簡易檢索 / 詳目顯示

研究生: 錢偉德
Wei-De Chien
論文名稱: 應用於 Pyramid-based Near-VoD 服務上之通用頻道調整機制
A Widely-Applicable Channel Transition Scheme for Pyramid-Based Near-VoD Services
指導教授: 王家祥
Jia-Shung Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 48
中文關鍵詞: 週期性廣播頻道調整無縫
外文關鍵詞: Periodic broadcasting, channel transition, seamless
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在透過網路播映熱門影片的服務上,週期性廣播協定是一項高效能的技術。它可以在伺服器傳送影片至大量客戶端時減少頻寬的需求。現存的週期性廣播協定中,Pyramid-based 協定因其簡單設計及公式化的操作方式而易於實做。其他如 Pagoda-based 或 Harmonic-based 協定則過於特殊或理論化而難以實際運用。
    在本篇論文中,我們將針對週期性廣播協定中的頻道調整機制進行探討。頻道調整機制可協助伺服器在提供週期性廣播服務時,針對各影片的熱門程度,增減其使用的頻道,以便於對頻寬資源運用進行最佳化。熱門影片分配較多頻道,可縮短播放等待時間(startup latency);反之,使用較少頻道的影片播放等待時間較長。這種頻道調整機制必須是「無縫」(seamless)的,亦即在頻道調整的過程中,使用者的收播不可被中斷或干擾。現存的週期性廣播協定頻道調整機制包括了 Seamless Fast Broadcasting (SFB)、Seamless Staircase Broadcasting (SSB)及 Flexible Periodic Broadcasting (FPB)。這些頻道調整機制都是針對特定週期性廣播協定而設計,前兩者甚至必須對原始廣播協定進行修改。這些機制不但較為複雜,不易套用於其他的廣播協定,且有可能降低原始廣播協定的效能。我們在觀察數種Pyramid-based 週期性廣播協定之後,發現這些協定在使用者緩衝記憶體(client buffer)的運用上具備共通的特性。基於此項特性,我們提出了一套通用性的無縫頻道調整機制,稱為 Stairway Channel Transition(SWCT)機制。在本篇論文中,我們提出的SWCT 機制並非針對單一的廣播協定而設計,它可以適用於任何具有規律性播放配置模式,且具備可避免頻道重疊條件的Pyramid-based週期性廣播協定。事實上,SWCT 可以應用於現今大部分的週期性廣播協定,而我們在文中分析驗證了其中四種較受歡迎的協定。相較於現有的SFB、SSB及FPB機制,SWCT更有彈性,並且不需要修改原本週期性廣播協定的架構,也不需要額外的緩衝記憶體,因此不會降低該協定的效能。


    Periodic broadcasting is known as an efficient technique to deliver popular videos by reducing bandwidth requirement for transmitting streaming videos to simultaneous viewers. Most of the existing periodic broadcasting protocols can be recognized as Pyramid-based, which possesses regular behavior as function (mathematical formula) thus favored by high practicability. Others are designed by somewhat ad hoc or optimization procedures, such as Pagoda-based or Harmonic protocols.
    In this dissertation, the channel transition problem, which is a noticed issue to be concerned about the variability of popularity of video in periodic broadcasting, is addressed. The channel transition schemes modify the channel allocation of a video by its hotness, thus optimize the bandwidth utilization. A hot video possesses more broadcast channels and shorter startup latency; otherwise, a video with fewer channels have longer startup latency. This kind of transition scheme should be “seamless,” i.e. the receptions of clients should not be interrupted or interfered. Present channel transition schemes such as Seamless Fast Broadcasting (SFB), Seamless Staircase Broadcasting (SSB) and Flexible Periodic Broadcasting (FPB) are dedicated to specific broadcasting protocols. The SFB and SSB even modify the original protocols. These schemes are rather complicated and difficult to apply to other protocols. Further more, they possibly decrease the performance of the original protocols. After the observation of several Pyramid-based broadcasting protocols, we found the common characteristic of the client buffer utilization. Based on the characteristic, we proposed a generic seamless channel transition scheme for pyramid-based broadcasting protocols, named as the Stairway Channel Transition (SWCT) scheme. The SWCT is applicable to any Pyramid-based protocol which conforms to our coordinated condition. Compared to the existing channel transition schemes, our design possesses more flexibility, while does not reduce the performance of the original protocols.

    中文摘要 i Abstract vi Table of Contents viii List of Figures ix List of Tables and Equations x Chapter 1 Introduction 1 Chapter 2 Related Works 3 2.1 Periodic Broadcasting Protocols 3 2.1.1 The Pyramid-based broadcasting protocols 4 2.1.2 The Harmonic-based broadcasting protocols 8 2.1.3 The Pagoda-based broadcasting protocols 9 2.1.4 The Staircase Broadcasting protocol 10 2.2 Channel Transition Schemes: SFB, SSB and FPB 11 2.2.1 The Seamless Fast Broadcasting protocol (SFB) 12 2.2.2 The Seamless Staircase Broadcasting protocol (SSB) 14 2.2.3 The Flexible Periodic Broadcasting protocol (FPB) 17 Chapter 3 The Stairway Channel Transition Scheme 19 3.1 Concepts and Definitions 19 3.2 SWCT: The Main Algorithm 21 3.3 SWCT: The Simplified Algorithm 24 3.4 The Stepladder Broadcasting Protocol 27 3.5 Buffer Requirement Analysis 27 Chapter 4 Case Analysis: SWCT on FB, EMPB and Skyscraper Protocols 32 4.1 SWCT on Fast Broadcasting 32 4.2 SWCT on EMPB 34 4.3 SWCT on Skyscraper Broadcasting 36 Chapter 5 Simulation Results and Discussions 43 5.1 Startup Latency vs. Client Buffer Requirement 43 5.2 Channel Release Delay 43 Chapter 6 Conclusion 46 References 47

    [1] S. Viswanathan and T. Imielinski, “Metropolitan area video-on demand service using pyramid broadcasting,” IEEE Multimedia Syst., vol. 4, pp. 197-208, 1996.
    [2] L.-S. Juhn and L.-M. Tseng, “Fast data broadcasting and receiving scheme for popular video service,” IEEE Trans. Broadcasting, vol. 44, no. 1, pp. 100-105, Mar. 1998.
    [3] K.-A. Hua and S. Sheu, “Skyscraper broadcasting: a new broadcasting scheme for metropolitan video-on-demand systems,” in Proc. ACM SIGCOMM, Sep. 1997.
    [4] L.-S. Juhn and L.-M. Tseng, “Staircase data broadcasting and receiving scheme for hot video services,” IEEE Trans. Consumer Electronics, vol. 43, pp. 1110-1117, Nov 1997.
    [5] L.-S. Juhn and L.-M. Tseng, “Harmonic broadcasting for video-on-demand service,” IEEE Trans. Broadcasting, vol. 43, no. 3, pp. 268-271, Sep. 1997.
    [6] J. F. Paris, S.W. Carter, and D. D. E. Long, “A hybrid broadcasting protocol for video on demand,” in Proc. 1999 Multimedia Computing and Networking Conference, Jan. 1999.
    [7] Y.-C. Tseng, M.-H. Yang, C.-M. Hsieh, W. H. Liao, and J. P. Sheu, “Data broadcasting and seamless channel transition for highly demanded videos,” IEEE Trans. Communications, vol. 49, no. 5, May 2001.
    [8] Y.-C. Tseng, Y.-C. Chueh, J.-P. Sheu, “Seamless channel transition for the staircase video broadcasting scheme,” IEEE/ACM Trans. Networking, vol. 12, no. 3, June 2004.
    [9] J. F. P□ris, S. W. Carter, and D. D. E. Long. “A Hybrid broadcasting protocol for video on demand.” Proc. 1999 Multimedia Computing and Networking Conference, pp 317-326, Jan. 1999.
    [10] H.-S. Ma, and T.-P. To, and P.-K. Lun, “Enhanced mirrored-pyramid broadcasting for video-on-demand delivery,” in Proc. 2000 IEEE APCCAS, pp.875-878, 2000.
    [11] W.-D. Chien, Y.-S. Yeh, and J.-S. Wang, “Practical Channel Transition for Near-VOD Services,” in Proc. International Conference on Multimedia and Expo 2004 (ICME’04), 2004.
    [12] W.-D. Chien, K.-C. Yang, and J.-S. Wang, “Seamless Channel Transition for Pyramid-based Near-VoD Services,” in Proc. International Conference on Multimedia and Expo 2005 (ICME’05), 2005.
    [13] Y. Guo, L. Gao, D. Towsley, and S. Sen, “Smooth Workload Adaptive Broadcast,” IEEE Trans. Multimedia, vol. 6, no. 2, pp. 387-395, Apr 2004.
    [14] W.-D. Chien, Y.-S. Yeh, and J.-S. Wang, “Practical Channel Transition for Near-VOD Services,” IEEE Trans. Broadcasting, vol. 51, no. 3, pp. 360-365, Sep. 2005.
    [15] A. Mahanti, D. L. Eager, M. K. Vernon, and D. J. Sunsaram-Stukel, “Scalable On-Demand Media Streaming With Packet Loss Recovery,” IEEE/ACM Trans. Networking, vol 11, no. 2, pp. 195-209, Apr. 2003.
    [16] J. W. Byers, M. Luby, and M. Mitzenmacher, “A Digital Fountain Approach to Asynchronous Reliable Multicast,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 8, pp.1528-1540, Oct. 2002.
    [17] W.-D. Chien, and J.-S. Wang, “A Widely-Applicable Channel Transition Scheme for Pyramid-Based Near-VoD Services,” in Proc. International Conference on Communications 2006 (ICC’06), 2006.
    [18] L. S Juhn and L. M Tseng, “Enhanced harmonic data broadcasting and receiving scheme for popular video service,” IEEE Trans. Consumer Electronics, Vol. 44, pp. 343-346, Mar. 1998.
    [19] J.-F. P□ris, S. W. Carter, and D. D. E. Long. “Efficient Broadcasting Protocols for Video on Demand.” Proc. 6th International Symposium on Modeling, Analysis and Simulation of Computer and Networking Conference, pp 127-132, July 1998.
    [20] J. F. Paris, “A simple low-bandwidth broadcasting protocol for video-on-demand,” in Proc. 8th International Conference on Computer Communications and Networks, Oct. 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE