簡易檢索 / 詳目顯示

研究生: 林智穎
Chih-Ying Lin
論文名稱: 以布朗運動模擬具接觸熱阻之複合材料有效導熱度
Determination of Effective Conductivity of Composites Possessive of Contact Resistance with Brownian Motion Simulation
指導教授: 呂世源
Shih-Yuan Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 86
中文關鍵詞: 布朗運動複合材料導熱度接觸熱阻
外文關鍵詞: Brownain motion, composite, conductivity, contact resistance
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究著重在開創新的方法,求得具接觸熱阻(contact resistance)之複合材料有效導熱度。考慮的複合材料含有隨機分佈於基材[連續相(matrix)]中的球型粒子、或無限長圓柱型纖維[分散相(inclusion)]。即是粒子強化型複材與長纖維強化型複材。
    在多位先進的努力下,求得複材之有效導熱度的知識已是相當豐富。我們知道在分散相表面具有極薄界面層的接觸熱阻問題中,可藉由無因次群Biot數適當地表現其界面特性。存在一 [critical Biot number] ,界面性質對整體有效導熱度產生中立效應(neutral effect),使得有效導熱度 = 1。而我們所努力的方向,是建造一模擬的模式,求得隨機分佈之纖維或粒子強化型之有效導熱度。讓後人能夠繼續沿用此模擬方式,求得不規則型的纖維或粒子強化型複材之有效導熱度。

    我們假想熱分子,以布朗運動的方式遊走於複合材料之粒子與基材間。Kim和Torquato(1990;1991)提出:當熱分子行走至界面附近時,熱分子能否跨越界面的機率問題與越過界面或折返所花費的時間問題。利用有效率的隨機行走法,可以求得兩相物質以任意比例混合後的有效導熱度。Kim和Torquato推導越過界面的機率與時間問題的過程中,考慮單一粒徑分散相與連續相界面間完美接觸的情況(溫度場分佈連續、正向熱流通量也連續),對於分散相平衡隨機分佈的有效導熱度之接觸熱阻問題(溫度場分佈不連續、正向熱流通量連續),並未加以研究。然而,分散相與連續相間存在接觸熱阻是很常見的,且我們發現,當 時,接觸熱阻問題將變成完美接觸的情形,即完美接觸是接觸熱阻問題中之極端的情形。

    此創新的方法確能在求得有效導熱度上有所突破。不論對於整齊排列之纖維或粒子強化型複材之有效導熱度之計算,均有令人滿意結果。隨機分佈之完美接觸複材,亦得到預期中的結果。並且再次驗證了Bi確為一重要的參數。在Bi > ,我們觀察到了界面性質對整體有效導熱度產生增強效應(enhancing effect);在Bi < ,產生減損效應(impairing effect)。此外,並驗證了我們的分散相系統是相當地隨機分佈。


    Our research emphasizes on developing new methods to simulate the effective conductivities of the composites possessive of contact resistance. We concern composites with inclusions dispersed randomly in the matrix. The inclusions can be spherical particles, or infinitely long fibers. They are named particulate-reinforced composite and long-fiber-reinforced composites , respectively.
    There is an abundant knowledge about how to obtain the effective conductivities of composites. The critical Biot number, , gives “neutral effect.” That is, we can neglect interface properties while we treat composites’ effective conductivities. We focus on construction of a simulation model, that can be used to calculate the effective conductivities of the composites with any size or any irregular type inclusions dispersed randomly in the matrix.

    We image that thermal molecules do random walks among inclusions and matrix. Kim and Torquato (1990,1991) brought up the ideas whether the test thermal molecules will walk across the interface or not and how much time it will spend on crossing the interface or coming back. They obtained the effective conductivity of two phase composites. However, they considered single-sized inclusions, and a perfect contact with the matrix. (Temperature fields are continuous across the matrix-inclusion, so are the normal heat fluxes). They didn’t work on problems involving poly-dispersed inclusions with contact resistance at the matrix-inclusion interface. (Temperature fields are not continuous, but the normal heat fluxes are continuous.) However, it is common that contact resistance exists between matrix and inclusions. When the Biot number is infinite, contact resistance will disappear. Then, the matrix contacts the inclusions perfectly. Therefore, the contact resistance problem is a limiting case of the contact resistance problems.

    The new method is a breakthrough in the area of composites’ effective conductivities. We obtained satisfactory results of the effective conductivities of the fibers and particles arranged regularly in the matrix. Moreover, the effective conductivities of the particulate-reinforced and the fiber-reinforced composites with inclusions randomly distributed are also computed. And we confirm that Biot number is an important parameter again. When Bi is less than the critical Biot number, the combined effect of interface and inclusion is enhancing to the matrix. When Bi is greater than the critical Biot number, the combined effect of interface and inclusion is enhancing to the matrix. We also verify that the inclusions generated are dispersed randomly enough.

    謝誌 I 摘要 1 英文摘要 2 目錄 4 圖目錄 6 表目錄 8 第一章 緒論 10 第二章 文獻回顧 12 2-1 複合材料的有效導熱度 12 2-2 布朗運動(擴散運動) 14 2-3 分散相隨機分佈 14 第三章 相關理論 15 3-1 熱分子做布朗運動求複材之有效導熱度 15 3-2 布朗運動 16 3-2-1 勻相系統 16 3-2-2 兩相系統 17 3-3 接觸熱阻問題中的Bi常數 19 3-4 界面理論 21 3-4-1 邊界區域上的假想圓與假想球 21 3-4-2 越過界面之機率與時間的理論推導 23 3-4-2-1 連續相與分散相完美接觸 23 3-4-2-1-1 平板型複材 25 3-4-2-1-2 纖維強化型複材 26 3-4-2-1-3 粒子強化型複材 26 3-4-2-2 連續相與分散相間具接觸熱阻 27 3-4-2-2-1 平板型複材 28 3-4-2-2-2 纖維強化型複材 31 3-4-2-2-3 粒子強化型複材 39 3-4-2-3 假想圓(球)之面積體積修正之係數 45 3-4-3 三相系統完美接觸成為二相系統接觸熱阻之證明50 3-5 分散相隨機分佈理論 54 第四章 布朗運動模擬 56 4-1 Ri , Rj 的決定 56 4-2邊界層的定義與假想圓、假想球的半徑Rk 57 4-3 邊界機率如何使用 57 4-4 「單位時間」的定義 58 4-5各參數的代稱 58 4-6 模擬步驟 58 第五章 結果與討論 61 5-1 模擬熱分子做布朗運動的軌跡圖 61 5-2分散相的分佈夠隨機嗎? 62 5-3分散相系統的纖維數與粒子數對有效導熱度的影響 65 5-4假想圓(球)之面積體積修正項 66 5-5 越過界面之機率與時間 68 5-5-1 越過界面之機率 68 5-5-2 越過界面之時間 72 5-6 完美接觸複材之有效導熱度 75 5-6-1纖維強化型複材 76 5-6-2粒子強化型複材 77 5-7 具接觸熱阻複材之有效導熱度 78 5-7-1纖維強化型複材 78 5-7-2粒子強化型複材 79 第六章 結論 81 符號說明 82 參考文獻 83

    Brown, W. F., 1955, Solid mixture permittivities. J. Chem. Phys. 23, 1513.
    Benveniste, Y., 1987, Effective thermal conductivity of composites with thermal contact resistance between the constituents : Nondilute case. J. Appl. Phys. 61,2840.
    Benveniste, Y., T. Chen, and G. J. Dvorak, 1990, The effective thermal conductivity of composites reinforced by coated cylindrically orthotropic fibers. J. Appl. Phys.67,2878.
    Chiew, Y. C., Glandt E. D., 1987, Effective conductivity of dispersions : the effective of resistance at the particle surfaces. Chem. Eng. Sci. 42, 2677.
    Coker, D. A. and Torquato S., 1995, JAP. 77(12), 6087
    Cheng H. and Torquato S.,1997, Effective conductivity of periodic arrays of spheres with interfacial resistance. Proc. R. Soc. Lond. 453, 145-161
    Debye P., Anderson H.R., JR., and Brumburger H., 1957, J. Appl. Phys.28, 679.
    Durand, P. P.and L. H. Ungar , 1988, Int . J. Num. Methods Eng. 26,2487.
    Hashin, Z. and Shtrikman, S., 1962, Avariational approach to the theory of the effective magnetic permeability of multi-phase materials. J. Appl. Phys. 33,3125.
    Haile, J. M., Massobrio C. and Torquato S., 1985, Two-point matrix probability function for two-phase random media : computer simulation results for impenetrable spheres. J. Chem. Phys. 83(8), 4075.
    Hasselman, D. P. H., and Johnson, L. F., 1987, Effective thermal conductivity of composites with interfacial barrier resistance. J. Comp. Mat. 21, 508.
    Jeffrey, D. J., 1973, Conduction through a random suspension of spheres. Proc. Roy. Soc. Lond. A, 335, 355.
    Kim, I..C. and Torquato, S., 1990, Determination of the effective conductivity of heterogeneous media by Brownian motion simulation. J. Appl. Phys. 68(8), 3892-3903.
    Kim, I..C. and Torquato, S., 1991, Effective conductivity of suspensions of hard spheres by Brownian motion simulation. J. Appl. Phys. 69, 2280-2289.
    Kim, I..C. and Torquato, S., 1991, Effective conductivity of suspensions of hard spheres by Brownian motion simulation. J. Appl. Phys. 69, 2280.
    Lifson, S., and Jackson, J.L., 1962, J. Chem. Phys. 36, 2410.
    Lee, S. B., Kim, I. C., Miller, C. A., and Torquato, S., 1989, J. Am. Phys. Soc. 39 ,11833.
    Lu, S.-Y. and Kim, S., 1990, Effective thermal conductivity of composites containing spheroidal inclusions. A. I. Ch. E. J. 36, 927-938.
    Lu, S.-Y., 1994, Anisotropy in effective conductivities of rectangular arrays of elliptic cylinder. J. Appl. Phys. 76, 2641-2647.
    Lu, S.-Y., 1995a, The effective thermal conductivities of composites with 2-D arrays of circular and square cylinders. J. Composite Mater. 29, 483-506.
    Lu, S.-Y., 1995b, Critical interfacial characteristics for effective conductivities of isotropic composites containing spherical inclusions. J. Appl. Phys. 77(10), 5215-5219.
    Lu, S.-Y.and Lin, H. C., 1995, Effect of interfacial characterisitics on effective conductivities of isotropic two-dimensional periodic composites. Chem. Engr. Sci. 50(16), 2611-2631.
    Lu, S.-Y. and Song, J. L., 1996a, Effective conductivity of composites with spherical inclusions : effect of coating and detachment. J. Appl. Phys. 79(2), 609-618.
    Lu, S.-Y. and Lin, H. C., 1996, Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity. J. Appl. Phys. 79(9), 6761-6769.
    Lu, S.-Y. and Song, J. L., 1996b, Effect of interfacial characteristics on effective conductivities of composites containing randomly distributed aligned long fibers. Chem. Engng. Sci. 51(19), 4393-4404.
    Lu, S.-Y., 1997, Effects of particle surface conditions on conductivity of spherical dispersions. J. Colloid & Interface Sci. 192(2), 386-397.
    Lu, S.-Y., 1998a, Estimation of effective conductivity for aligned elliptic cylinder dispersions. J. Chin. Inst. Chem. Engrs . 29(2), 139-152.
    Lu, S.-Y., 1998b, Coating sequence effect for composites containing multiply coated long fibers. J. Compos. Mater. 32(13), 1306-1324.
    Lu, S.-Y., 1998c, Effective conductivities of aligned spheroid dispersions estimated by an equivalent inclusion model. J. Appl. Phys. 84(5), 2647-2655.
    Lu, S.-Y., 1999a, Effective conductivities of rectangular arrays of aligned spheroids. J. Appl. Phys. 85(1), 264-269.
    Lu, S.-Y., 1999b, A reciprocal theorem for effective conductivity of 2-D composites containing multiply coated cylinder of arbitrary cross section. J. Appl. Phys. 85(3), 1975-1977.
    Lu, S.-Y. and Chen, I. C., 2000, Coating shape effective conductivities of aligned long elliptic cylinder reinforced composites. Jpn. J. Appl. Phys. 39, 5202-5208.
    Maxwell, J. C., 1873, Electricity and Magnetism. Clarendon Press. Oxford .
    Mori, T., and Tanaka K., 1973, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571.
    McQuarrie, D.A., 1976, Statistical Mechanics.
    McKenzie D. R., McPhedran R.C., and Derrick G.H., 1978, Proc. R. Soc. London Ser. A 362, 211.
    Perrins W.T., McKenzie D. R., and McPhedran R.C., 1979, Proc. R. Soc. London Ser. A 369, 207.
    Rintoul M. D. and Torquato S., 1995, Effect of the interface on the properties of composite media. Phys. Rev. Letters. 75, 4067.
    Sangani, A.S., and Yao, C., 1988, Transport processes in random arrays of cylinders. I. the thermal conduction. Phys. Fluids. 31, 2426.
    Torquato, S., 1985, Bulk properties of two-phase disordered media II : effective conductivity of a dilute dispersion of penetrable spheres. J. Chem. Phys. 83, 4776.
    Torquato, S., and Lado, F., 1986, Effective properties of two-phase disordered composite media: II. evalution of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres. Phys. Rev. B. 33, 6428 .
    Torquato, S. and Kim, I. C., 1991, Efficient simulation technique to compute effective properties of heterogeneous media. Appl. Phys. Lett. 55 , 1847 .
    Zheng, L. H. and Chiew, Y. C., 1989, Computer simulation of diffusion-controlled reactions in dispersions of spherical sinks. J. Chem. Phys. 90, 322.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE