簡易檢索 / 詳目顯示

研究生: 張書維
Chang, Shu-Wei
論文名稱: 應用於有機電子元件之共軛分子的新合成方法
New Synthesis Strategies for Conjugated Architectures and their Applications in Organic Electronics
指導教授: 堀江 正樹
Horie, Masaki
口試委員: 蘇安仲
劉振良
游進陽
陳信龍
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 345
中文關鍵詞: 有機光伏打電池
外文關鍵詞: PCPDTBT, OPV, direct arylation, crosslinking
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Poly(cyclopentadithiophene-alt-benzothiadiazole) (PCPDTBT)為應用於有機光伏打電池(organic photovoltaic, OPV)第三代半導體高分子的第一個標竿材料,其特色在於主結構中具有交替式的與體及受體結構與縮合環之分子設計。本論文可分為兩大部分:探討及改善PCPDTBT,與合成以cyclopentadithiophene (CPDT)和 benzothiadiazole (BT)為基礎架構的新型高分子。
    在第一個部分,我們發展了鈀金屬催化之直接芳基化聚合法來合成PCPDTBT。在添加K2CO3、Pd(OAc)2、pivalic acid (PivOH)、N-methylpyrrolidone (NMP)並加熱至攝氏80度反應20小時的最佳化條件下,可達成76%的高產率(Soxhlet純化之後),並帶有71700之高平均分子量。最關鍵的是,以新聚合法所製作出來的PCPDTBT在OPV元件效率的表現上更勝於一般使用鈴木法所製備的PCPDTBT。直接芳基化法也被應用於其他低價帶共軛高分子的合成。未來此方法擁有大量合成高效能材料的潛力,其簡化了合成流程、更好的整體產率、綠色化學以及更低的生產成本。
    我們也致力於提升PCPDTBT高分子的熱穩定性,利用添加熱膠聯官能基於CPDT分子之側鏈上。其OPV的生命週期較未經修飾的PCPDTBT得到了51%顯著的提升,此熱穩定的提升歸功於元件熱退火後所產生的高分子交聯體。此熱膠聯反應由紅外光譜儀(FT-IR)與溶解度測試所確認,而表面型態則由原子力顯微鏡(AFM)與 GISAXS進行鑑定。
    另一方面,我們探討了與體-受體在交替式共軛高分子中的影響,藉由合成各式比例的CPDT與BT於重複單元中,是為-[(CPDT)x-(BT)y]n-。高分子群在薄膜狀態下擁有1.7至2.0電子伏特的光學能階差,其能階差由小至大依序為:x:y = 1:1、1:2、2:1、 2:2、3:3。最佳的OPV元件效率為2.45%,在不添加表面修飾劑下由x:y = 2:2的高分子與PC61BM作為主動層材料。OPV效率依序為:x:y = 2:2、2:1、1:1、3:3、 1:2,顯示了與體-受體之比例和長度對於OPV元件之影響。
    在第二部分中,我們首先合成了CPDT-BT-CPDT之寡聚物以觀測其X光單晶繞射的結構。單晶的結構中證實了寡聚物並非完全地散亂無規則,而是以BT為中心做交叉式的堆疊,間距乃3.61 Å。其提供了對於了解高分子塊材結構極具參考價值的資料。雖然此寡聚物的OPV與有機場校電晶體(OFET)效率並不突出(移動率 = 5 × 10-3 cm2 V-1 s-1 與能源轉換效率 1.61%),但其可以作為色素增感材料來增加PCPDTBT與P3HT之OPV元件光吸收能力,最適添加濃度下可提升總體效率約3~9%。
    接下來,我們設計並合成出一系列以「CPDT-受體-CPDT」為核心結構的高分子群。結果顯示,隨著thiophene在主結構中的數量成長,高分子將呈現出階段式的藍位移光譜吸收與更好的π-π堆疊能力。在評估TPD與BT受體中,TPD系列之高分子群較BT之高分子群擁有約40 nm之藍位移吸收以及約0.2 V更深的HOMO能階。其中,同時含有TPD與BT受體的高分子在配合PC71BM與添加1,8-octanedithiol的條件下展現出最好的能源轉換效率3.0%。
    最後,我們專注於利用開環置換聚合法合成全共軛之共嵌段高分子。受體性的dithienobenzothiadiazole-vinylene之環狀單體和與體性的cyclopentadithiophene-vinylene之環狀單體皆由McMurry反應製備而成。目標物第一段之製備始於受體性單體的開環反應,隨後在反應途中加入與體性單體使其成為第二段,從而完成了全共軛共嵌段聚合物之合成。此新型高分子展現出了多重光學與電化學的性質,使其能夠吸收300~700 nm寬廣的範圍。


    Poly(cyclopentadithiophene-alt-benzothiadiazole) (PCPDTBT) was the first breakthrough on the third generation semiconducting polymer in organic photovoltaic (OPV) applications, featuring alternating donor-acceptor moieties and design of fused ring in the polymer main chain. This thesis involves two parts: the studies and improvements of PCPDTBT; the synthesis of new polymers and oligomers based on cyclopentadithiophene (CPDT) and benzothiadiazole (BT) units.
    In the first part, we developed Pd-catalyzed direct arylation polymerization for the synthesis of PCPDTBT, being produced in 76% yield after Soxhlet with high number-average molecular weight (Mn) of 71700 in the presence of K2CO3, Pd(OAc)2, and pivalic acid (PivOH) in N-methylpyrrolidone (NMP) at 80 °C for 20 hours. Most importantly, OPV device of the best PCPDTBT shows improved power conversion efficiency (PCE) over the one by Suzuki coupling. The optimized reaction condition was also applied to other monomers to obtain various low-bandgap conjugated copolymers. This synthetic route allows scale-up synthesis of high performing polymers with fewer synthetic steps, higher yield, greener chemistry, and at a lower cost.
    Then we worked on enhancing the stability of PCPDTBT OPV devices by synthesizing thermally crosslinkable group on the side chains on CPDT. The lifetime of the OPV was 51% enhanced over an OPV using standard PCPDTBT. This higher stability is accounted for the crosslinkable structure of the polymer after annealing. The crosslinking reaction was confirmed by solubility tests, Fourier transform infrared spectroscopy, and morphological analysis conducted by atomic force microscopy and simultaneous synchrotron grazing-incidence small-/wide-angle X-ray scattering.
    We also studied on the effect of donor-acceptor ratio by synthesizing various and lengths of CPDT to BT repeating units, -[(CPDT)x-(BT)y]n-. The polymers showed optical band gap between 1.7 and 2.0 eV in film. Polymer with ratios of CPDT:BT (x:y = 1:1) units showed lowest energy bandgap, followed by x:y = 1:2, 2:1, 2:2 and 3:3. OPV devices of these polymers with PC61BM as the electron acceptor in the absence of any additives show the best PCE of 2.45% using the polymer with ratios of CPDT:BT (x:y = 2:2) units, followed by the ratios of x:y = 2:1, 1:1, 3:3 and 1:2, indicating relevance of ratios and length of donor and acceptor units in OPV performance.
    In the second part, we started with the investigation of the X-ray single crystal structure of CPDT-BT-CPDT oligomer, which confirms that they are not entirely disordered, but are actually stacking directly across each other at the central BT units with an intermolecular distance of 3.61 Å, providing valuable insight into the polymer bulk structure. While showing moderate mobility of 5 × 10-3 cm2 V-1 s-1 and a PCE of 1.61%, one potential use for the oligomer could be as a sensitizer in a ternary blend with P3HT–PC61BM or PCPDTBT–PC61BM OPVs; the PCE can be relatively increased by 3–9% depending on concentration, primarily as a result of increased short circuit current density.
    Then a series of polymers containing “CPDT-Acceptor-CPDT” structure has been designed and synthesized. We show that the increasing amount of thiophene in the polymer backbone can affect stepwise blue shift of the UV-vis absorption and better π-π stacking ability. When comparing with BT and TPD acceptor, polymers containing TPD unit showed about 40 nm blue shift of the UV absorption and 0.2 V deeper HOMO levels according to cyclic voltammetry measurement. Among them, polymer containing both TPD and BT shows best PCE of 3.0% with PC71BM in the presence of 1,8-octanedithiol.
    Finally, we targeted on synthesis of fully conjugated block copolymer (BCP) by ring-opening metathesis polymerization (ROMP). Novel conjugated cyclophanes comprising electron donating cyclopentadithiophene-vinylene and accepting dithienobenzothiadiazole-vinylene have been synthesized by McMurry coupling. ROMP of the acceptor monomer and the subsequent addition of the donor monomer allows the preparation of a fully conjugated BCP. The BCP exhibits multiple optical and electrochemical functions, giving wide range of light absorption from 300 to 700 nm.

    Contents Chapter 1 Conjugated polymers for application of organic electronics Introduction 14 1.1 Organic photovoltaic (OPV) 16 1.2 Organic field effect transistor (OFET) 20 1.3 Conjugated polymers 24 References 27 Chapter 2 Synthesis and device characteristics of cyclopentadithiophene-benzothiadiazole oligomers Introduction 30 2.1 Organic electronics of small molecules 30 Results and Discussion 33 2.2 Preparation of oligomers 33 2.3 Crystallographic structures 37 2.4 Morphological characteristics 40 X-ray diffraction 40 Atomic force microscopy 45 2.5 Optical, electrochemical, and thermal properties 46 2.6 Device characterization 49 OFET devices 49 OPV devices 50 Conclusion 52 References 53 Chapter 3 Palladium-catalyzed direct arylation polymerization for synthesis of low-bandgap conjugated polymers Introduction 55 3.1 Direct arylation 55 3.2 Polycondenzation of conjugated polymers 58 Results and Discussion 61 3.3 Synthesis and optimization of PCPDTBT 61 3.4 Characterization of PCPDTBT 68 1H NMR spectroscopies 68 MALDI-TOF mass spectroscopy 69 UV-vis spectroscopy 70 3.5 Synthesis of other low bandgap conjugated polymers 71 3.6 OPV characteristics 73 Conclusion 75 References 76 Chapter 4 Synthesis of CPDT based low bandgap conjugated polymers: facile control of optical and electronic properties and their photovoltaic characteristics Introduction 77 Results and Discussion 80 4.1 Preparation of materials 80 Monomer synthesis 80 Polymer synthesis 95 4.2 Optical properties 103 4.3 Electrochemical properties 106 4.4 OPV characteristics 108 Conclusion 110 References 111 Chapter 5 Cyclopentadithiophene-benzothiadiazole copolymers with various lengths of repeating unit; synthesis, optical and electrochemical properties and photovoltaic characteristics Introduction 112 Results and Discussion 114 5.1 Preparation of materials 114 Synthesis of monomers 114 Synthesis of polymers 125 5.2 Optical properties 130 5.3 Electrochemical properties 133 5.4 Device characteristics 137 SCLC device characteristics 137 OPV device characteristics 138 Conclusion 140 References 141 Chapter 6 Organic photovoltaics based on a cross linkable PCPDTBT analogue; synthesis, morphological studies, solar cell performance and enhanced lifetime Introduction 142 Results and Discussion 144 6.1 Preparation of materials and characterization 144 Monomer synthesis 144 Synthesis of polymers 148 1H NMR spectroscopies 150 6.2. FTIR and optical absorption spectra 152 Evidence of crosslinking and the effect of Heck coupling 152 Dependence of insolubility upon ratio of crosslinkable group 154 6.3 Electrical and optical analysis 155 Charge transport properties 155 OPV characteristics 157 6.4 Morphological characterization 161 Atomic force microscopy (AFM) 161 X-ray diffraction (XRD) 162 Grazing incidence small angle X-ray scattering (GISAXS) 163 Conclusion 165 References 166 Chapter 7 A donor-acceptor conjugated BCP of poly(arylenevinylene)s by ring-opening metathesis polymerization Introduction 167 7.1 Conjugated block copolymers 167 7.2 Ring-opening metathesis polymerization (ROMP) 169 Results and discussion 171 7.3 Synthesis and characterization 171 Monomers 171 Homopolymers 181 Block copolymers 185 7.4 Optical properties 188 7.5 Electrochemical properties 190 Conclusion 192 References 193 Chapter 8 Supporting information Experimental section for chapter 2 195 8.1 General methods 195 8.2 Synthesis of oligomers 196 8.3 1H and 13C and DEPT and 1H-1H NOESY NMR and ESI mass spectra 200 8.4 OFET devices 208 8.5 OPV devices 209 8.6 X-ray single crystallographic data 214 8.7 Other data 214 Experimental section for chapter 3 218 8.8 General methods 218 8.9 Synthesis of PCPDTBTs 219 8.10 Synthesis of related small molecules 222 8.11 Reactants, yield and characterization of other polymers 226 8.12 1H and 13C NMR spectra 227 8.13 Other data 235 Experimental section for chapter 4 238 8.14 General methods 238 8.15 Synthesis of monomers 239 8.16 Synthesis of polymers 242 Experimental section for chapter 5 254 8.17 General methods 254 8.18 Synthesis of monomers 255 8.19 Synthesis of polymers 258 Experimental section for chapter 6 262 8.20 General procedures 262 8.21 Synthesis of materials 263 8.22 GISAXS measurement 275 8.23 Fabrication of Space-Charge Limited Current (SCLC) devices 275 8.24 Fabrication of OPVs 276 8.25 Other data 278 Experimental section for chapter 7 280 8.26 General methods 280 8.27 Synthesis of materials 281 Synthesis of monomers 281 Synthesis of polymers 294 8.28 1H and 13C and 1H-13C HSQC NMR and ESIMS spectra 297 CPDT-based compounds 297 TBT-based compounds 315 Polymers 329 8.29 GPC traces 333 8.30 Crystallographic data 334

    [1] R. A. Wessling, J. Polym. Sci., Polym. Symp. (2nd edn.), 1985, 72, 55.
    [2] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Journal of the Chemical Society, Chemical Communications, 1977, 578.
    [3] a) C. N. Hoth, S. A. Choulis, P. Schilinsky, C. J. Brabec, Advanced Materials, 2007, 19, 3973; b) C. N. Hoth, P. Schilinsky, S. A. Choulis, C. J. Brabec, Nano Lett., 2008, 8, 2806; c) F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2009, 93, 394; d) J. Peet, M. L. Senatore, A. J. Heeger, G. C. Bazan, Adv. Mater., 2009, 21, 1521.
    [4] F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, Sol. Energy Mater. Sol. Cells, 2009, 93, 422.
    [5] F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2009, 93, 465.
    [6] a) J. Liu, L. Chen, S. Shao, Z. Xie, Y. Cheng, Y. Geng, L. Wang, X. Jing, F. Wang, J. Mater. Chem., 2008, 18, 319; b) G. T. Hwang, H. S. Son, J. K. Ku, B. H. Kim, J. Am. Chem. Soc., 2003, 125, 11241; c) A. Mori, A. Sekiguchi, K. Masui, T. Shimada, M. Horie, K. Osakada, M. Kawamoto, T. Ikeda, J. Am. Chem. Soc., 2003, 125, 1700; d) J. Yang, A. Dass, A.-M. M. Rawashdeh, C. Sotiriou-Leventis, M. J. Panzner, D. S. Tyson, J. D. Kinder, N. Leventis, Chem. Mater., 2004, 16, 3457; e) E. Kim, M. Koh, J. Ryu, S. B. Park, J. Am. Chem. Soc., 2008, 130, 12206.
    [7] a) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 1990, 347, 539; b) R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, Nature, 1999, 397, 121; c) T. Kugler, M. Lögdlund, W. R. Salaneck, Accounts of Chemical Research, 1999, 32, 225; d) U. Mitschke, P. Bäuerle, J. Mater. Chem., 2000, 10, 1471; e) N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Science, 2002, 295, 1506; f) A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Chem. Mater., 2004, 16, 4556; g) H. Yi, A. Iraqi, M. Stevenson, C. J. Elliott, D. G. Lidzey, Macromol. Rapid Commun., 2007, 28, 1155.
    [8] a) E. Menard, M. A. Meitl, Y. Sun, J. U. Park, D. J. Shir, Y. S. Nam, S. Jeon, J. A. Rogers, Chem. Rev., 2007, 107, 1117; b) J. Zaumseil, H. Sirringhaus, Chem. Rev., 2007, 107, 1296; c) A. R. Murphy, J. M. Frechet, Chem. Rev., 2007, 107, 1066; d) H. Sirringhaus, Adv. Mater., 2005, 17, 2411.
    [9] a) M. Heeney, C. Bailey, M. Giles, M. Shkunov, D. Sparrowe, S. Tierney, W. Zhang, I. McCulloch, Macromolecules, 2004, 37, 5250; b) E. Lim, B.-J. Jung, J. Lee, H.-K. Shim, J.-I. Lee, Y. S. Yang, L.-M. Do, Macromolecules, 2005, 38, 4531; c) I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, M. F. Toney, Nat. Mater., 2006, 5, 328; d) H. Sirringhaus, N. Tessler, R. H. Friend, Science, 1998, 280, 1741; e) H. Usta, G. Lu, A. Facchetti, T. J. Marks, J. Am. Chem. Soc., 2006, 128, 9034; f) L. Wang, M. H. Yoon, A. Facchetti, T. J. Marks, Adv. Mater., 2007, 19, 3252; g) A. Zen, P. Pingel, F. Jaiser, D. Neher, J. Grenzer, W. Zhuang, J. P. Rabe, A. Bilge, F. Galbrecht, B. S. Nehls, T. Farrell, U. Scherf, R. D. Abellon, F. C. Grozema, L. D. A. Siebbeles, Chem. Mater., 2007, 19, 1267.
    [10] a) A. Bilge, A. Zen, M. Forster, H. Li, F. Galbrecht, B. S. Nehls, T. Farrell, D. Neher, U. Scherf, J. Mater. Chem., 2006, 16, 3177; b) A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, Z. Bao, Nature, 2006, 444, 913; c) I. Doi, E. Miyazaki, K. Takimiya, Y. Kunugi, Chem. Mater., 2007, 19, 5230; d) H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, Nature, 2007, 445, 745; e) I. Osaka, G. Sauvé, R. Zhang, T. Kowalewski, R. D. McCullough, Adv. Mater., 2007, 19, 4160; f) M. J. Panzer, C. D. Frisbie, J. Am. Chem. Soc., 2007, 129, 6599; g) V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers, Science, 2004, 303, 1644; h) H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti, Nature, 2009, 457, 679.
    [11] a) E. Bundgaard, F. Krebs, Sol. Energy Mater. Sol. Cells, 2007, 91, 954; b) J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature, 1995, 376, 498; c) J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater., 2007, 6, 497; d) I. Riedel, E. von Hauff, J. Parisi, N. Martín, F. Giacalone, V. Dyakonov, Adv. Funct. Mater., 2005, 15, 1979; e) N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett., 1993, 62, 585; f) B. C. Thompson, Y. G. Kim, T. D. McCarley, J. R. Reynolds, J. Am. Chem. Soc., 2006, 128, 12714; g) G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 1995, 270, 1789.
    [12] a) K. M. Coakley, M. D. McGehee, Chem. Mater., 2004, 16, 4533; b) S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev., 2007, 107, 1324; c) F. J. Hoeben, P. Jonkheijm, E. W. Meijer, A. P. Schenning, Chem. Rev., 2005, 105, 1491; d) B. R. Saunders, M. L. Turner, Adv Colloid Interface Sci, 2008, 138, 1; e) M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater., 2006, 18, 789; f) H. Spanggaard, F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2004, 83, 125; g) X. Yang, J. Loos, Macromolecules, 2007, 40, 1353.
    [13] D. Wöhrle, D. Meissner, Adv. Mater., 1991, 3, 129.
    [14] C. W. Tang, Appl. Phys. Lett., 1986, 48, 183.
    [15] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 1992, 258, 1474.
    [16] Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev., 2009, 109, 5868.
    [17] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, C. L. Wilkins, J. Org. Chem., 1995, 60, 532.
    [18] a) M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, R. A. J. Janssen, Angew. Chem. Int. Ed., 2003, 42, 3371; b) Y. Yao, C. Shi, G. Li, V. Shrotriya, Q. Pei, Y. Yang, Appl. Phys. Lett., 2006, 89, 153507.
    [19] F. Ebisawa, T. Kurokawa, S. Nara, J. Appl. Phys., 1983, 54, 3255.
    [20] a) H. Koezuka, A. Tsumura, T. Ando, Synth. Met., 1987, 18, 699; b) A. Tsumura, H. Koezuka, T. Ando, Synth. Met., 1988, 25, 11.
    [21] A. Facchetti, M. H. Yoon, T. J. Marks, Adv. Mater., 2005, 17, 1705.
    [22] a) G. Horowitz, J. Mater. Res., 2004, 19, 1946; b) C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, K. R. Mann, Chem. Mater., 2004, 16, 4436.
    [23] A. J. Heeger, Chem. Soc. Rev., 2010, 39, 2354.
    [24] M. T. Dang, L. Hirsch, G. Wantz, Adv. Mater., 2011, 23, 3597.
    [25] H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, Y. Yoon do, R. Graf, W. Pisula, H. W. Spiess, K. Mullen, J. Am. Chem. Soc., 2011, 133, 2605.
    [26] a) J. Kettle, M. Horie, L. A. Majewski, B. R. Saunders, S. Tuladhar, J. Nelson, M. L. Turner, Sol. Energy Mater. Sol. Cells, 2011, 95, 2186; b) J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc., 2008, 130, 3619.
    [27] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photon., 2009, 3, 649.
    [28] N. Blouin, A. Michaud, M. Leclerc, Adv. Mater., 2007, 19, 2295.
    [1] a) S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev., 2007, 107, 1324; b) A. J. Heeger, Chem. Soc. Rev., 2010, 39, 2354; c) H. Klauk, Chem. Soc. Rev., 2010, 39, 2643; d) A. Pron, P. Gawrys, M. Zagorska, D. Djurado, R. Demadrille, Chem. Soc. Rev., 2010, 39, 2577; e) X. W. Zhan, D. B. Zhu, Polym. Chem., 2010, 1, 409.
    [2] M. T. Lloyd, J. E. Anthony, G. G. Malliaras, Mater. Today, 2007, 10, 34.
    [3] a) S. Allard, M. Forster, B. Souharce, H. Thiem, U. Scherf, Angew. Chem. Int. Ed., 2008, 47, 4070; b) M. Mas-Torrent, C. Rovira, Chem. Soc. Rev., 2008, 37, 827.
    [4] K. Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, P. Bäuerle, Adv. Mater., 2006, 18, 2872.
    [5] a) A. B. Tamayo, X. D. Dang, B. Walker, J. Seo, T. Kent, T. Q. Nguyen, Appl. Phys. Lett., 2009, 94, 103301; b) B. Walker, A. B. Tomayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, T. Q. Nguyen, Adv. Funct. Mater., 2009, 19, 3063.
    [6] H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, Y. Yoon do, R. Graf, W. Pisula, H. W. Spiess, K. Mullen, J. Am. Chem. Soc., 2011, 133, 2605.
    [7] a) M. Horie, L. A. Majewski, M. J. Fearn, C.-Y. Yu, Y. Luo, A. Song, B. R. Saunders, M. L. Turner, J. Mater. Chem., 2010, 20, 4347; b) M. Horie, J. Kettle, C. Y. Yu, L. A. Majewski, S. W. Chang, J. Kirkpatrick, S. M. Tuladhar, J. Nelson, B. R. Saunders, M. L. Turner, J. Mater. Chem., 2012, 22, 381.
    [8] a) A. Mori, A. Sekiguchi, K. Masui, T. Shimada, M. Horie, K. Osakada, M. Kawamoto, T. Ikeda, J. Am. Chem. Soc., 2003, 125, 1700; b) M. Lafrance, C. N. Rowley, T. K. Woo, K. Fagnou, J. Am. Chem. Soc., 2006, 128, 8754; c) L. C. Campeau, M. Bertrand-Laperle, J. P. Leclerc, E. Villemure, S. Gorelsky, K. Fagnou, J. Am. Chem. Soc., 2008, 130, 3276; d) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed., 2009, 48, 9792; e) Y. Fujinami, J. Kuwabara, W. Lu, H. Hayashi, T. Kanbara, ACS Macro Lett., 2012, 1, 67.
    [9] J. Kettle, M. Horie, L. A. Majewski, B. R. Saunders, S. Tuladhar, J. Nelson, M. L. Turner, Sol. Energ Mat. Sol. C., 2011, 95, 2186.
    [10] a) S. A. Jenekhe, L. Lu, M. M. Alam, Macromolecules, 2001, 34, 7315; b) S. Yamaguchi, T. Shirasaka, S. Akiyama, K. Tamao, J. Am. Chem. Soc., 2002, 124, 8816; c) W. C. Wu, C. L. Liu, W. C. Chen, Polymer, 2006, 47, 527; d) G. Signore, R. Nifosi, L. Albertazzi, B. Storti, R. Bizzarri, J. Am. Chem. Soc., 2010, 132, 1276; e) G. L. Gibson, T. M. McCormick, D. S. Seferos, J. Am. Chem. Soc., 2012, 134, 539.
    [11] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater., 2006, 18, 789.
    [12] L. T. Dou, J. B. You, J. Yang, C. C. Chen, Y. J. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Nat. Photon., 2012, 6, 180.
    [1] K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed., 2005, 44, 4442.
    [2] L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed., 2009, 48, 9792.
    [3] a) M. Lafrance, C. N. Rowley, T. K. Woo, K. Fagnou, J. Am. Chem. Soc., 2006, 128, 8754; b) D. R. Stuart, K. Fagnou, Science, 2007, 316, 1172; c) L. C. Campeau, M. Bertrand-Laperle, J. P. Leclerc, E. Villemure, S. Gorelsky, K. Fagnou, J. Am. Chem. Soc., 2008, 130, 3276; d) D. Lapointe, K. Fagnou, Chem. Lett., 2010, 39, 1118.
    [4] M. Lafrance, K. Fagnou, J. Am. Chem. Soc., 2006, 128, 16496.
    [5] Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber, C. Brabec, Macromolecules, 2007, 40, 1981.
    [6] M. Horie, L. A. Majewski, M. J. Fearn, C.-Y. Yu, Y. Luo, A. Song, B. R. Saunders, M. L. Turner, J. Mater. Chem., 2010, 20, 4347.
    [7] a) Q. Wang, R. Takita, Y. Kikuzaki, F. Ozawa, J. Am. Chem. Soc., 2010, 132, 11420; b) P. Berrouard, A. Najari, A. Pron, D. Gendron, P. O. Morin, J. R. Pouliot, J. Veilleux, M. Leclerc, Angew. Chem. Int. Ed., 2012, 51, 2068; c) A. Facchetti, L. Vaccaro, A. Marrocchi, Angew. Chem. Int. Ed., 2012, 51, 3520; d) Q. Wang, M. Wakioka, F. Ozawa, Macromol. Rapid Commun., 2012, 33, 1203.
    [8] W. Lu, J. Kuwabara, T. Kanbara, Macromolecules, 2011, 44, 1252.
    [9] a) W. Lu, J. Kuwabara, T. Iijima, H. Higashimura, H. Hayashi, T. Kanbara, Macromolecules, 2012, 45, 4128; b) A. Najari, P. Berrouard, C. Ottone, M. Boivin, Y. P. Zou, D. Gendron, W. O. Caron, P. Legros, C. N. Allen, S. Sadki, M. Leclerc, Macromolecules, 2012, 45, 1833.
    [10] S. Kowalski, S. Allard, U. Scherf, ACS Macro Lett., 2012, 1, 465.
    [11] a) J. Kettle, M. Horie, L. A. Majewski, B. R. Saunders, S. Tuladhar, J. Nelson, M. L. Turner, Sol. Energy Mater. Sol. Cells, 2011, 95, 2186; b) M. Horie, J. Kettle, C. Y. Yu, L. A. Majewski, S. W. Chang, J. Kirkpatrick, S. M. Tuladhar, J. Nelson, B. R. Saunders, M. L. Turner, J. Mater. Chem., 2012, 22, 381; c) J. Kettle, H. Waters, M. Horie, S. W. Chang, J. Phys. D: Appl. Phys., 2012, 45, 125102.
    [12] Y. Fujinami, J. Kuwabara, W. Lu, H. Hayashi, T. Kanbara, ACS Macro Lett., 2012, 1, 67.
    [1] M. Horie, J. Kettle, C.-Y. Yu, L. A. Majewski, S.-W. Chang, J. Kirkpatrick, S. M. Tuladhar, J. Nelson, B. R. Saunders, M. L. Turner, J. Mater. Chem., 2012, 22, 381.
    [2] P. M. Beaujuge, H. N. Tsao, M. R. Hansen, C. M. Amb, C. Risko, J. Subbiah, K. R. Choudhury, A. Mavrinskiy, W. Pisula, J. L. Bredas, F. So, K. Mullen, J. R. Reynolds, J. Am. Chem. Soc., 2012, 134, 8944.
    [3] a) X. Guo, H. Xin, F. S. Kim, A. D. T. Liyanage, S. A. Jenekhe, M. D. Watson, Macromolecules, 2011, 44, 269; b) Z. Li, S.-W. Tsang, X. Du, L. Scoles, G. Robertson, Y. Zhang, F. Toll, Y. Tao, J. Lu, J. Ding, Adv. Funct. Mater., 2011, 21, 3331; c) C. M. MacNeill, E. D. Peterson, R. E. Noftle, D. L. Carroll, R. C. Coffin, Synth. Met., 2011, 161, 1137.
    [4] S. W. Chang, H. Waters, J. Kettle, Z. R. Kuo, C. H. Li, C. Y. Yu, M. Horie, Macromol. Rapid Commun., 2012, 33, 1927.
    [5] C.-H. Li, J. Kettle, M. Horie, Mater. Chem. Phys., 2014, 144, 519.
    [6] J. Kuwabara, K. Yamazaki, T. Yamagata, W. Tsuchida, T. Kanbara, Polym. Chem., 2015, 6, 891.
    [7] J. Kettle, M. Horie, L. A. Majewski, B. R. Saunders, S. Tuladhar, J. Nelson, M. L. Turner, Sol. Energy Mater. Sol. Cells, 2011, 95, 2186.
    [1] M. Horie, J. Kettle, C.-Y. Yu, L. A. Majewski, S.-W. Chang, J. Kirkpatrick, S. M. Tuladhar, J. Nelson, B. R. Saunders, M. L. Turner, J. Mater. Chem., 2012, 22, 381.
    [2] J. C. Bijleveld, M. Shahid, J. Gilot, M. M. Wienk, R. A. J. Janssen, Adv. Funct. Mater., 2009, 19, 3262.
    [3] J. Kuwabara, K. Yamazaki, T. Yamagata, W. Tsuchida, T. Kanbara, Polym. Chem., 2015, 6, 891.
    [4] S.-W. Chang, H. Waters, J. Kettle, M. Horie, Org. Electron., 2012, 13, 2967.
    [5] J. Kettle, M. Horie, L. A. Majewski, B. R. Saunders, S. Tuladhar, J. Nelson, M. L. Turner, Sol. Energy Mater. Sol. Cells, 2011, 95, 2186.
    [6] S. W. Chang, H. Waters, J. Kettle, Z. R. Kuo, C. H. Li, C. Y. Yu, M. Horie, Macromol. Rapid Commun., 2012, 33, 1927.
    [1] a) K. X. Steirer, P. F. Ndione, N. E. Widjonarko, M. T. Lloyd, J. Meyer, E. L. Ratcliff, A. Kahn, N. R. Armstrong, C. J. Curtis, D. S. Ginley, J. J. Berry, D. C. Olson, Adv. Energy Mater., 2011, 1, 813; b) J. Kettle, H. Waters, M. Horie, S. W. Chang, J. Phys. D: Appl. Phys., 2012, 45, 125102.
    [2] a) N. M. R. L. Moro, R. J. Visser, J. A. Hauch and, O. P. V. C. Klepek, Proc. SPIE, 2006, 6334, 63340M; b) S. Sarkar, J. H. Culp, J. T. Whyland, M. Garvan, V. Misra, Org. Electron., 2010, 11, 1896.
    [3] D. M. de Leeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, Synth. Met., 1997, 87, 53.
    [4] a) G. Griffini, J. D. Douglas, C. Piliego, T. W. Holcombe, S. Turri, J. M. Frechet, J. L. Mynar, Adv. Mater., 2011, 23, 1660; b) H. J. Kim, A. R. Han, C. H. Cho, H. Kang, H. H. Cho, M. Y. Lee, J. M. J. Frechet, J. H. Oh, B. J. Kim, Chem. Mater., 2012, 24, 215.
    [5] a) C. H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc, R. M. Liang, C. S. Hsu, J. Am. Chem. Soc., 2010, 132, 4887; b) Y. J. Cheng, C. H. Hsieh, P. J. Li, C. S. Hsu, Adv. Funct. Mater., 2011, 21, 1723.
    [6] J. Kettle, M. Horie, L. A. Majewski, B. R. Saunders, S. Tuladhar, J. Nelson, M. L. Turner, Sol. Energy Mater. Sol. Cells, 2011, 95, 2186.
    [7] T. Fukuhara, Y. Shibasaki, S. Ando, M. Ueda, Polymer, 2004, 45, 843.
    [8] I. R. Gearba, C. Y. Nam, R. Pindak, C. T. Black, Appl. Phys. Lett., 2009, 95, 173307.
    [9] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc., 2008, 130, 3619.
    [10] M. Horie, J. Kettle, C. Y. Yu, L. A. Majewski, S. W. Chang, J. Kirkpatrick, S. M. Tuladhar, J. Nelson, B. R. Saunders, M. L. Turner, J. Mater. Chem., 2012, 22, 381.
    [11] W. R. Wu, U. S. Jeng, C. J. Su, K. H. Wei, M. S. Su, M. Y. Chiu, C. Y. Chen, W. B. Su, C. H. Su, A. C. Su, ACS Nano., 2011, 5, 6233.
    [1] a) A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev., 2009, 109, 897; b) J. J. Intemann, E. S. Hellerich, B. C. Tlach, M. D. Ewan, C. A. Barnes, A. Bhuwalka, M. Cai, J. Shinar, R. Shinar, M. Jeffries-El, Macromolecules, 2012, 45, 6888; c) M. Zhu, C. Yang, Chem. Soc. Rev., 2013, 42, 4963.
    [2] a) J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater., 2007, 6, 497; b) A. J. Heeger, Chem. Soc. Rev., 2010, 39, 2354; c) X. W. Zhan, D. B. Zhu, Polym. Chem., 2010, 1, 409; d) S. Beaupré, M. Leclerc, J. Mater. Chem. A, 2013, 1, 11097; e) D. H. Wang, J. K. Kim, J. H. Seo, I. Park, B. H. Hong, J. H. Park, A. J. Heeger, Angew. Chem. Int. Ed., 2013, 52, 2874; f) J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang, Nat. Commun., 2013, 4, 1446; g) W. R. Cao, J. G. Xue, Energy Environ. Sci., 2014, 7, 2123; h) K. R. Graham, C. Cabanetos, J. P. Jahnke, M. N. Idso, A. El Labban, G. O. Ngongang Ndjawa, T. Heumueller, K. Vandewal, A. Salleo, B. F. Chmelka, A. Amassian, P. M. Beaujuge, M. D. McGehee, J. Am. Chem. Soc., 2014, 136, 9608.
    [3] a) A. Pron, P. Gawrys, M. Zagorska, D. Djurado, R. Demadrille, Chem. Soc. Rev., 2010, 39, 2577; b) H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, Y. Yoon do, R. Graf, W. Pisula, H. W. Spiess, K. Mullen, J. Am. Chem. Soc., 2011, 133, 2605; c) H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, Y. Liu, Adv. Mater., 2012, 24, 4618; d) I. Kang, H. J. Yun, D. S. Chung, S. K. Kwon, Y. H. Kim, J. Am. Chem. Soc., 2013, 135, 14896.
    [4] a) T. Yokozawa, A. Yokoyama, Chem. Rev., 2009, 109, 5595; b) T. Yokozawa, H. Kohno, Y. Ohta, A. Yokoyama, Macromolecules, 2010, 43, 7095; c) T. Yokozawa, R. Suzuki, M. Nojima, Y. Ohta, A. Yokoyama, Macromol. Rapid Commun., 2011, 32, 801.
    [5] a) U. Scherf, A. Gutacker, N. Koenen, Acc. Chem. Res., 2008, 41, 1086; b) U. Scherf, S. Adamczyk, A. Gutacker, N. Koenen, Macromol. Rapid Commun., 2009, 30, 1059; c) M. He, F. Qiu, Z. Lin, J. Mater. Chem., 2011, 21, 17039; d) R. Verduzco, I. Botiz, D. L. Pickel, S. M. Kilbey, K. L. Hong, E. Dimasi, S. B. Darling, Macromolecules, 2011, 44, 530; e) C. W. Chu, M. Horie, Asian. J. Org. Chem., 2013, 2, 838; f) M. J. Robb, S. Y. Ku, C. J. Hawker, Adv. Mater., 2013, 25, 5686; g) J. Wang, T. Higashihara, Polym. Chem., 2013, 4, 5518; h) P. Willot, S. Govaerts, G. Koeckelberghs, Macromolecules, 2013, 46, 8888; i) A. Yassar, L. Miozzo, R. Gironda, G. Horowitz, Prog. Polym. Sci., 2013, 38, 791; j) T. Erdmann, J. Back, R. Tkachov, A. Ruff, B. Voit, S. Ludwigs, A. Kiriy, Polym. Chem., 2014, 5, 5383.
    [6] a) Y. Zhang, K. Tajima, K. Hirota, K. Hashimoto, J. Am. Chem. Soc., 2008, 130, 7812; b) Y. Zhang, K. Tajima, K. Hashimoto, Macromolecules, 2009, 42, 7008; c) C. R. Bridges, H. Yan, A. A. Pollit, D. S. Seferos, ACS Macro Lett., 2014, 3, 671; d) Y. Chen, H. J. Cui, L. S. Li, Z. Y. Tian, Z. Y. Tang, Polym. Chem., 2014, 5, 4441; e) P. Willot, D. Moerman, P. Leclere, R. Lazzaroni, Y. Baeten, M. Van der Auweraer, G. Koeckelberghs, Macromolecules, 2014, 47, 6671; f) A. A. Pollit, C. R. Bridges, D. S. Seferos, Macromol. Rapid Commun., 2015, 36, 65.
    [7] a) M. Sommer, H. Komber, S. Huettner, R. Mulherin, P. Kohn, N. C. Greenham, W. T. S. Huck, Macromolecules, 2012, 45, 4142; b) C. Guo, Y. H. Lin, M. D. Witman, K. A. Smith, C. Wang, A. Hexemer, J. Strzalka, E. D. Gomez, R. Verduzco, Nano. Lett., 2013, 13, 2957; c) K. Johnson, Y. S. Huang, S. Huettner, M. Sommer, M. Brinkmann, R. Mulherin, D. Niedzialek, D. Beljonne, J. Clark, W. T. Huck, R. H. Friend, J. Am. Chem. Soc., 2013, 135, 5074.
    [8] S. R. Forrest, Nature, 2004, 428, 911.
    [9] a) R. H. Grubbs, Tetrahedron, 2004, 60, 7117; b) R. H. Grubbs, Adv. Synth. Catal., 2007, 349, 34; c) U. H. Bunz, D. Maker, M. Porz, Macromol. Rapid Commun., 2012, 33, 886.
    [10] a) C. Y. Yu, M. L. Turner, Angew. Chem. Int. Ed., 2006, 45, 7797; b) A. M. Spring, C. Y. Yu, M. Horie, M. L. Turner, Chem. Commun., 2009, 2676.
    [11] a) C. Y. Yu, J. W. Kingsley, D. G. Lidzey, M. L. Turner, Macromol. Rapid Commun., 2009, 30, 1889; b) C.-Y. Yu, M. Horie, A. M. Spring, K. Tremel, M. L. Turner, Macromolecules, 2010, 43, 222.
    [12] M. Horie, I. W. Shen, S. M. Tuladhar, H. Leventis, S. A. Haque, J. Nelson, B. R. Saunders, M. L. Turner, Polymer, 2010, 51, 1541.
    [13] C. Y. Yu, M. Helliwell, J. Raftery, M. L. Turner, Chemistry, 2011, 17, 6991.
    [14] S.-W. Chang, H. Waters, J. Kettle, M. Horie, Org. Electron., 2012, 13, 2967.
    [15] L. Biniek, S. Fall, C. L. Chochos, D. V. Anokhin, D. A. Ivanov, N. Leclerc, P. Leveque, T. Heiser, Macromolecules, 2010, 43, 9779.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE