簡易檢索 / 詳目顯示

研究生: 丁紀嘉
Ding, Ji-Jia
論文名稱: Origin of spin characters in carbon nanotubes
奈米碳管電子自旋性質特性與研究
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 96
中文關鍵詞: 奈米碳管電子自旋共振超導量子干涉元件酸處理聚乙烯醇
外文關鍵詞: carbon nanotubes, electrical paramagnetic resonance, superconducting quantum interference device, acid-treatment, polyvinyl alcohol
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Since the EPR investigation of carbon nanotubes has not been consistent, this thesis is probed into the origin of spin characters of carbon nanotubes and its defects via EPR measurement. Besides, the composite of carbon nanotubes is also studied. In Chapter 1 Introduction, the content includes the fundamental of carbon nanotubes: the basic structures, physical properties, synthesis, functionalization, and surface modification of carbon nanotubes; the instruments applied in our study: the working principal of instruments; and the literature review: review previous EPR studies of carbon nanotubes. In Chapter 2 Motive, the research purpose and the novelty of this thesis are shown. In Chapter 3 Experiment Method, the synthesis procedure, chemicals used in our research and instruments are presented are listed. In Chapter 4 Results and Discussion, there are three parts: Section 4-1 shows the results by acid-treatment. The information of the morphology, the composition, the structure and the chemical bonding is presented. Section 4-2 aims to explain the spin characters of carbon nanotube by EPR profile and relative results. Relationship of paramagnetism and defects of carbon nanotubes is deeply studied as well as graphite is chosen as control experiments. Section 4-3 mainly focuses on the performance and the paramagnetism of CNT/PVA composite via EPR and SQUID. The influence of polymer (PVA) to magnetic properties and electronic behavior of carbon nanotubes is analyzed via compared the samples without polymer coating. Finally is Chapter 5 Conclusion, the results of the above measurement is concluded.


    鑒於目前奈米碳管於電子順磁共振上的研究並無一致的結果,本論文將著重於探討奈米碳管本身及其缺陷所具有之電子自旋性質。此外也將探討奈米碳管與聚乙烯醇所組成複合材於電子順磁共振下的表現。第一章包含概括的碳管結構、性質、合成及儀器原理,進階的表面改質、官能基化及文獻回顧。第二章則是實驗動機,解釋目前此領域的現況及本論文的新穎性。第三章列出實驗所需物品、儀器以及步驟流程。第四章提及量測結果與討論,從中我們研究奈米碳管的官能基化,了解其並不隨酸處理時間而改變。然而在電子順磁共振下官能基化的奈米碳管展現出不同的順磁性質,使我們更清楚認知奈米碳管及其缺陷的電子結構。奈米碳管與聚乙烯醇合成的複合材料在電子順磁共振下的表現也會提及,這能幫助我們對奈米碳管及其複合材料在電子順磁共振的研究下有更全盤的認識。而最後第五章則是本論文的結論。

    Abstract 1 論文摘要 2 誌謝 3 Table Lists 7 Figure Captions 8 Chapter 1: Introduction 15 1-1 From C60 to Carbon Nanotubes 15 1-2 Structure of CNTs 16 1-3 Physical properties of CNTs 17 1-3-1 Electrical properties 17 1-3-2 Thermal properties 17 1-3-3 Mechanical properties 17 1-4 Synthesis 18 1-4-1 Arc discharge 18 1-4-2 Chemical Vapor Deposition (CVD) 20 1-5 Modification 21 1-5-1 Defects 21 1-5-2 CNT Purification 22 1-5-2-1 Oxidation method 22 1-5-2-2 Filtration 22 1-5-3 Functionalization of CNTs 23 1-5-3-1 Noncovalent interactions 23 1-5-3-2 Covalent interactions 23 1-5-4 Oxidation Mechanisms 25 1-6 Instrumental 27 1-6-1 Differential Thermal Analysis (DTA) 27 1-6-2 Fourier Transform Infrared Spectroscopy (FTIR) 27 1-6-3 Raman Spectroscopy 28 1-6-4 Superconducting Quantum Interference Device (SQUID) 29 1-6-4-1 Introduction of Josephson junction 29 1-6-4-2 Introduction of superconducting quantum interference 30 1-6-5 Electron Paramagnetic Resonance (EPR) 31 1-6-5-1 Work function of EPR 31 1-6-5-2 g-factor 33 1-6-5-3 Spin density 34 1-6-5-4 Application of EPR 35 1-7 EPR of CNTs 37 1-8 Polyvinyl Alcohol (PVA) 44 1-8-1 PVA structure 44 1-8-2 Application of PVA 45 Chapter 2: Motive 46 Chapter 3: Experimental 47 3-1 Materials and Instruments 47 3-2 Experiment Process 48 3-2-1 Acid-treatment 48 3-2-2 Manufacture of MWCNT/PVA composite 48 3-2-3 Length Distribution measurement 49 3-3 Process Flow 50 Chapter 4: Results and Discussions 51 4-1 EXP: Acid-treatment 51 4-1-1 Raman Spectra 51 4-1-2 DTA Results 53 4-1-3 TEM morphology 55 4-1-4 SEM: Length Distribution 60 4-1-5 FTIR spectra 62 4-2 EXP: Origin of spin characters in CNTs 65 4-2-1 EPR spectra of MWCNTs 65 4-2-2 TEM and EDX 67 4-2-3 EPR spectra of Ni and Fe 69 4-2-4 EPR spectra of SWCNTs 70 4-2-5 EPR spectra of graphite and HOPG 73 4-2-6 EPR spectra of defects in CNTs 78 4-2-7 Temperature effect on EPR spectra 84 4-2-8 Other SQUID results 85 4-3 EXP: EPR spectra of MWCNT/PVA composite 86 4-3-1 Origin of spin characters in MWCNT/PVA composite 86 4-3-2 Temperature effect on EPR spectra 93 Chapter 5: Conclusion 94 Reference 95

    [1] R. Saito, G. Dresselhaus et al., Physical properties of Carbon Nanotubes (1998)
    [2] H. W. Kroto, A. W. Allaf et al., Chem. Rev. 91, 1213-1235 (1991)
    [3] E. T. Thostenson, Z. F. Ren et al., Compos. Sci. Technol. 61, 1899-1912 (2001)
    [4] M. F. Yu, O. Lourie et al., Science 287, 637-640 (2000)
    [5] Wen-Kuang Hsu, the lectures of Carbon nanotubes (2007)
    [6] Philip G. Collins, Avouris Phaedon, Scientific American December 2000, 67-69 (2000)
    [7] M. José-Yacamán, M. Miki-Yoshida et al, Appl. Phys. Lett. 62, 202 (1993)
    [8] S. Banerjee, T. Hemraj-Benny et al, Adv. Mater. 17, 17-29 (2005)
    [9] Ying-Che Gao, master thesis – National Tsing-Hua University Chemistry Institute, Taiwan (2001)
    [10] Jyun-Yi Lai, master thesis –National Tsing-Hua University Chemistry Institute, Taiwan (2005)
    [11] K. Balasubramanian, M. Burghard, Small 1, 180-192 (2005)
    [12] P. M. Ajayan, T. W. Ebbesen et al., Nature 362, 522-525 (1993)
    [13] N. Yao, V. Lordi et al., J. Mater. Res. 13, 2432-2437 (1998)
    [14] T. G. Ros, A. J. Van Dillen et al,. Chem. Eur. J. 8, 1151-1162 (2002)
    [15] J. Zhang, H. L. Zou et al., J. Phys. Chem. 107, 3712-3718 (2003)
    [16] J. L. Li, K. N. Kudin et al., Phys. Rev. Lett. 96, 176101 (2006)
    [17] Yi-Ping Wang, PhD thesis–National Tsing-Hua University Chemistry Institute, Taiwan (1990)
    [18] Poole, Charles P., Electron spin resonance: a comprehensive treatise on experimental techniques, 2rd. Ed. (1983)
    [19] Chien-Cheng Li, master thesis–National Tsing-Hua University Materials Science and Engineering Institute, Taiwan (2005)
    [20] K. Tanaka, T. Sato et al., Chem. Phys. Lett. 223, 462-468 (1994)
    [21] M. Kosaka, T. Ebbesen et al., Chem. Phys. Lett. 225, 161-164 (1994)
    [22] M. Kosaka, T. Ebbesen et al., Chem. Phys. Lett. 233, 47-51 (1995)
    [23] O. Chauvet, L. Forro et al., Phys. Rev. B 52, R6963-R6966 (1995)
    [24] K.L. Lu, R. M. Lago et al., Carbon 34, 814-816 (1996)
    [25] L. J. Dunne, A. K. Sarkar et al., J. Phys-Conden. Matter. 8, 6113 (1996)
    [26] H.Y. Zhang, D. Y. Wang et al., Chin. Phys. Lett. 14, 625-628 (1997)
    [27] J. W. G. Wildoer, L. C. Venema et al., Nature 391, 59-62 (1998)
    [28] F. Beuneu, L’Huillier et al., Phys. Rev. B 59, 5945-5949 (1999)
    [29] S. Ishii, K. Miyamoto et al., Physica E 17, 386-388 (2003)
    [30] M. Chipara, J. Zaleski et al., J. Polym. Sci. Part b polym. Phys 43, 3406-3412 (2005)
    [31] M. Chipara, F. Iacomi et al., J. Optelectron. Adv. Mater. 8, 820-824 (2006)
    [32] M. Chipara, K. Lozano et al., J. Mater. Sci. 43, 1228-1233 (2008)
    [33] S.K. Saxena, 61st. JECFA (2004)
    [34] Hui-Ching Li, master thesis–National Tsing-Hua University Materials Science and Engineering Institute, Taiwan (2008)
    [35] David Bom, Rodney Andrews et al., Nano Letters 2, 615-619 (2002)
    [36] R. Hohne, P. Esquinazi et al., Adv. Mater. 14, 753-756 (2002)
    [37] Chien-Chih Chen, master thesis–National Tsing-Hua University Chemistry Institute, Taiwan (2007)
    [38] H. Ago, M. S. P. Shaffer et al., Phys. Rev. B 61, 2286-2290 (2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE