研究生: |
吳珈瑜 Wu, Chia Yu |
---|---|
論文名稱: |
微型化光電致動式細菌分選儀 A Miniaturized Photoelectric-Actuated Bacterial Sorter |
指導教授: |
劉承賢
Liu, Cheng Hsien |
口試委員: |
徐琅
Hsu, Long 張晃猷 Chang, Hwan You 周莉芳 Chou, Li Fang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 細菌 、介電泳力 、光電鑷夾 、二次流 |
外文關鍵詞: | Bacteria, Dielectrophoresis (DEP), Optoelectronic tweezers (OET), Secondary flow |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細菌廣泛的充斥於我們的生活中,人體身上即有非常多的細菌,有時在體內及表皮上的細菌總數約是人體細胞總數的10倍。細菌是許多疾病的病原體,例如:大腸桿菌、金黃葡萄球菌會造成膀胱炎、腹膜炎、食物中毒等情況,為了治療這些疾病,在醫療研究方面會先取得檢體,針對特定的細菌進行研究與分析。通常,不同的細菌會群聚在一起,因此,取得的檢體中往往存在多種不同的細菌,為了分析這些特定的細菌,必須先將細菌分選出來,才可針對這些細菌作分析與研究。較常被用來做分選的大型儀器有使用離心機、流式細胞儀器等等。隨著微機電系統技術的成熟,將傳統大型儀器微型化是近年來主要的發展趨勢,因此本研究針對如何分選檢體中的細菌,設計一微型化光電致動式細菌分選系統。
在本研究中,提出利用光電鑷夾(Optoelectronic tweezers, OET)與正介電泳力(positive Dielectrophoresis, p-DEP)為兩種主要技術進行細菌分選,利用正介電泳力操控細菌。微微體晶片設計上,在前端加上具混合功能的結構設計,讓檢體與DEP緩衝溶液可以充分混合均勻,使細菌能以正介電泳力進行操控。在混合區之後,為集中排列區域,讓細菌可以藉由魚骨型的高矮結構在水平與高度上都達到一顆一顆集中排列的效果,約85%成功達到集中排列一直線的成果。在分選區,整合光電鑷夾技術作可移動式的電極位置,藉由使用上下兩片導電的ITO玻璃,下層的ITO玻璃旋塗一層光導電材料TiOPc,此材料不照光時為絕緣體,只有在照到紅色光波長約700-870nm時才會轉變為導電狀態,因此可藉由照射不同的光圖案產生可移動式電極,進而可以透過正介電泳力方式隨意改變不同的電場強度位置,驅動細菌移動。本研究的目的在發展微型化、低成本、可拋棄式、低樣品消耗之細菌分選微系統晶片,避免人工繁複的操作與檢體的浪費等問題,而達到省時、省力、省成本之效益。
Bacteria exist in our daily environment widely. There are a lot of bacteria in our body. The number of bacteria in the body and the skin is about 10 times larger than the human cells. Bacteria are pathogens of many diseases such as E. coli and Staphylococcus aureus. These lead to disease, causing cystitis, peritonitis, food poisoning and so on. For treating diseases, we need to obtain a specimen to analyze. Generally, different kinds of bacteria cluster together. Therefore, we need to sort the bacteria from the specimen for analysis and study. Owing to the well-development in MEMS technology, to miniaturize the traditional large-scale equipment is the main trends. In this master study, a miniaturized photoelectric-actuated microsystem for bacteria sorting is my main research focus.
In this study, Optoelectronic tweezers and positive dielectrophoresis (p-DEP) are two of the main techniques to be utilized for bacteria sorting. The p-DEP force is used to manipulate bacteria. For the microfluidic chip design, the hybrid structure is also integrated at the front end for mixing the specimen and the dielectrophoresis buffer to make bacteria be manipulated by using p-DEP force. After mixing, the unsymmetrical herringbone narrow-gap structure is used to focus the bacteria one by one in a line, and the efficiency of the centralized arrangement over 85%. In the sorting area, Optoelectronic tweezers (OET) is integrated in to make mobile electrode pattern. We use two ITO glasses to form both top cover and bottom substrate. The bottom ITO glass substrate is spin-coated with a photoconductive material named TiOPc (Titanyl Phthalocyanine). When irradiated with a light source of red wavelengths about 700-870 nm, this TiOPc material would become conductive. Therefore, we use different light pattern to induce mobile electrodes to guide desired bacteria to specific direction via p-DEP force. Through this master studies, my goals are to develop miniaturized, low-cost, disposable, low-sample-consumption bacteria sorting microsystem chip which avoids complicated operation and minimizes the waste of the specimen.
[1] S. Haeberle and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications," Lab on a Chip, vol. 7, pp. 1094-1110, 2007.
[2] K. Todar. The Growth of Bacterial Populations [Online].
Available: http://textbookofbacteriology.net/growth_3.html
[3] N. Thompson (2015, May 18). Four Conditions for Bacterial Growth [Online] Available:http://www.livestrong.com/article/126073-four-conditions-bacterial-growth/
[4] Wikipedia. Escherichia coli [Online].
Available: https://zh.wikipedia.org/wiki/%E5%A4%A7%E8%85%B8%E6%A1%BF%E8%8F%8C.
[5] P. Singleton, Bacteria in Biology, Biotechnology and Medicine, 6th ed. Wiley, 1999. [6] Wikipedia. Staphylococcus aureus [Online].
Available: https://en.wikipedia.org/wiki/Staphylococcus_aureus.
[7] J. Kluytmans, A. vanBelkum, and H. Verbrugh, "Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks," Clinical Microbiology Reviews, vol. 10, pp. 505-&, Jul, 1997.
[8] S. Fields and M. Johnston, "Whither model organism research," Science, vol. 307, pp. 1885-1886, Mar, 2005.
[9] Centrifuge[Online]. Available: http://www.digisystemlab.com/products/index.php?cid=8&f=8
[10] P. T. Sharpe (1988), Method of Cell Seperation, pp. 18-25[Online]. Available: https://books.google.com.tw/books?id=p2EkKg95zfMC&printsec=frontcover&dq=inauthor:%22P.T.+Sharpe%22&hl=zh-TW&sa=X&ved=0CCQQ6AEwAWoVChMIuJPBzZWjxwIViCOUCh1ZQQbm#v=onepage&q&f=false.
[11] 元培醫事科技大學, 流式細胞儀 [Online]. Available: http://pic.ypu.edu.tw/files/11-1029-1512.php.
[12] 生命經緯知識庫,流式細胞儀的發展歷史及其原理與應用進展[Online]. Available: http://refer.biovip.com/doc-view-5269.html
[13] Tumblr (Jun. 14.), Tools of the trade: FACS[Online]. Available: http://i-learned-this-today.tumblr.com/post/25134930984/tools-of-the-trade-facs-physics-and-chemistry
[14] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, "Chaotic mixer for microchannels," Science, vol. 295, pp. 647-651, Jan 2002.
[15] A. Jahn, W. N. Vreeland, M. Gaitan, and L. E. Locascio, "Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing," Journal of the American Chemical Society, vol. 126, pp. 2674-2675, Mar, 2004.
[16] J. B. Knight, A. Vishwanath, J. P. Brody, and R. H. Austin, "Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds," Physical Review Letters, vol. 80, pp. 3863-3866, Apr, 1998.
[17] T. Stiles, R. Fallon, T. Vestad, J. Oakey, D. W. M. Marr, J. Squier, et al., "Hydrodynamic focusing for vacuum-pumped microfluidics," Microfluidics and Nanofluidics, vol. 1, pp. 280-283, Jul, 2005.
[18] C. H. Lin, G. B. Lee, L. M. Fu, and B. H. Hwey, "Vertical focusing device utilizing dielectrophoretic force and its application on microflow cytometer," Journal of Microelectromechanical Systems, vol. 13, pp. 923-932, Dec, 2004.
[19] H. Morgan, D. Holmes, and N. G. Green, "3D focusing of nanoparticles in microfluidic channels," Nanobiotechnology, IEE Proceedings -, vol. 150, pp. 76-81, 2003.
[20] X. C. Xuan, J. J. Zhu, and C. Church, "Particle focusing in microfluidic devices," Microfluidics and Nanofluidics, vol. 9, pp. 1-16, Jul, 2010.
[21] J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, et al., "Multi-wavelength microflow cytometer using groove-generated sheath flow," Lab on a Chip, vol. 9, pp. 1942-1950, 2009.
[22] U. Kim and H. T. Soh, "Simultaneous sorting of multiple bacterial targets using integrated Dielectrophoretic-Magnetic Activated Cell Sorter," Lab on a Chip, vol. 9, pp. 2313-2318, 2009.
[23] D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, et al., "Label-free cell separation and sorting in microfluidic systems," Analytical and Bioanalytical Chemistry, vol. 397, pp. 3249-3267, Aug, 2010.
[24] H. B. Li and R. Bashir, "Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes," Sensors and Actuators B-Chemical, vol. 86, pp. 215-221, Sep, 2002.
[25] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, pp. 370-372, Jul 21 2005.
[26] A. T. O. Pei Yu Chiou, Ming C. Wu, "Optical sorting mechanism in dynamic electric field induced by optoelectronic tweezers," Anaheim, U.S.A.,BNI, Beaconsfield, 2005.
[27] H. A. Pohl, "The motion and precipitation of suspensoids in divergent electric fields," Journal of Applied Physics, vol. 22, pp. 869-871, 1951.
[28] 二次流定義[Online].
Available: http://blog.sina.com.cn/s/blog_55e1c7000100hjsr.html