簡易檢索 / 詳目顯示

研究生: 胡力文
Hu, Li-Wen
論文名稱: 應用於光纖斷點量測之半導體雷射自混合光時域反射儀
Fiber fault detection with semiconductor laser self-mixing optical time domain reflectometry
指導教授: 林凡異
Lin, Fan-Yi
口試委員: 陳明彰
黃承彬
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 59
中文關鍵詞: 半導體雷射光時域反射儀光回饋
外文關鍵詞: semiconductor laser, optical time domain reflectometry, optical feedback
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨為研究所提出之自混合光時域反射儀(self-mixing optical time domain reflectometry, SMOTDR),並將其應用於光纖系統下 測距以及缺陷偵測。透過使用半導體雷射並追蹤由光回饋機制產生之動態行為的時間延遲特徵,我們提出一新穎之自混合光時域反射儀。自混合光時域反射儀同時具有架構輕巧、高測距解析度、高偵測靈敏性等優點。根據實驗結果顯示,其能達到2 cm 的測距解析度以及-32 dBm 的偵測靈敏性。並且由於架構上的改良,使得自混合光時域反射儀本身就存在於光纖系統中,使其有機會成為內建式的自我感測儀。另一方面我們也將自混合光時域反射儀與混沌相關光時域反射儀(chaotic correlation optical time domain reflectometry, CCOTDR) 進行比較,自混合光時域反射儀除了有架構更為簡潔以及簡化處理程序的優勢外,還具有較高的測距靈敏性,並且在長距離的測試下,由於架構上的差異,它的測距表現會更優於混沌相關光時域反射儀。


    The objective of this study is to demonstrate a new technique for fiber ranging and fault locating. By using semiconductor laser and extracting the time delay signature (TDS) of dynamical states resulting from the optical feedback, we developed the selfmixing optical time domain reflectometry (SMOTDR). Experimental results show that 2 cm resolution and -32 dBm sensitivity had been achieved. And due to the improve of setup, SMOTDR has already existed in fiber system so it has the potential to become a built-in self-detector. On the other hand, we compare SMOTDR with chaotic correlation optical time domain reflectometry (CCOTDR), besides SMOTDR has the compacter setup and simplified processing program, moreover it has the higher ranging sensitivity, furthermore due to the difference on setup the ranging performance would be better than CCOTDR in long testing length.

    致謝I 摘要III Abstract IV 目錄V 圖目錄VII 1 緒論1 2 半導體雷射受光回饋下之非線性動態行為4 2.1 光回饋系統架構與非線性動態行為. . . . . . . . . . . . . . . . . . . . 5 3 自混和光時域反射儀9 3.1 自混和光時域反射儀之實驗架構. . . . . . . . . . . . . . . . . . . . . . 10 3.2 自混和光時域反射儀之實驗操作. . . . . . . . . . . . . . . . . . . . . . 11 3.3 實驗結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 訊號處理與不同條件下之量測結果. . . . . . . . . . . . . . . . . . . . 20 3.5 綜合討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 自混和光時域反射儀與混沌相關光時域反射儀之比較分析29 4.1 實驗架構與資料處理比較分析. . . . . . . . . . . . . . . . . . . . . . . 30 4.2 靈敏性比較分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 長距離測試下的比較分析. . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 問題與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 總結45

    [1] M. K. Barnoski and S. M. Jensen, “Fiber waveguides a novel technique for investigating attenuation characteristics,” J. Opt. A: Pure Appl. Opt. 15, 2112–2115 (1976).
    [2] M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville, “Optical time domain reflectometer,” J. Opt. A: Pure Appl. Opt. 16, 2375–2379 (1977).
    [3] D. Uttam, and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3, 971–977 (1985).
    [4] W. V. Sorin, D. K. Donald, S. A. Newton and M. Nazarathy, “Coherent FMCW reflectometry using a temperature tuned NdYAG ring laser,” IEEE Photonics Technol. Lett. 2, 902–904 (1990).
    [5] U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
    [6] L. T. Wang, K. Iiyama, F. Tukada, N. Yoshida and K. I. Hayashi, “Loss measurement in optical waveguide devices by coherent frequency-modulated continuous-wave reflectometry,” Opt. Lett. 18, 1095–1097 (1993).
    [7] B. Golubovic, B. E. Bouma, G. J. Tearney and J. G. Fujimoto, “Optical frequencydomain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser,” Opt. Lett. 22, 1704–1706 (1997).
    [8] B. J. Soller, D. K. Gifford, M. S. Wolfe and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
    [9] M. Zoboli and P. Bassi, “High spatial resolution OTDR attenuation measurements by a correlation technique,” J. Opt. A: Pure Appl. Opt. 22, 3680–3681 (1983).
    [10] F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10, 991–997 (2004).
    [11] Y. C. Wang, B. J. Wang and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20, 1636–1638 (2008).
    [12] S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
    [13] J. Ohtsubo, Semiconductor Lasers - Stability, Instability and Chaos, Springer-Verlag Berlin Heidelberg (2006).
    [14] S. S. Li, Q. Liu, and S. C. Chan, ”Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser”, IEEE Photonics J. 4, 1930–1935 (2012).
    [15] R. Lang and K. Kobayashi, ”External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Electron. 16, 347–355 (1980).
    [16] J. M. Liu and T. B. Simpson, ”Four-wave mixing and optical modulation in a semiconductor laser”, IEEE J. Quantum Electron. 30, 957–965 (1994).
    [17] D. Rontani, A. Locquet, M. Sciamanna and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32, 2960–2962 (2007).
    [18] Y. Takushima and Y. C. Chung, “Optical reflectometry based on correlation detection and its application to the in-service monitoring of WDM passive optical network,” Opt. Express 15, 5318–5326 (2007).
    [19] F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective Bandwidths of Broadband Chaotic Signals,” IEEE J. Quantum Electron. 48, 1010–1014 (2012).
    [20] C. Francia, F. Bruyere, D. Penninckx and M. Chbat, “PMD Second-Order Effects on Pulse Propagation in Single-Mode Optical Fibers,” IEEE Photonics Technol. Lett. 10, 1739–1741 (1998).
    [21] B. W. Hakk, “Polarization Mode Dispersion Compensation by Phase Diversity Detection,” IEEE Photonics Technol. Lett. 9, 121–123 (1997).
    [22] C. D. Poole and T. E. Darcie, “Distortion Related to Polarization-Mode Dispersion in Analog Lightwave Systems,” J. Lightwave Technol. 11, 1749–1759 (1993).
    [23] P. Ciprut, B. Gisin, N. Gisin, R. Passy, J. P. Von derWeid, F. Prieto, and C. W. Zimmer, “Second-Order Polarization Mode Dispersion: Impact on Analog and Digital Transmissions,” J. Lightwave Technol. 16, 757–771 (1998).
    [24] K. Petermann, “Nonlinear Distortions and Noise in Optical Communication Systems due to Fiber Connectors,” IEEE J. Quantum Electron. 16, 761–770 (1980).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE