簡易檢索 / 詳目顯示

研究生: 陳鉑誌
Chen, Bo-Chih,
論文名稱: Akt3抑制PC-3人類的攝護腺癌細胞的轉移和侵襲
Akt3 Suppresses Migration and Invasion of PC-3 Human Prostate Cancer Cells
指導教授: 楊孝德
Yang, Shiaw-Der
口試委員: 褚志斌
Chuu, Chih-Pin
張中和
Chang, Chung-Ho
汪宏達
Wang, Horng-Dar
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 37
中文關鍵詞: 轉移侵襲免疫組織染色活體影像觀測系統前列腺癌
外文關鍵詞: Akt3, matestasis, IVIS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Akt3在攝護腺癌中高度轉移的癌細胞所扮演的角色,與功能尚未被了解。我們去研究 Akt3是否會參與在攝護腺癌細胞中的轉移和侵襲,和 Akt3所扮演的角色。我們利用Meta-analysis of PubMed GEO profile data 發現 Akt3的 mRNA expression 與正常組織相比都是比較低的,因此我們先利用androgen receptor (AR)-negative androgen-independent的PC-3人類攝護腺癌細胞,篩選有穩定高度表現 Akt3的細胞株進行往後的實驗。
    我們利用transwell和wound healing assays去觀察細胞的轉移和侵襲我們發現高度表現 Akt3會去抑制細胞的轉移和侵襲。我們把細胞以原位注射的方式打到老鼠的前列腺,再利用非侵入式活體觀察系統(IVIS)觀察,發現隨時間的增加,老鼠體內高度表現 Akt3的細胞株相較於控制組有明顯的抑制細胞轉移到其他器官。再利用免疫組織染色,使用Ki-67抗體去確認癌細胞是否轉移到其他器官,我們發現控制組的癌細胞有轉移到器官,高度表現 Akt3的細胞幾乎沒有轉移到其他的器官,甚至原位的癌細胞也變少。 Akt3可以抑制攝護腺癌細胞的轉移,可能是透過Epithelial-Mesenchymal Transition (EMT),我們利用高度表現 Akt3去看EMT相關蛋白質的表現,發現 vimentin, Snail, N-cadherin, Slug,都有明顯的被抑制表現。 Akt3在攝護腺癌中可以去抑制類的攝護腺癌細胞的轉移和侵襲, Akt3未來也許可以成為一個治療攝護腺癌的標靶。


    The role of Akt3 in prostate cancer metastasis is not well understood. We investigated if Akt3 is involved in the regulation of migration and invasion of prostate cancer cells. We selected stable overexpression Akt3 clones of PC-3 androgen receptor (AR)-negative androgen-independent human prostate cancer cells. Overexpression of Akt3 suppressed cell migration and invasion as determined by the transwell and wound-healing assays. Using In Vivo Imaging System (IVIS) and Immunohistochemistry (IHC), we observed that overexpression of Akt3 suppressed cancer metastasis of PC-3 cells in nude mice orthotopic model. Western blot analysis for PC-3 cells indicated that alteration of Akt3 protein suppressed the protein abundance of epithelial-mesenchymal transition (EMT) marker protein vimentin, Snail, Ncadherin, and Slug. Meta-analysis of PubMed GEO profile data of 81 normal prostate tissues, 6 BPH tissues, 13 PIN tissues, 104 primary prostate tumors, and 51 metastatic prostate tumors indicated that Akt3 mRNA expression level was lower in metastatic prostate tumors as compared to primary prostate tumors. These observations suggested that overexpressed Akt3 regulates the migration and invasion of prostate cancer cells via adjustment of protein abundance and subcellular distribution of certain EMT marker proteins. Targeting Akt3 may be a potential treatment for prostate cancer metastases.

    致謝……………………………………………………………………………………1 中文摘要…………………………………………………………………………........3 Abstract……………………………………………………………………………….6 Chapter 1.Introduction……………………………...………………………..……...7 I. Prostate cancer……………………………………………………….............…...7 II. Akt3………………………………………………………………………...….....8 III. PC-3 cell lines…………………………………………………..………..………8 IV. Epithelial-Mesenchymal Transition (EMT)………………………………….......9 V. Flow chart…………………………………………………………………….....10 Chapter 2. Materials and Methods………………………………...………..……..11 I. GEO Profile Analysis……………………………………………………..…….11 II. Cell Culture……………………………………………...……………..…....….11 III. Transfection plasmid of overexpression Akt3……………………..…...……….12 IV. Transwell Migration Assay………………………………………...…..……….12 V. Transwell Invasion Assay…………………………………………...…….……13 VI. Wound healing assay……………………………….…………………….….….13 VII. Western Blotting Analysis……………………………...………….…….…..…14 VIII. In Vivo Imaging System (IVIS) …………………………………..………..…..15 IX. Immunohistochemistry (IHC)………………………………….……………….15 Chapter 3. Results………………………………………………...……….………..17 I. The expression level of Akt3 in normal and different stage of cancer…….....…17 II. Selection of stable PC-3 cell line overexpressing Akt3……………………...…17 III. Akt3 overexpression suppresses migration and invasion of PC-3 cells……….18 IV. Overexpression Akt3 inhibits cancer cell wound healing……………………....18 V. Overexpression of Akt3 suppresses cancer cell metastasis in animal model….18 VI. Alteration in Akt3 protein levels affects protein abundance of EMT marker…..19 Chapter 4. Discussion………………………………………………………...….….20 Chapter 5. Future direction………………………………………………...…...….22 Chapter 5. Figure…………………………………………………………...…...….23 I. Figure 1…………………………………………………...…………………….23 II. Figure 2A………………………………………………..………………………24 III. Figure 2B…………………………………………………………….………….25 IV. Figure 3A………………………………………………………………..………26 V. Figure 3B………………………………………………………………………..27 VI. Figure 4A……………………………………………………………..…………28 VII. Figure 4B……………………………………………………………..…………29 VIII. Figure 5A………………………………………………………………………..30 IX. Figure 5B……………………………………………………………………..…32 X. Figure 6………………………………………………………..………………..33 XI. Supplementary figure…………………………………………………………...34 Chapter 7. References………………………………...………………………...…..35

    1. Bubendorf, L., et al., Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol, 2000. 31(5): p. 578-83.
    2. Ibrahim, T., et al., Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer, 2010. 116(6): p. 1406-18.
    3. Chuu, C.P., et al., Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. J Biomed Sci, 2011. 18: p. 63.
    4. Bedolla, R., et al., Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and Akt activation. Clin Cancer Res, 2007. 13(13): p. 3860-7.
    5. Li, J., et al., PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 1997. 275(5308): p. 1943-7.
    6. Sarker, D., et al., Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res, 2009. 15(15): p. 4799-805.
    7. Ayala, G., et al., High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin Cancer Res, 2004. 10(19): p. 6572-8.
    8. Kreisberg, J.I., et al., Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res, 2004. 64(15): p. 5232-6.
    9. McCall, P., et al., Phosphorylation of the androgen receptor is associated with reduced survival in hormone-refractory prostate cancer patients. Br J Cancer, 2008. 98(6): p. 1094-101.
    10. Coffer, P.J., J. Jin, and J.R. Woodgett, Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J, 1998. 335 ( Pt 1): p. 1-13.
    11. Gonzalez, E. and T.E. McGraw, Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc Natl Acad Sci U S A, 2009. 106(17): p. 7004-9.
    12. Virtakoivu, R., et al., Distinct roles of AKT isoforms in regulating beta1-integrin activity, migration, and invasion in prostate cancer. Mol Biol Cell, 2012. 23(17): p. 3357-69.
    13. Alessi, D.R., et al., Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol, 1997. 7(4): p. 261-9.
    14. Jacinto, E., et al., SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell, 2006. 127(1): p. 125-37.
    15. Sarbassov, D.D., et al., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005. 307(5712): p. 1098-101.
    16. Boufraqech, M., et al., miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3. Endocr Relat Cancer, 2014. 21(4): p. 517-31.
    17. Chuu, C.P., et al., Modulation of liver X receptor signaling as novel therapy for prostate cancer. J Biomed Sci, 2007. 14(5): p. 543-53.
    18. Kaighn, M.E., et al., Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol, 1979. 17(1): p. 16-23.
    19. Sasaki, T., et al., Knockdown of Akt isoforms by RNA silencing suppresses the growth of human prostate cancer cells in vitro and in vivo. Biochem Biophys Res Commun, 2010. 399(1): p. 79-83.
    20. Zinda, M.J., et al., AKT-1, -2, and -3 are expressed in both normal and tumor tissues of the lung, breast, prostate, and colon. Clin Cancer Res, 2001. 7(8): p. 2475-9.
    21. Hammarsten, P., et al., Phospho-Akt immunoreactivity in prostate cancer: relationship to disease severity and outcome, Ki67 and phosphorylated EGFR expression. PLoS One, 2012. 7(10): p. e47994.
    22. Chuu, C.P., et al., Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer Sci., 2011. 102(11): p. 2022-8.
    23. Chuu, C.P., et al., Caffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of p70S6K and Akt signaling networks. Cancer Prev Res (Phila), 2012. 5(5): p. 788-97.
    24. Kuo, Y.Y., et al., Caffeic Acid Phenethyl Ester Suppresses Proliferation and Survival of TW2.6 Human Oral Cancer Cells via Inhibition of Akt Signaling. International journal of molecular sciences, 2013. 14(5): p. 8801-17.
    25. Lin, C.Y., et al., Cholestane-3beta, 5alpha, 6beta-triol Suppresses Proliferation, Migration, and Invasion of Human Prostate Cancer Cells. PLoS One, 2013. 8(6): p. e65734.
    26. Lin, H.P., S.S. Jiang, and C.P. Chuu, Caffeic Acid Phenethyl Ester Causes p21 Induction, Akt Signaling Reduction, and Growth Inhibition in PC-3 Human Prostate Cancer Cells. PLoS One, 2012. 7(2): p. e31286.
    27. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
    28. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54.
    29. Eves, R., et al., The roles of akt isoforms in the regulation of podosome formation in fibroblasts and extracellular matrix invasion. Cancers (Basel), 2015. 7(1): p. 96-111.
    30. Lin, L., et al., MicroRNA-144 suppresses tumorigenesis and tumor progression of astrocytoma by targeting EZH2. Hum Pathol, 2015. 46(7): p. 971-80.
    31. Lee, J.M., et al., The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006. 172(7): p. 973-81.
    32. Batlle, E., et al., The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol, 2000. 2(2): p. 84-9.
    33. Beach, S., et al., Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene, 2008. 27(15): p. 2243-8.
    34. Cano, A., et al., The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000. 2(2): p. 76-83.
    35. Uygur, B. and W.S. Wu, SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis. Mol Cancer, 2011. 10: p. 139.
    36. Martorana, A.M., et al., Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Cancer Res, 1998. 58(21): p. 4970-9.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE