簡易檢索 / 詳目顯示

研究生: 程智修
Jhih-Siou Cheng
論文名稱: 應用於無線通訊具直流偏移電壓自我校正迴路之可變增益放大器
A CMOS Variable Gain Amplifier with DC Offset Calibration Loop for Wireless Communication
指導教授: 柏振球
Jenn-Chyou Bor
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 72
中文關鍵詞: 可變增益放大器互補式金屬半導體氧化物
外文關鍵詞: VGA, CMOS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線通訊的進步,無線接收機在設計上的難度也更加困難。對於在基頻的放大器和濾波器而言,頻寬和能量消耗將是一個新的課題。一個可變增益放大器在接收機中,他所扮演的角色為減少類比至數位轉換器動態範圍的需求,且也需要低雜訊和高線性度上的要求。
    一個具高動態範圍、低能量消耗、低雜訊和高線性度的可變增益放大器將是一個新的挑戰。
    在基頻放大器通常有個嚴重的課題,即直流補偏移電壓。一個小的直流補偏移電壓經由高增益的基頻放大器,將直接破壞直流訊號或飽和下一及電路,致使整個無線接收機無法正常工作。一般的解決方式在使用大電容值來達到直流補偏移電壓消除的功能,但在晶片上大量使用被動元件將直接在成本上反應出缺點。一個以數位方式來達到直流補偏移電壓消除的功能的可變增益放大器將是一個可能的解決方式。
    此論文實現一個互補式金屬半導體氧化物的數位控制可變增益放大器。此可變增益放大器採用衰減式放大器的特性來達到改變電壓增益的功用,也採用超級源級隨耦器的特性來當輸入級以致於可達到較高的線性度,並採用以數位電路為主的直流偏移電壓自我校正迴路來減少電路輸出的直流偏移電壓。
    此晶片採用聯電0.18 µm互補式金屬半導體氧化物製程並且總共佔 。此可變增益放大器可以提供從-6 dB到58 dB的增益範圍,且以2 dB為一個間距。在1.8 V的電源供應器之前提下,此晶片共消耗6.12 MA的電流。總諧波失真在輸入訊號頻率在1 MHz和輸出擺幅在 下,在最小增益時為-48 dB。輸入三階點為4 dBV在最小增益時。輸入雜訊為12.3 在增一為最大時。在直流偏移電壓自我校正迴路正常遭操作下,輸入20 mV的直流偏移電壓,在最大增益時,輸出直流偏移電壓可小於100 mV。


    This thesis implements a complementary metal oxide semiconductor (CMOS) VGA with digitally controlled gain. This VGA adopts the degeneration type amplifier to vary voltage gain and uses the super source follower input stage to enhance the linearity. And a digital based DC offset calibration loop is proposed to achieve the DC offset cancellation.

    An experimental chip is fabricated in UMC 0.18 µm CMOS process and its total area . The VGA provide 64 dB gain range with 2 dB step and more than 10 MHz bandwidth. The current consumption from a single 1.8 V supply is less than 6.12 mA. The total harmonic distortion (THD) is small than -48 dB at the minimum gain setting when input signal operates at a 1 MHz and less than output swing. The input third intercept point (IIP3) is 4 dBV at minimum gain setting. The input referred noise is 12.3 at maximum gain setting. The output DC offset is less than the 100mV when 20 mV input DC offset is applied under after calibration operation.

    Chapter 1 Introduction 1.1 Motivation 1.2 Receiver Architecture 1.3 Thesis Organization Chapter 2 The Basic Concepts of VGA 2.1 VGA in AGC Loop 2.2 Basic VGA topology 2.3 VGA Specification 2.3.1 Linearity 2.3.2 Noise 2.3.3 Other Design Issue 2.4 DC Offset Cancellation Chapter 3 VGA Circuit Realization 3.1 VGA Implementation 3.2 Unity Gain Buffer 3.3 Current Reference 3.4 Simulation Results 3.5 Summary Chapter 4 DC Offset Calibration Loop 4.1 DC Offset Calibration Loop 4.2 Comparator 4.3 Digital-to-Analog Converter 4.4 Successive Approximation Register 4.5 Summary Chapter 5 Layout and Measurement Results 5.1 Layout 5.2 Measurement setup 5.3 Measurement results 5.4 Summary Chapter 6 Conclusions & Future Work

    [1] Shoji Otaka, Gaku Takemura, and Hiroshi Tanimoto, “A Low-Power Low-Noise Accurate Linear-in-dB Variable-Gain Amplifier with 500-MHz Bandwidth,” IEEE Journal of Solid-Stats Circuits, vol. 35, no. 12, Dec. 2000

    [2] B. Razavi, “Design Considerations for Direct-Conversion Receivers,”IEEE Trans. On Circuits and Systems II, pp. 428 -435, Jun. 1997.

    [3] C.-K. Wang and P.-C. Huang, “An Automatic Gain Control Architecture for SONET OC-3 VLSI,” IEEE Trans. on Circuits and Systems II, vol. 44, no. 9, pp. 779-783, Sep. 1997.

    [4] J. M. Khoury, `` On the Design of Constant Settling Time AGC Circuits,'' IEEE Tran. Circuits and Systems, Part II, Vol. 45, pp. 283-294, Mar. 1998.

    [5] Cheng-Chung Hsu, Jieh-Tsorng Wu, “A Highly Linear 125-MHz CMOS Switched-Resistor Programmable-Gain Amplifier,” IEEE Journal of Solid-Stats Circuits, vol. 38, no. 10, Oct. 2003

    [6] C-C Hsu and J-T Wu, ``A 125 MHz -86 dB IM3 Programmable-Gain Amplifier,'' 2002 Symposium on VLSI Circuits, pp. 32-34, Jun. 2002.
    [7] C-C Hsu and J-T Wu, ``A Highly Linear 100-MHz CMOS Programmable Gain Amplifier,'' 2001 IEEE International Symposium on Circuits and Systems, pp. 647-650, May. 2001.

    [8] P.-C. Huang, L.-Y. Chiou, and C.-K. Wang, “A 3.3-V CMOS Wideband Exponential Control Variable-Gain-Amplifier”, IEEE Int. Symposium on Circuits and Systems, Monterey, vol. 1, pp. 285-288, Jun. 1998.

    [9] Tang.Yonghui,R.L.Geiger, “A highly Linear CMOS Amplifier for Variable Gain Amplifier Applications,” Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on , Volume: 1 , 4-7 Aug. 2002 Pages:I - 109-12 vol.1

    [10] Sansen, Willy, “Distortion in elementary transistor circuits,” IEEE Trans. on Circuits and Systems II, vol. 46, no. 3, pp. 315 - 325, Sep. 1999.

    [11] R. Jindal,”Gigahertz-Band High-Gain Low-Noise AGC Amplifier in Fine Line NMOS,” IEEE Journal of Solid-Stats Circuits, vol. 22,pp. 512-521, Aug. 1987.

    [12] P.-C. Huang, Y.-H. Chen and C.-K. Wang, “A 2-V 10.7MHz CMOS Limiting Amplifier/RSSI,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp.1474-1480, Oct. 2000.

    [13] C.-K. Wang, P.-C. Huang, and C.-Y. Huang, “A BiCMOS Limiting Amplifier for SONET OC-3,” IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp.1197-1200, Aug. 1996.

    [14] T. Arai, T. Itakura, ``A Baseband Gain Controlled Amplifeir with a Linear-in-dB Gain Range from 14dB to 76dB and a Fixed Corner Frequency DC Offset Canceler,'' 2003 IEEE International Solid-State Circuits Conference, pp. 454-455, Feb. 2003.

    [15] C.-S. Wang and P.-C. Huang, “A CMOS Low-IF Programmable Gain Amplifier with Speed-Enhanced DC Offset Cancellation,” IEEE Asia-Pacific Conf. on ASIC, Taipei, Taiwan, Aug. 2002.

    [16] Rijns, J.J.F.”CMOS Low Distortion High Frequency Variable Gain Amplifier, ”IEEE J. Solid-State Circuits, Vol.31,pp.1029 - 1034,Jul. 1996

    [17] Mohamed A. I. Mostafa, Sherif H. K. Embabi, and Mostafa Elmala, “A 60-dB 246-MHz CMOS Variable Gain Amplifier for Sub-Sampling GSM Receivers,” IEEE Transactions on VLSI Systems, vol. 11, no. 5, Oct. 2003

    [18] S. Tadjpour, F. Behbahani, A.A. Abidi, `` A CMOS variable gain amplifier for a wideband wireless receiver,'' 1998 IEEE International Symposium on VLSI Circuits, Jun. 1998.

    [19] H. A. Alzaher, H. O. Elwan, and M. Ismail, `` A CMOS Highly Linear Channel-Select Filter for 3G Multistandard Integrated Wireless Receiver,'' IEEE Journal of Solid-State Circuits, Vol. 37, pp. 27-37, Jan. 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE