研究生: |
胡佩姍 Hu, Pei-San |
---|---|
論文名稱: |
探討視丘下核的腦深層刺激術對 正常大鼠與巴金森氏模式鼠之腦區活化的影響 Identification of brain regions being activated after deep brain stimulation of the subthalamic nucleus of the rat |
指導教授: |
張兗君
Chang, Yen-Chung |
口試委員: |
葉世榮
Yeh, Shih-Rung 周韻家 Chou, Yun-Chia |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 巴金森氏症 、腦深層刺激術 |
外文關鍵詞: | Parkinson' disease, deep brain stimulation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
巴金森氏症(Parkinson’s disease)是一種常見的退化性神經疾病,患者大腦中的黑質區之多巴胺神經元退化甚至死亡,導致多巴胺大量減少,造成黑質-紋狀體之神經路徑的運動調節功能喪失。腦深層刺激術 (Deep Brain Stimulation, DBS) 目前廣泛的使用在晚期嚴重的巴金森氏症病人身上,大部分患者接受視丘下核的腦深層刺激術(STN-DBS)的治療後都可以有效控制自主運動,改善基本的生活品質。然而近期研究指出STN-DBS可能會造成非運動性的副作用,目前仍不清楚患者在進行STN-DBS的治療後有哪些腦區直接或間接的受到活化,因此本實驗借由對正常大鼠與巴金森氏症模式鼠進行連續四小時高頻的STN-DBS,利用c-Fos作為神經細胞活化的標定物,觀察DBS後那些腦區受到活化,同時也觀察DBS是否影響大鼠的行為。實驗結果顯示正常的大鼠在進行連續四小時的STN-DBS時,在行為上沒有顯著的影響。在130 Hz DBS組別中,STN-DBS不會造成正常大鼠的CPu、GP、MOTOR CORTEX、Hb、PVP和ZI腦區有顯著的活化,然而在1300 Hz DBS組別中,其腦區的神經細胞活化數目較多,而且在GP腦區還有神經細胞活化數目減少的趨勢。在巴金森氏症模式鼠的組別中,還沒接受130 Hz STN-DBS前CPu、GP、MOTOR CORTEX、Hb和PVP腦區已處在高活化的狀態,經過連續四小時130 Hz DBS後,可能可以抑制STN高度活化的狀態,導致CPu和GP對側腦區活性降低,MOTOR CORTEX兩側活性降低。因此我們可以推斷頻率可能是STN-DBS的重要參數。除此之外單邊的STN-DBS會造成兩側的腦區皆有細胞活性的改變,可能透過雙邊的調節來維持正常的生理功能。此外我們推測巴金森氏症模式鼠的腦部神經細胞具有較高的活性,STN-DBS可以抑制腦部的高活化狀態。
Abstract
Parkinson’s disease is a disabling movement disorder due to thedegeneration of substantia nigra pars compacta (SNc) dopamine neurons. DBS-STN (Deep Brain Stimulation Subthalamic Nucleus), which is thought to affect
the pathological neuronal activity and abnormal oscillactions in the basal ganglia caused by the loss of dopamine in the nigrostriatal system, is now the most frequently practiced surgical therapy for treating PD patients. In the present study, we have successfully induced PD model rats for development an integrated electrophysiology instrument suitable for the DBS
procedure. The major purpose of this study is to identify which brain regions would be activated after DBS-STN. In our studies, we used c-Fos immunostaining to label rat brain regions that were activated under different conditions. We found that the neuronal activity of subthalamic
nucleus (STN), substantia nigra (SN), globus pallidus (GP), caudate putamen(CPu), motor cortex, habenular nucleus (Hb) and paraventricular thalamic nucleus posterior (PVP) were not affected by 130 Hz DBS, but the neuronal
activity of these areas increased by 1300 Hz DBS in normal rats. The result indicated that the super high frequency would increase a wide range of neuronal activity of the brain. However, the PD rats’ neuronal activity of
these areas was in hyperactive state before DBS. After 130 Hz DBS, the neuronal activity of CPu, GP, motor cortex would decrease but the neuronal activity increased in Hb and PVP. These results suggested that HFS-DBS would change the neuronal activity of GP, CPu, Motor cortex, Hb and PVP in the PD rats. It may be related to the alleviation of the amphetamine-induced rotation.
Aghajanian GK, Wang RY. Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Research 1977;122: 229-42.
and substantia nigra to the periaqueductal gray region and the dorsal raphe nucleus. The Journal of Comparative Neurology 2004;469:170-84.
Bevan MD, Bolam JP (1995) Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci 15: 7105-7120
Chabardes S, Polosan M, Krack P, Bastin J, Krainik A, David O, Bougerol T, Benabid AL (2012) Deep Brain Stimulation for Obsessive-Compulsive Disorder: Subthalamic Nucleus Target. World neurosurgery
Cirelli C, Tononi G. On the functional significance of c-fos induction during the sleep-waking cycle. Sleep. 2000 Jun 15;23(4):453-69.
Dowd E, Dunnett SB (2005) Comparison of 6-hydroxydopamine-induced medial forebrain bundle and nigrostriatal terminal lesions in rats using a lateralised nose-poking task with low stimulus-response compatibility. Behavioural brain research 165: 181-186
Duffield GE, Hastings MH, Ebling FJ. Investigation into the regulation of the circadian system by dopamine and melatonin in the adult Siberian hamster (Phodopus sungorus). J Neuroendocrinol 1998; 10: 871–884.
Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO (2004) Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156: 274-281
Galvan A, Charara A, Pare JF, Levey AI, Smith Y (2004) Differential subcellular and subsynaptic distribution of GABA(A) and GABA(B) receptors in the monkey subthalamic nucleus. Neuroscience 127: 709-721
Gibb WR, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. Journal of neurology, neurosurgery, and psychiatry 54: 388-396
Hajos M, Richards CD, Szekely AD, Sharp T. An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 1998;87:95-108.
Hefti F, Melamed E, Sahakian BJ, Wurtman RJ (1980) Circling behavior in rats with partial, unilateral nigro-striatal lesions: effect of amphetamine, apomorphine, and DOPA. Pharmacol Biochem Behav 12: 185-188
Hikosaka O, Sesack, SR, Lecourtier L, Shepard PD. 2008. Habenula: Crossed between the basal ganglia and the limbic system. The journal of neuroscience 28(46): 11825-11829
Hornykiewicz O (1976) Neurohumoral interactions and basal ganglia function and dysfunction. Res Publ Assoc Res Nerv Ment Dis 55: 269-280
interneurones in the cortical modulation of midbrain 5-hydroxytryptamine neurones. Neuroscience 2001;106:783-92.
Jankovic J (2008) Parkinson's disease: clinical features and diagnosis. Journal of neurology, neurosurgery, and psychiatry 79: 368-376
Jankowski MP, Sesack SR. Prefrontal cortical projections to the rat dorsal raphe
Kim SW, Jang YJ, Chang JW, Hwang O (2003) Degeneration of the nigrostriatal pathway and induction of motor deficit by tetrahydrobiopterin: an in vivo model relevant to Parkinson's disease. Neurobiology of disease 13: 167-176
Kirouac GJ, Li S, Mabrouk G. GABAergic projection from the ventral tegmental area
Kovacs KJ (2008) Measurement of immediate-early gene activation- c-fos and beyond. Journal of neuroendocrinology 20: 665-672
Liang GS, Chou KL, Baltuch GH, Jaggi JL, Loveland-Jones C, Leng L, Maccarone H, Hurtig HI, Colcher A, Stern MB, Kleiner-Fisman G, Simuni T, Siderowf AD (2006) Long-term outcomes of bilateral subthalamic nucleus stimulation in patients with advanced Parkinson's disease. Stereotact Funct Neurosurg 84: 221-227
Matsumura, M., Nambu, A., Yamaji, Y., Watanabe, K., Imai, H., Inase, M., Tokuno, H., Takada, M., 2000. Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey. Neuroscience 98, 97–110
Maywood ES, Bittman EL, Ebling FJ, Barrett P, Morgan P, Hastings MH. Regional distribution of iodomelatonin binding sites within the suprachiasmatic nucleus of the Syrian hamster and the Siberian hamster. J Neuroendocrinol 1995; 7: 215–223.
McIntyre CC, Grill WM, Sherman DL, Thakor NV (2004) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91: 1457-1469
Moers-Hornikx VM, Sesia T, Basar K, Lim LW, Hoogland G, Steinbusch HW, Gavilanes DA, Temel Y, Vles JS (2009) Cerebellar nuclei are involved in impulsive behaviour. Behavioural brain research 203: 256-263
Moers-Hornikx VM, Sesia T, Basar K, Lim LW, Hoogland G, Steinbusch HW, Gavilanes DA, Temel Y, Vles JS (2009) Cerebellar nuclei are involved in impulsive behaviour. Behavioural brain research 203: 256-263
nucleus: ultrastructural features and associations with serotonin and gammaaminobutyric acid neurons. The Journal of Comparative Neurology 2004;468: 518-29.
Okun MS, Vitek JL (2004) Lesion therapy for Parkinson's disease and other movement disorders: update and controversies. Mov Disord 19: 375-389
Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22: 123-144
Recio J, Pevet P, Masson-Pevet M. Serotonergic modulation of photically induced increase in melatonin receptor density and Fos immunoreactivity in the suprachiasmatic nuclei of the rat. J Neuroendocrinol 1996; 8: 839–845.
Romito LM, Albanese A (2010) Dopaminergic therapy and subthalamic stimulation in Parkinson's disease: a review of 5-year reports. Journal of neurology 257: S298-304
Salin P, Manrique C, Forni C, Kerkerian-Le Goff L (2002) High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat. The Journal of neuroscience : the official journal of the Society for Neuroscience 22: 5137-5148
Salvador-Aguiar C, Menendez-Guisasola L, Blazquez-Estrada M, Fernandez-Gonzalez F, Seijo-Fernandez F (2004) [Psychiatric symptoms of Parkinson's disease following deep brain stimulation surgery on the subthalamic nucleus]. Rev Neurol 39: 651-655
Saryyeva A, Nakamura M, Krauss JK, Schwabe K (2011) c-Fos expression after deep brain stimulation of the pedunculopontine tegmental nucleus in the rat 6-hydroxydopamine Parkinson model. Journal of chemical neuroanatomy 42: 210-217
Smith GA, Dunnett SB, Lane EL (2012) Amphetamine-induced rotation in the transplanted hemi-parkinsonian rat - Response to pharmacological modulation. Behavioural brain research 232: 411-415
Smith GA, Dunnett SB, Lane EL (2012) Amphetamine-induced rotation in the transplanted hemi-parkinsonian rat - Response to pharmacological modulation. Behavioural brain research 232: 411-415
Smith MA, Banerjee S, Gold PW, Glowa J (1992) Induction of c-fos mRNA in rat brain by conditioned and unconditioned stressors. Brain research 578: 135-141
Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86: 353-387
Spieles-Engemann AL, Collier TJ, Sortwell CE (2010) A functionally relevant and long-term model of deep brain stimulation of the rat subthalamic nucleus: advantages and considerations. The European journal of neuroscience 32: 1092-1099
Steininger, T.L., Rye, D.B., Wainer, B.H., 1992. Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J. Comp. Neurol. 321, 515– 543.
Tai CH, Kuo CC (2006) [Electrophysiology of subthalamic nucleus in normal and Parkinson's disease]. Acta Neurol Taiwan 15: 206-216
Tan SK, Janssen ML, Jahanshahi A, Chouliaras L, Visser-Vandewalle V, Lim LW, Steinbusch HW, Sharp T, Temel Y (2011) High frequency stimulation of the subthalamic nucleus increases c-fos immunoreactivity in the dorsal raphe nucleus and afferent brain regions. Journal of psychiatric research 45: 1307-1315
Temel Y, Tan S, Visser-Vandewalle V, Sharp T (2009) Parkinson's disease, DBS and suicide: a role for serotonin? Brain 132: e126; author reply e127
Tepper JM, Abercrombie ED, Bolam JP (2007) Basal ganglia macrocircuits. Progress in brain research 160: 3-7
Torres EM, Lane EL, Heuer A, Smith GA, Murphy E, Dunnett SB (2011) Increased efficacy of the 6-hydroxydopamine lesion of the median forebrain bundle in small rats, by modification of the stereotaxic coordinates. Journal of neuroscience methods 200: 29-35
Varga V, Szekely AD, Csillag A, Sharp T, Hajos M. Evidence for a role of GABA
Windels F, Carcenac C, Poupard A, Savasta M (2005) Pallidal origin of GABA release within the substantia nigra pars reticulata during high-frequency stimulation of the subthalamic nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience 25: 5079-5086
Yang M, Stull ND, Berk MA, Snyder EY, Iacovitti L (2002) Neural stem cells spontaneously express dopaminergic traits after transplantation into the intact or 6-hydroxydopamine-lesioned rat. Experimental neurology 177: 50-60
Yasoshima Y, Kai N, Yoshida S, Shiosaka S, Koyama Y, Kayama Y, Kobayashi K (2005) Subthalamic neurons coordinate basal ganglia function through differential neural pathways. The Journal of neuroscience : the official journal of the Society for Neuroscience 25: 7743-7753