W. Yoo, H. W. Seo, Y. Lee, J. Suhr, H. Moon, J. C. Koo, H. R. Choi, R. Hunt, K. J. Kim, S. H. Kim, J.-D. Nam, Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers. Smart Materials and Structures 26, 035048 (2017).
    47. J. Leng, X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: stimulus methods and applications. Progress in Materials Science 56, 1077-1135 (2011).
    48. X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J.-W. T. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, A. Javey, Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nature Communications 5, 2983 (2014).
    49. Y. Yan, T. Santaniello, L. G. Bettini, C. Minnai, A. Bellacicca, R. Porotti, I. Denti, G. Faraone, M. Merlini, C. Lenardi, P. Milani, Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes. Advanced Materials 29, 1606109 (2017).
    50. M. Duduta, R. J. Wood, D. R. Clarke, Multilayer Dielectric Elastomers for Fast, Programmable Actuation without Prestretch. Advanced Materials 28, 8058-8063 (2016).
    51. P. Brochu, Q. Pei, Advances in Dielectric Elastomers for Actuators and Artificial Muscles. Macromolecular Rapid Communications 31, 10-36 (2010).
    52. A. O’Halloran, F. O’Malley, P. McHugh, A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics 104, 071101 (2008).
    53. G. M. Spinks, G. G. Wallace, J. Ding, D. Zhou, B. Xi, J. Gillespie, in SPIE Smart Structures and Materials. (SPIE, San Diego, California, United States, 2003), vol. 5051, 372-380.
    54. T. Li, Y. Q. Wang, K. Liu, H. B. Liu, J. L. Zhang, X. J. Sheng, D. M. Guo, Thermal actuation performance modification of coiled artificial muscle by controlling annealing stress. Journal of Polymer Science Part B: Polymer Physics 56, 383-390 (2018).
    55. C. Lechat, A. R. Bunsell, P. Davies, Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres. Journal of Materials Science 46, 528-533 (2011).
    56. B. Demirel, A. Yaraş, H. Elçiçek, Crystallization behavior of PET materials. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13, 26-35 (2016).
    57. J. M. Huang, P. P. Chu, F. C. Chang, Conformational changes and molecular motion of poly (ethylene terephthalate) annealed above glass transition temperature. Polymer 41, 1741-1748 (2000).
    58. Y. W. Huang, Mechanical properties of nylon 6 artificial muscle. Master Thesis, Department of Materials Science and Engineering, National Tsing Hua University, Hsin Chu, Taiwan, 48-50 (2016).
    59. M. F. Chang, The effect of ultraviolet irradiation on mechanical properties of PMMA/MWCNTs composite. Master Thesis, Department of Materials Science and Engineering, National Tsing Hua University, Hsin Chu, Taiwan, 25-33 (2017).
    60. D. C. Prevorsek, G. A. Tirpak, P. J. Harget, A. C. Reimschuessel, Effects of thermal contraction on structure and properties of PET fibers. Journal of Macromolecular Science, Part B 9, 733-759 (1974).
    61. V. B. Gupta, Hemant Kedia, S. R. Huilgol, Shrinkage characteristic of poly(ethylene terephthlate), nylon-6 and polypropylene yarns. Indian Journal od Fibre & Twxtile Research 21, 101-108 (1996).
    62. T. Amano, E. W. Fischer, G. Hinrichsen, On the formation of lamellae during annealing of extended chain crystals of radiation-polymerized trioxane. Journal of Macromolecular Science, Part B 3, 209-235 (1969).
    63. W. O. Statton, J. L. Koenig, M. Hannon, Characterization of Chain Folding in Poly(Ethylene Terephthalate) Fibers. Journal of Applied Physics 41, 4290-4295 (1970).
    64. A. Peterlin, Molecular model of drawing polyethylene and polypropylene. Journal of Materials Science 6, 490-508 (1971).
    65. A. Rudin, The Elements of Polymer Science and Engineering. Academic Press,Cambridge, Massachusetts, USA, 104(1982).
    66. P. Debye, A. M. Bueche, Intrinsic Viscosity, Diffusion, and Sedimentation Rate of Polymers in Solution. The Journal of Chemical Physics 16, 573-579 (1948).
    67. P. Debye, The intrinsic viscosity of polymer solutions. The Journal of Chemical Physics 14, 636-639 (1946).
    68. E. O. Kraemer, Molecular weights of celluloses and cellulose derivates. Industrial & Engineering Chemistry 30, 1200-1203 (1938).
    69. M. L. Huggins, The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. Journal of the American Chemical Society 64, 2716-2718 (1942).
    70. P. C. Hiemenz, T. P. Lodge, Polymer Chemistry. Second ed., CRC Press, Boca Raton, Florida, USA, 336, 338-339 (2007).
    71. Michael Rubinstein, R. H. Colby, Polymer Physics. Oxford University Press, Oxford, UK, 250-255 (2003).
    72. W. R. Moore, D. Sanderson, Viscosities of dilute solutions of polyethylene terephthalate. Polymer 9, 153-158 (1968).
    73. C. L. Choy, F. C. Chen, K. Young, Negative thermal expansion in oriented crystalline polymers. Journal of Polymer Science: Polymer Physics Edition 19, 335-352 (1981).
    74. M. G. Northolt, J. J. M. Baltussen, B. Schaffers-Korff, Yielding and hysteresis of polymer fibres. Polymer 36, 3485-3492 (1995).
    75. R. R. Hegde, G. S. Bhat, B. Deshpande, Crystallization kinetics and morphology of melt spun poly (ethylene terephthalate) nanocomposite fibers. Express Polymer Letters 7, 821-831 (2013).
    76. S. A. Jabarin, Strain-induced crystallization of poly(ethylene terephthalate). Polymer Engineering & Science 32, 1341-1349 (1992).
    77. J. Liu, P. H. Geil, Crystal structure and morphology of poly(ethylene terephthalate) single crystals prepared by melt polymerization. Journal of Macromolecular Science, Part B 36, 61-85 (1997).
    78. Z. Han, Y. Wang, J. Wang, S. Wang, H. Zhuang, J. Liu, L. Huang, Y. Wang, W. Wang, L. Belfiore, J. Tang, Preparation of Hybrid Nanoparticle Nucleating Agents and Their Effects on the Crystallization Behavior of Poly(ethylene terephthalate). Materials 11, 587 (2018).
    79. Japanese Standards Association, JIS(Japanese Industrial Standard) B 2704-1:2009 Japanese Standards Association, Tokyo, Japan, 3(2009).
    80. D. Roylance, Mechanical Properties of Materials. MIT 2008, Cambridge, Massachusetts, United States, 13(2008).
    81. W. R. Moore, Viscosities of dilute polymer solutions. Progress in Polymer Science 1, 1-43 (1967).
    82. L. Cragg, H. V. Oene, Shear dependence in the viscometry of high polymer solutions: A new variable-shear capillary viscometer. Canadian Journal of Chemistry 39, 203-215 (1961).
    83. M. Kurata, W. H. Stockmayer, in Fortschritte der Hochpolymeren-Forschung. (Springer, Berlin, Germany, 1963), 196-312.

    QR CODE