研究生: |
廖冠儒 Liao, Kuan-Ju |
---|---|
論文名稱: |
KIF2C作為三陰性乳癌的新穎治療標靶 KIF2C as a Potential Therapeutic Target of Triple Negative Breast Cancer |
指導教授: |
王慧菁
Wang, Lily Hui-Ching |
口試委員: |
孫玉珠
Sun, Yuh-Ju 謝興邦 Hsieh, Hsing-Pang 郭靜娟 Kuo, Ching-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 乳癌 、三陰性乳癌 、標靶治療 |
外文關鍵詞: | therapeutic target |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高度基因異質性與缺乏良好的標靶藥物使得三陰性乳癌的預後非常差。除了基本的手術切除與放射線療法外,紫杉醇/蔥環黴素化療是二、三期三陰性乳癌病人唯一的治療手段。因此,本研究致力於找尋三陰性乳癌的治療標的。有鑒於三陰性乳癌的高度基因異質性可能會導致治療結果不如預期,我們利用k平均分群法將Gene Expression Omnibus mRNA資料庫中的乳癌病患分成四大類。經由比較四種亞型的各基因表現量、各基因對預後的影響、相對應蛋白質在各組織的分佈以及功能評估後,我們認為KIF2C極有潛力成為三陰性乳癌的治療標靶。首先,我們發現KIF2C在四種三陰性乳癌亞型中皆過量表現,在正常人類組織中卻幾乎不表現。此外,擁有較高KIF2C表現量的病患預後通常較差。更重要的是在HeLa細胞中KIF2C對於染色體的正常分離十分重要,缺乏KIF2C會促使細胞凋亡。為了在三陰性乳癌細胞中印證這些臨床的統計結果與先前文獻得到的假說,我們首先檢驗了五株乳癌細胞中的KIF2C表現量,發現其中三株的三陰性乳癌細胞(MDA-MB-231、MDA-MB-468與Hs578T)的KIF2C表現量確實遠高於另外兩株非三陰性乳癌細胞(MCF-7及SK-BR-3)。接著,我們利用shRNA剔除五株乳癌細胞中的KIF2C表現,結果顯示KIF2C缺失會抑制三株三陰性乳癌細胞的成長。另外,藉由縮時攝影顯微技術,我們觀察到KIF2C剔除後的MDA-MB-231細胞長時間停滯於有絲分裂,且最終胞質分裂失敗。有趣的是,我們還發現KIF2C表現量在具紫杉醇抗性的MDA-MB-231細胞中大量提升,且KIF2C缺失會使MDA-MB-231與4T1(鼠源三陰性乳癌細胞)細胞對紫杉醇更加敏感。為了開發新穎且實用的KIF2C抑制劑,我們針對食品藥物監督管理局所核准的藥物以及DHTP類似物進行高通量篩選。結果顯示其中一種由國家衛生研究院謝興邦實驗團隊所合成的DHTP類似物-BPRMC0007S0-不僅能在體外抑制KIF2C活性,更能顯著的抑制MDA-MB-231細胞生長。此外,BPRMC0007S0搭配紫杉醇還能促使細胞加成性死亡(synergistic lethality)。整體而言,我們的研究結果顯示KIF2C對於三陰性乳癌細胞的有絲分裂非常重要,抑制KIF2C可能是治療三陰性乳癌的新策略。
Triple negative breast cancer (TNBC) has the worst clinical outcome among different subtypes of breast cancer due to high interpatient heterogeneity and lack of approved targeted therapies. Systematic chemotherapy is the only approach to treat patients with stage II and III TNBC. Lack of target therapy represents the major unmet medical need for the treatment of TNBC. Aiming to develop a promising therapeutic target for TNBC, we performed data analysis on four clinical subsets of TNBC that were classified from several Gene Expression Omnibus (GEO) breast cancer mRNA expression datasets by k-mean clustering. In combination of gene expression profiles, prognosis, protein expression pattern in human tissues and gene functional evaluation among these four different clinical subsets of TNBC, we identified KIF2C as a primary target. KIF2C is highly expressed in TNBC but nearly undetectable in normal human tissues. High level of KIF2C is associated with poor prognosis. Here, we showed that KIF2C protein expression is relatively high in TNBC cell lines (MDA-MB-231, MDA-MB-468, and Hs578T) when compared to other breast cancer lines (MCF-7, SK-BR-3). The depletion of KIF2C by shRNA suppressed cell growth in MDA-MB-231 cells. With the application of time-lapse live cell microscopy, we found that KIF2C deficiency delayed mitotic progression and impaired cytokinesis in MDA-MB-231 cells. Surprisingly, we found that KIF2C expression level was significantly elevated in paclitaxel-resistant MDA-MB-231 cells. Depletion of KIF2C sensitized MDA-MB-231 and 4T1 to paclitaxel. To develop novel and therapeutically actionable KIF2C inhibitors, we performed KIF2C functional screening on FDA-approved drug library and DHTP analogs. In collaboration with NHRI, we obtained a newly synthesized DHTP analog, BPRMC0007S0. BPRMC0007S0 can strikingly repress cell proliferation in MDA-MB-231. In addition, BPRMC0007S0 induced synergistic lethality together with paclitaxel. In conclusion, our current data indicated that KIF2C plays a vital role in mitotic progression of TNBC, and therefore represents a promising therapeutic target of TNBC.
[1] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394-424.
[2] Taiwan Ministry of Health and Welfare (2017). 死因統計結果分析. Ministry of Health and Welfare Website
[3] Taiwan Ministry of Health and Welfare (2018). 十大癌症發生率. Ministry of Health and Welfare Website
[4] Anders, C.K., and Carey, L.A. (2009). Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer 9 Suppl 2, S73-81.
[5] Amos, K.D., Adamo, B., and Anders, C.K. (2012). Triple-negative breast cancer: an update on neoadjuvant clinical trials. Int J Breast Cancer 2012, 385978.
[6] National Comprehensive Cancer Network, Inc. (2017). Breast Cancer. Version 3. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)
[7] Perez, E.A. (1998). Paclitaxel in Breast Cancer. Oncologist 3, 373-389.
[8] von Minckwitz, G., Untch, M., Nuesch, E., Loibl, S., Kaufmann, M., Kummel, S., Fasching, P.A., Eiermann, W., Blohmer, J.U., Costa, S.D., et al. (2011). Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Res Treat 125, 145-156.
[9] Liedtke, C., Mazouni, C., Hess, K.R., Andre, F., Tordai, A., Mejia, J.A., Symmans, W.F., Gonzalez-Angulo, A.M., Hennessy, B., Green, M., et al. (2008). Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26, 1275-1281.
[10] Dent, R.A., Lindeman, G.J., Clemons, M., Wildiers, H., Chan, A., McCarthy, N.J., Singer, C.F., Lowe, E.S., Watkins, C.L., and Carmichael, J. (2013). Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res 15, R88.
[11] Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O'Connor, M.J., et al. (2009). Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361, 123-134.
[12] Haffty, B.G., Yang, Q., Reiss, M., Kearney, T., Higgins, S.A., Weidhaas, J., Harris, L., Hait, W., and Toppmeyer, D. (2006). Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24, 5652-5657.
[13] Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917-921.
[14] Carey, L.A., Dees, E.C., Sawyer, L., Gatti, L., Moore, D.T., Collichio, F., Ollila, D.W., Sartor, C.I., Graham, M.L., and Perou, C.M. (2007). The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13, 2329-2334.
[15] Lehmann, B.D., Bauer, J.A., Chen, X., Sanders, M.E., Chakravarthy, A.B., Shyr, Y., and Pietenpol, J.A. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121, 2750-2767.
[16] Lehmann, B.D., Jovanovic, B., Chen, X., Estrada, M.V., Johnson, K.N., Shyr, Y., Moses, H.L., Sanders, M.E., and Pietenpol, J.A. (2016). Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One 11, e0157368.
[17] Hennessy, B.T., Gonzalez-Angulo, A.M., Stemke-Hale, K., Gilcrease, M.Z., Krishnamurthy, S., Lee, J.S., Fridlyand, J., Sahin, A., Agarwal, R., Joy, C., et al. (2009). Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69, 4116-4124.
[18] Gucalp, A., Tolaney, S., Isakoff, S.J., Ingle, J.N., Liu, M.C., Carey, L.A., Blackwell, K., Rugo, H., Nabell, L., Forero, A., et al. (2013). Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer. Clin Cancer Res 19, 5505-5512.
[19] Santaguida, S., and Amon, A. (2015). Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol 16, 473-485.
[20] Zirkle, R.E. (1970). Ultraviolet-microbeam irradiation of newt-cell cytoplasm: spindle destruction, false anaphase, and delay of true anaphase. Radiat Res 41, 516-537.
[21] Musacchio, A., and Salmon, E.D. (2007). The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8, 379-393.
[22] De Antoni, A., Pearson, C.G., Cimini, D., Canman, J.C., Sala, V., Nezi, L., Mapelli, M., Sironi, L., Faretta, M., Salmon, E.D., et al. (2005). The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol 15, 214-225.
[23] Hwang, L.H., Lau, L.F., Smith, D.L., Mistrot, C.A., Hardwick, K.G., Hwang, E.S., Amon, A., and Murray, A.W. (1998). Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 1041-1044.
[24] Manchado, E., Eguren, M., and Malumbres, M. (2010). The anaphase-promoting complex/cyclosome (APC/C): cell-cycle-dependent and -independent functions. Biochem Soc Trans 38, 65-71.
[25] Wertz, I.E., Kusam, S., Lam, C., Okamoto, T., Sandoval, W., Anderson, D.J., Helgason, E., Ernst, J.A., Eby, M., Liu, J., et al. (2011). Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110-114.
[26] Sloss, O., Topham, C., Diez, M., and Taylor, S. (2016). Mcl-1 dynamics influence mitotic slippage and death in mitosis. Oncotarget 7, 5176-5192.
[27] Hain, K.O., Colin, D.J., Rastogi, S., Allan, L.A., and Clarke, P.R. (2016). Prolonged mitotic arrest induces a caspase-dependent DNA damage response at telomeres that determines cell survival. Sci Rep 6, 26766.
[28] Haschka, M.D., Soratroi, C., Kirschnek, S., Hacker, G., Hilbe, R., Geley, S., Villunger, A., and Fava, L.L. (2015). The NOXA-MCL1-BIM axis defines lifespan on extended mitotic arrest. Nat Commun 6, 6891.
[29] Wordeman, L., and Mitchison, T.J. (1995). Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 128, 95-104.
[30] Talapatra, S.K., Harker, B., and Welburn, J.P. (2015). The C-terminal region of the motor protein MCAK controls its structure and activity through a conformational switch. Elife 4.
[31] Ritter, A., Kreis, N.N., Louwen, F., Wordeman, L., and Yuan, J. (2015). Molecular insight into the regulation and function of MCAK. Crit Rev Biochem Mol Biol 51, 228-245.
[32] Ogawa, T., Nitta, R., Okada, Y., and Hirokawa, N. (2004). A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116, 591-602.
[33] Wang, W., Shen, T., Guerois, R., Zhang, F., Kuerban, H., Lv, Y., Gigant, B., Knossow, M., and Wang, C. (2015). New insights into the coupling between microtubule depolymerization and ATP hydrolysis by kinesin-13 protein Kif2C. J Biol Chem 290, 18721-18731.
[34] Kline-Smith, S.L., Khodjakov, A., Hergert, P., and Walczak, C.E. (2004). Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol Biol Cell 15, 1146-1159.
[35] Maney, T., Hunter, A.W., Wagenbach, M., and Wordeman, L. (1998). Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J Cell Biol 142, 787-801.
[36] Desai, A., Verma, S., Mitchison, T.J., and Walczak, C.E. (1999). Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69-78.
[37] Hedrick, D.G., Stout, J.R., and Walczak, C.E. (2008). Effects of anti-microtubule agents on microtubule organization in cells lacking the kinesin-13 MCAK. Cell Cycle 7, 2146-2156.
[38] Bakhoum, S.F., Ngo, B., Laughney, A.M., Cavallo, J.A., Murphy, C.J., Ly, P., Shah, P., Sriram, R.K., Watkins, T.B.K., Taunk, N.K., et al. (2018). Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467-472.
[39] Ganguly, A., Yang, H., and Cabral, F. (2011). Overexpression of mitotic centromere-associated Kinesin stimulates microtubule detachment and confers resistance to paclitaxel. Mol Cancer Ther 10, 929-937.
[40] Ganguly, A., Yang, H., Pedroza, M., Bhattacharya, R., and Cabral, F. (2011). Mitotic centromere-associated kinesin (MCAK) mediates paclitaxel resistance. J Biol Chem 286, 36378-36384.
[41] Martin, S.K., and Kyprianou, N. (2015). Exploitation of the androgen receptor to overcome taxane resistance in advanced prostate cancer. Adv Cancer Res 127, 123-158.
[42] Froidevaux-Klipfel, L., Targa, B., Cantaloube, I., Ahmed-Zaid, H., Pous, C., and Baillet, A. (2015). Septin cooperation with tubulin polyglutamylation contributes to cancer cell adaptation to taxanes. Oncotarget 6, 36063-36080.
[43] Gnjatic, S., Cao, Y., Reichelt, U., Yekebas, E.F., Nolker, C., Marx, A.H., Erbersdobler, A., Nishikawa, H., Hildebrandt, Y., Bartels, K., et al. (2010). NY-CO-58/KIF2C is overexpressed in a variety of solid tumors and induces frequent T cell responses in patients with colorectal cancer. Int J Cancer 127, 381-393.
[44] Ishikawa, K., Kamohara, Y., Tanaka, F., Haraguchi, N., Mimori, K., Inoue, H., and Mori, M. (2008). Mitotic centromere-associated kinesin is a novel marker for prognosis and lymph node metastasis in colorectal cancer. Br J Cancer 98, 1824-1829.
[45] Nishidate, T., Katagiri, T., Lin, M.L., Mano, Y., Miki, Y., Kasumi, F., Yoshimoto, M., Tsunoda, T., Hirata, K., and Nakamura, Y. (2004). Genome-wide gene-expression profiles of breast-cancer cells purified with laser microbeam microdissection: identification of genes associated with progression and metastasis. Int J Oncol 25, 797-819.
[46] Shimo, A., Tanikawa, C., Nishidate, T., Lin, M.L., Matsuda, K., Park, J.H., Ueki, T., Ohta, T., Hirata, K., Fukuda, M., et al. (2008). Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci 99, 62-70.
[47] Talje, L., Ben El Kadhi, K., Atchia, K., Tremblay-Boudreault, T., Carreno, S., and Kwok, B.H. (2014). DHTP is an allosteric inhibitor of the kinesin-13 family of microtubule depolymerases. FEBS Lett 588, 2315-2320.
[48] Cordani, M., Butera, G., Dando, I., Torrens-Mas, M., Butturini, E., Pacchiana, R., Oppici, E., Cavallini, C., Gasperini, S., Tamassia, N., et al. (2018). Mutant p53 blocks SESN1/AMPK/PGC-1alpha/UCP2 axis increasing mitochondrial O2-. production in cancer cells. Br J Cancer 119, 994-1008.
[49] Parrales, A., and Iwakuma, T. (2015). Targeting oncogenic mutant p53 for cancer therapy. Front Oncol 5, 288.
[50] Yerlikaya, A., Okur, E., and Ulukaya, E. (2012). The p53-independent induction of apoptosis in breast cancer cells in response to proteasome inhibitor bortezomib. Tumour Biol 33, 1385-1392.
[51] Leroy, B., Girard, L., Hollestelle, A., Minna, J.D., Gazdar, A.F., and Soussi, T. (2014). Analysis of TP53 mutation status in human cancer cell lines: a reassessment. Hum Mutat 35, 756-765.
[52] Na, B., Yu, X., Withers, T., Gilleran, J., Yao, M., Foo, T.K., Chen, C., Moore, D., Lin, Y., Kimball, S.D., et al. (2019). Therapeutic targeting of BRCA1 and TP53 mutant breast cancer through mutant p53 reactivation. NPJ Breast Cancer 5, 14.
[53] Miyamoto, T., Tanikawa, C., Yodsurang, V., Zhang, Y.Z., Imoto, S., Yamaguchi, R., Miyano, S., Nakagawa, H., and Matsuda, K. (2017). Identification of a p53-repressed gene module in breast cancer cells. Oncotarget 8, 55821-55836.
[54] Pandit, B., Halasi, M., and Gartel, A.L. (2009). p53 negatively regulates expression of FoxM1. Cell Cycle 8, 3425-3427.
[55] Lin, R.K., Wu, C.Y., Chang, J.W., Juan, L.J., Hsu, H.S., Chen, C.Y., Lu, Y.Y., Tang, Y.A., Yang, Y.C., Yang, P.C., et al. (2010). Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res 70, 5807-5817.
[56] Tanikawa, J., Ichikawa-Iwata, E., Kanei-Ishii, C., and Ishii, S. (2001). Regulation of c-Myb activity by tumor suppressor p53. Blood Cells Mol Dis 27, 479-482.
[57] Jacquemier, J., Charafe-Jauffret, E., Monville, F., Esterni, B., Extra, J.M., Houvenaeghel, G., Xerri, L., Bertucci, F., and Birnbaum, D. (2009). Association of GATA3, P53, Ki67 status and vascular peritumoral invasion are strongly prognostic in luminal breast cancer. Breast Cancer Res 11, R23.
[58] Xiao, H., Verdier-Pinard, P., Fernandez-Fuentes, N., Burd, B., Angeletti, R., Fiser, A., Horwitz, S.B., and Orr, G.A. (2006). Insights into the mechanism of microtubule stabilization by Paclitaxel. Proc Natl Acad Sci U S A 103, 10166-10173.
[59] Wolter, P., Hanselmann, S., Pattschull, G., Schruf, E., and Gaubatz, S. (2017). Central spindle proteins and mitotic kinesins are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cell lines and are potential targets for therapy. Oncotarget 8, 11160-11172.
[60] Eschenbrenner, J., Winsel, S., Hammer, S., Sommer, A., Mittelstaedt, K., Drosch, M., Klar, U., Sachse, C., Hannus, M., Seidel, M., et al. (2011). Evaluation of activity and combination strategies with the microtubule-targeting drug sagopilone in breast cancer cell lines. Front Oncol 1, 44.
[61] Maire, V., Nemati, F., Richardson, M., Vincent-Salomon, A., Tesson, B., Rigaill, G., Gravier, E., Marty-Prouvost, B., De Koning, L., Lang, G., et al. (2013). Polo-like kinase 1: a potential therapeutic option in combination with conventional chemotherapy for the management of patients with triple-negative breast cancer. Cancer Res 73, 813-823.
[62] Horiuchi, D., Camarda, R., Zhou, A.Y., Yau, C., Momcilovic, O., Balakrishnan, S., Corella, A.N., Eyob, H., Kessenbrock, K., Lawson, D.A., et al. (2016). PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nat Med 22, 1321-1329.
[63] Romanelli, A., Clark, A., Assayag, F., Chateau-Joubert, S., Poupon, M.F., Servely, J.L., Fontaine, J.J., Liu, X., Spooner, E., Goodstal, S., et al. (2012). Inhibiting aurora kinases reduces tumor growth and suppresses tumor recurrence after chemotherapy in patient-derived triple-negative breast cancer xenografts. Mol Cancer Ther 11, 2693-2703.