簡易檢索 / 詳目顯示

研究生: 方磊
Lei Fang
論文名稱: 微脂粒膜內外間的pH gradient對親水性藥物5-fluorouracil包覆效率以及被包覆的疏水性藥物camptothecin釋放率的影響
The effect of pH gradient between inside and outside of liposomes on the encapsulation efficiency of 5-fluorouracil, a hydrophilic drug, and the releasing ratio of the encapsulated camptothecin, a hydrophobic drug
指導教授: 朱一民
I-Ming Chu
吳文桂
Wen-Guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 50
中文關鍵詞: pH梯度硫酸銨微脂粒5-氟脲嘧啶喜樹鹼雙十六碳鏈磷酸鹽包覆效率藥物釋放率硫酸銨梯度
外文關鍵詞: pH gradient, ammonium sulfate, liposome, 5-fluorouracil, camptothecin, dicetyl phosphate, encapsulation efficiency, drug releasing ratio, 5-FU, CPT, DCP, dihexadecyl phosphate, DHP, ammonium sulfate gradient
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據文獻記載,5-FU的包覆效率無論包覆脂質的不同都不會超過6%。我們嘗試以微脂粒以及pH梯度的方式對5-FU進行包覆,以減低其副作用與細胞毒性。實驗結果發現5-FU無法以pH梯度的方式來有效提升微脂粒對它的包覆效率。因此我們想到可以從改善微脂粒膜的性質或是尋找與5-FU形成錯合物的物質等兩個方向再來著手。此外我們推測造成這種結果的原因可能跟5-FU本身的兩個2級胺結構有關。2級胺的pKa會比位於雜環中兩個環交界處的3級胺更遠離7,因此將更容易帶電而無法以pH梯度的方式送入微脂粒中。
    pH梯度藉著微脂粒內外離子濃度的不平衡,可以把親水性藥物送進微脂粒內。那反過來說,我們想知道到被包覆的疏水性藥CPT在釋放時採用pH梯度的方式是否會減低藥物釋放率。我們以25 mM的HSPC
    ,4 mM的DCP,以及1.1 mM的CPT為最佳的配方。結果發現以250 mM硫酸銨溶液水合形成的實驗組其藥物釋放率為35%,而沒有梯度也就是僅以沖提液150 mM氯化鈉溶液/25mM HEPES溶液來水合的對照組其藥物釋放率僅為10%。我們推測原因跟pKa與滲透壓兩者皆無關。而本身帶負電,常添加來製備帶負電微脂粒的DCP可能在該溶液環境下,使得CPT被膜盛載的能力降低。這仍須進一步的證實。


    目錄 1 簡介---p1 1.1 磷脂質,膽固醇,DCP與微脂粒---p1 1.2 膜的通透與pH梯度 (ΔpH)---p7 1.3 親水性藥物5-FU與疏水性藥物CPT---p13 2 實驗目的---p19 3 實驗藥品,器材與步驟與檢測儀器的操作步驟---p20 3.1 實驗藥品或材料---p20 3.2 實驗器材或設備---p21 3.3 實驗步驟與方法---p23 3.3.1 5-FU的包覆---p23 3.3.2 被包覆CPT的釋放---p24 3.4 檢測儀器的操作步驟與方法---p25 3.4.1 雷射粒徑儀LPA (5-FU與CPT部份的粒徑)---p25 3.4.2 HPLC (5-FU部份藥物的包覆效率)---p26 3.4.3 螢光儀 (CPT部份的藥物釋放率)---p26 4 結果與討論---p29 4.1 微脂粒對5-FU的包覆---p29 4.1.1 微脂粒對5-FU的包覆效率---p29 4.1.2 5-FU包覆效率適當取樣範圍的確定---p31 4.1.3 微脂粒對5-FU包覆的探討---p31 4.2 被微脂粒包覆的CPT的藥物釋放---p35 4.2.1 脂質,DCP與CPT組成比例的決定---p35 4.2.2 水合液的選擇與藥物釋放---p35 4.2.3 pH梯度對CPT微脂粒藥物釋放率影響的進一步確定--- p36 4.2.4 被微脂粒包覆的CPT其藥物釋放的探討---p36 5 總結---p41 6 參考文獻---p42 附錄 雷射粒徑儀 (Laser particle analyzer) 原理與操作步驟的簡 介---p46 圖目錄 圖1.1 醯烴長鏈的命名方式---p1 圖1.2 磷脂質的頭基及其命名方式---p2 圖1.3 (磷)脂質自組合成聚集體的型態---p2 圖1.4 單層微脂粒的立體切面圖---p2 圖1.5 膠體態與液晶態的磷脂質的排列方式---p4 圖1.6 不同溫度下磷脂質焓 (enthalphy) 的變化---p4 圖1.7 脂雙層的膜中磷脂質與膽固醇的排列方式---p6 圖1.8 不同濃度膽固醇組成的脂雙層其熱力學性質的變化---p6 圖1.9 DCP的結構式---p6 圖1.10 各種物質對磷脂質脂雙層膜的通透與否---p8 圖1.11 粒線體與葉綠體內部構造的比較---p9 圖1.12 粒線體與葉綠體其電子傳遞鏈的示意圖---p9 圖1.13 弱鹼性藥doxorubicin以硫酸銨溶液製造的pH梯度來載送--- p11 圖1.14 弱酸性藥nalidixic acid以醋酸鈣溶液造成的 pH梯度來載送的示意圖---p12 圖1.15 5-FU的結構式---p14 圖1.16 5-FU在體內所造成相關的新代謝機制示意圖---p14 圖1.17 CPT的發現與研究進程---p16 圖1.18 拓樸異構酶I被CPT抑制的示意圖---p16 圖1.19 CPT內酯型與羧酸型的化學結構---p18 圖1.20 兩種應用在臨床的CPT衍生物---p18 圖3.1真空旋轉濃縮機裝置的示意圖---p21 圖3.2 5-FU部份的流程圖---p27 圖3.3 CPT部份的流程圖---p27 圖3.4 (A) 5-FU濃度與HPLC的UV偵檢器對其所測得的積分面積間的對 應關係 (B) CPT濃度與螢光儀對其所測得的積分面積間的對應 關係---p28 圖4.1 不同微脂粒磷脂質PC的組成與pH梯度的有無對5-FU包覆效率的 影響---p30 圖4.2 包覆有5-FU的微脂粒通過充填有Sephadex G-50的管柱分離未 包覆藥,其UV積分面積對流出管數 (每管1.5 ml) 之間的關 係---p32 圖4.3 運用pH梯度 (pHout = 7.5,pHin = 4.0) 對以EPC所形成的微 脂粒包覆各種藥物的程度與穩定性---p34 圖4.4 Codeine的結構式---p34 圖4.5 常見1級,2級與3級胺基的pKb---p34 圖4.6 以pH梯度包覆CPT與沒有pH梯度包覆CPT的微脂粒兩者進行藥物 釋放,隨時間微脂粒粒徑與藥物釋放率的變化---p37 圖4.7 藥物釋放前後同管數序號的沖提流出液中CPT的含量比---p38 圖4.8 隨著藥物釋放時間具有完整內酯環的CPT濃度的變化---p39 圖A-1 與y軸夾的散射角è以及與z軸夾的散射角f示意圖。入射光朝 著y軸的方向而電場則朝著z軸的方向---p47 圖A-2 入射光照到一群障礙物並散射到受照者的觀測。由其電場強 度集合以及d角可得總體散射強度---p47 圖A-3 光學分析光譜的示意圖---p47

    (1) Abraham, S. A., Edwards, K., Karlsson, G.., Hudon, N., Mayer, L. D., and Bally, M. B. (2004) An evaluation of transmembrane ion gradient- mediated encapsulation of topotecan within liposomes. J. Control. Release 96, 449-461.

    (2) Addanki, S., Cahills, R. D., and Sotos, J. F. (1968) Determination of intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. J. Biol. Chem. 243, 2337-2348.

    (3) Atkins, P. W. (1998) Physical chemistry. 6th ed. Oxford.

    (4)Burke, T. G., Mishra, A. K., Wall, M. C., and Wani, M. E. (1993) Lipid bilayer partitioning and stability of camptothecin drugs. Bioche- mistry 32, 5352-5364.

    (5) Cherian, M. (2003) Lyophilizate of lipid complex of water insoluble camptothecins. United States Patent: 6,548,071. Pharmacia & Upjohn Company.

    (6) Clerc, S. and Barenholz, Y. (1995) Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochim. Biophys. Acta 1240, 257-265.

    (7) Cortesi, R., Esposito, E., Maietti, A., Menegatti, E., and Nastruzzi, C. (1997) Formulation study for the antitumor drug camptothecin: liposomes, micellar solutions and a microemlsion. Inter. J. Pharm. 159, 95-103.

    (8) Cullis, P. R., Hope, M. J., Bally, M. B., Madden, T. D., Mayer, L. D., and Fenske, D. B. (1997) Influence of pH gradients on the transbi- layer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim. Biophys. Acta 1331, 187-211.

    (9) Duschinsky, R., Pleven, E., and Heidelberger, C. (1957) The synthesis of 5-fluoropyrimidines. J. Am. Chem. Soc. 79, 4559-.
    (10) Elorza, B., Elorza, M. A., Frutos, G., and Chantres, J. R. (1993) Characterization of 5-fluorouracil loaded liposomes prepared by reverse-phase evaporation or freezing-thawing exclusion methods: study of drug release. Biochim. Biophys. Acta 1153, 135-142.

    (11) Fresta, M., Villari, A., Puglisi, G., and Cavallaro, G. (1993) 5-Fluoro- uracil: various kinds of loaded liposomes: encapsulation efficiency, storage stability, and fusogenic properties. Inter. J. Pharma. 99, 145-156.

    (12) Garrett, R. H. and Grisham, C. M. (1999) Biochemistry, 2nd ed., Saunders College Publishing.

    (13) Giovanella, B. C., Stehlin, J. S., Wall, M. E., Wani, M. C., Nicholas, A. W., Liu, L. F., Silber, R., and Potmesil, M. (1989) DNA topoiso- merase I-targeted chemotherapy of human colon cancer in xeno+ grafts. Science 246, 1046-1048.

    (14) Hammarström, L., Velikian, I., Karlsson, G., and Edwards, K. (1995) Cryo-TEMevidence: sonication of dihexadecyl phosphate does not produce closed bilayers with smooth curvature. Langmuir 11, 408- 410.

    (15) Haran, G., Cohen, R., Bar, L. K., and Barenholz, Y. (1993) Trans- membrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1240, 257-265.

    (16) Hertzberg, R. P., Caranfa, M. J., Holden, K. G., Jakas, D. R., Gallag- her, G., Matern, M. R., Mong, S. M., Bartus, J. O., Johnson, R. K., and Kingsbury, W. D. (1989) Modification of the hydroxy lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity. J. Med. Chem. 32, 715-720.

    (17) Holland, J. F. Bast, R. C., Morton, D. L., Frei, E., Kufe, D. W., and Weichselbaum, R. R. (1997) Cancer medicine, 4th ed., Williams & Wilkins.

    (18) Hsiang, Y. H., Hertzberg, R., Hecht, S., and Lin, L. F. (1985) Camp- tothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260, 14873-14878.

    (19) Janoff, A. S. (1999) Liposomes: rational design. Marcel Dekker Inc.

    (20) Kaiser, N., Kimpfler, A., Massing, U., Burger, A. M., Fiebig, H. H., Brandl, M., and Schubert, R. (2003) 5-Fluorouracil in vesicular phospholipid gels for anticancer treatment : entrapment and release properties. Inter. J. Pharma. 256, 123-131.

    (21) Kruszewski, S., and Burke, T. G., (2002) Properties of camptothecin analogues---promising topoisomerase I inhibitors determined by fluorescence spectroscopy methods. Polish J Med. Phys. & Eng. 8, 183-192.

    (22) Kunimoto, T., Nitta, K, Tanaka, T., Uehara, N., Baba, H., Takeuchi, M., Yokokura, T., Sawada, S., Miyasaka, T., and Mutai, M. (1987) Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin, a novel water-soluble derivative of camptothecin, against murine tumors. Cancer Res. 47, 5944-5947.

    (23) Lasic, D. D. (1998) Novel applications of liposomes. Trends Biotechnol. 16, 307-321.

    (24) Lodish, H., Berk, A., Zipursky, S. L. Matsudaira, P., Baltimore, D., and Darnell, J. (2000) Molecular cell biology. W. H. Freeman and Company.

    (25) Mattern, M. R., Hofmann, G. A., McCabe, F. L., and Johnson, R. K. (1991) Synergistic cell killing by ionizing radiation and topoiso- merase I inhibitor topotecan (SK&F 104864) Cancer Res. 51, 5813-5816.

    (26) Nichols, J. W., and Deamer, D. W. (1976) Catecholamine uptake and concentration by liposomes maintaining pH gradients. Biochim. Biophys. Acta 455, 269-271.

    (27) New, R. R. C. (1990) Liposomes: a practical approach. 2nd ed. Oxford University Press.

    (28) Oberlies, N. H. and Kroll, D. J. (2004) Camptothecin and taxol: historic achieve- ments in natural products research. J. Nat. Prod. 67, 129-135.

    (29) Rottenberg, H., Grunwald, T., and Avron, M. (1972) Determination of DpH in chloroplasts. Eur. J. Biochem. 25, 54-63.

    (30) Sugarman, S. M., Zou, Y. Y., Wasan, K., Kumi, R., Reddy, S., and Perez-Soler, R. (1996) Lipid-complexed camptothecin: formulation and initial biodistribution and antitumor activity studies. Cancer Chemother. Pharmacol. 97, 531-538.

    (31) Tribe, M. and Whittaker, P. (1982) Chloroplasts and mitochondria, 2nd ed. Edward Arnold Ltd.

    (32) Wade, L. G. (1995) Organic chemistry, 3rd ed. Prentice Hall.

    (33) Wall, M. E., Wani, M. C., and Cook, C. E. (1966) Plant anti-tumor agents. I. The isolation and structure of camptothecin, a novel alka- loid leukemia and tumor inhibitor from Camptotheca acuminates. J. Am. Chem. Soc. 88, 3888-3890.

    (34) Wang, J. C. (1985) DNA Topoisomerases. Ann. Rev. Biochem. 54, 655-697.

    (35) 常用藥物治療手冊,陳長安編著,全國藥品年鑑雜誌社,2000。

    附錄參考資料:
    (A) Pecora, R. (1985) Dynamic light scattering: applications of photon correlation spectroscopy. Plenum press.

    (B) Manual of laser particle analyzer system 3000/3100. Otsuka.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE