簡易檢索 / 詳目顯示

研究生: 陳瑞河
Chen, Ruei-He
論文名稱: 軟體可靠度的新模型與其應用
A New Model for Software Reliability and Its Application
指導教授: 許文郁
Shu, Wun-Yi
口試委員: 吳宏達
Wu, Hong-Dar
洪慧念
Hong, Huei-Nian
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 58
中文關鍵詞: 軟體可靠度錯誤率除錯
外文關鍵詞: Goel-Okumoto NHPP Model, Error Rate
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   軟體可靠度(Software Reliability)分析中,如何建模(Modeling)是軟體工程的重要議題。Goel-Okumoto NHPP Model是常用的模型,Cai, Hu and Bai et al.(2008)指出,該模型不能準確地描述,執行除錯(Debugging)過程中錯誤發生的行為。然而,他們並沒提出修正方法。本論文主要工作之一是,提出一個新的模型,大大改善Goel-Okumoto NHPP Model的缺點,並用電腦模擬比較新舊模型的優劣。

      發展新的套裝軟體,除錯是重要的步驟之一。如何估計除錯後,軟體的存留錯誤率(Remaining Error Rate)是重要工作。本論文的另一工作是,應用新的模型,我們開發出一個方法,可以用來估計除錯後,軟體的存留錯誤率。最後我們以模擬的方式,比較新的估計方法與現有的估計方法的表現。


    In software reliability analysis, modeling is a key step to software engineering. A commonly used class of reliability models is the Goel-Okumoto Non-homogeneous Poisson Process (NHPP) models. Cai, Hu and Bai et al. (2008) pointed out that the Goel-Okumoto NHPP models could not properly describe the behavior of cumulative number of observed software failures. However they did not suggest how to amend the models. In this thesis, we propose a new model that can largely enhance the performance in data fitting. Comparisons are made by computer simulations, and it is found that the new model works much better than the old ones.

    In the development of a new software package, debugging is indispensable. Releasing a newly developed software with bugs could be detrimental. How to estimate the remaining error rate of a newly developed software after debugging is an important issue. Our new model can be used to develop a new method for estimating the remaining error rate. The performance of this new method is investigated by computer simulations.

    摘要 i Abstract ii 致謝辭 iii 符號介紹 v 1. 緒論 1 2. 文獻回顧 3 2.1 存留錯誤率(Remaining Error Rate)介紹 3 2.2 抽後放回模型介紹 5 2.3 Goel-Okumoto NHPP Model介紹 6 3. Goel-Okumoto NHPP Model修正及比較 8 3.1 Goel-Okumoto NHPP Model修正 9 3.2 Goel-Okumoto NHPP Model參數估計 12 3.2.1 如何生成模擬資料(偵測後移除) 12 3.2.2 利用類最大概似估計法估計參數 14 3.3 比較Goel-Okumoto NHPP Model兩參數與三參數模型 22 3.3.1 利用sum of square of deviation比較兩個模型的差異 22 3.3.2 利用AIC比較兩個模型的差異 24 4. 利用兩種模型估計錯誤率的比較 25 4.1 如何生成模擬資料(偵測後不移除) 26 4.2 利用抽後放回模型估計模擬資料 27 4.3 修正後Goel-Okumoto NHPP Model估計存留錯誤率 31 4.3.1 如何使用修正後Goel-Okumoto NHPP Model估計存留錯誤率 32 4.3.2 利用修正後的Goel-Okumoto NHPP Model估計模擬資料 35 4.4 模擬與討論 37 5. 結論 48 參考文獻 50 附錄 52

    [1]. Hudson, G.R. (1967). Program errors as a birth and death process, System Development Corporation, Report SP-3011, Santa Monica, CA.
    [2]. Jelinski, Z. and Moranda, P.B. (1972). Software reliability research, in: W. Greiberger (Ed.), Statistical Computer Performance Evaluation, Academic Press, pp. 465-484.
    [3]. Shooman, M.L. (1972). Probabilistic models for software reliability prediction, in: Proc. the Fault-Tolerant Computing Symposium, pp. 211–215.
    [4]. Nelson, E.C. (1973). A Statistical Basis for Software Reliability Assessment, TRW-SS-73-03.
    [5]. Littlewood, B. and Verrall, J. (1973). A Bayesian reliability growth model for computer software, Applied Statistics 22 (3), pp. 332–346.
    [6]. Musa, J.D. (1975) A theory of software reliability and its application, IEEE Transactions on Software Engineering SE-1 (3), pp. 312–327.
    [7]. Halstead, M.H. (1977). Elements of Software Science, North-Holland, Elsevier Science Inc, New York.
    [8]. Goel, A.L. and Okumoto, K. (1978). A time dependent error detection rate for a large scale software system, in: Proc. the 3rd USA-Japan Computer Conference, pp. 35–40.
    [9]. Cai, K.Y. (2000). Towards a conceptual framework of software run reliability modeling, Information Sciences 126, pp. 137–163.
    [10]. Cai, K.Y. , Hu, D.B. , Bai, C.G. , Hu, H. and Jing T. (2008). Does software reliability growth behavior follow a non-homogeneous Poisson process, Information and Software Technology 50, pp. 1232–1247.
    [11]. Ross, S.M. (2009). Introduction to Probability Models, 10th ed. , Academic Press, New Work, pp. 336-339.

    QR CODE