簡易檢索 / 詳目顯示

研究生: 劉昌淵
Liou, Chang-Yuan
論文名稱: 可應用於無線感測網路與生醫設備的十位元低功耗連續近似類比數位轉換器利用電荷平均切換數位類比轉換器技術
A 10-bit power-efficient SAR ADC with charge average switching DAC for wireless sensor network and biomedical device applications
指導教授: 謝志成
Hsieh, Chih-Cheng
口試委員: 李泰成
張順志
洪浩喬
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 69
中文關鍵詞: 連續近似類比數位轉換器電荷平均切換數位類比轉換器切換功耗高能源效率
外文關鍵詞: SAR ADC, Charge Average Switching, DAC, Switching energy, High energy efficiency
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個十位元低電壓及高能源效率的連續近似(SAR)類比數位轉換器(ADC),應用於無線網絡系統及生醫設備。
    所提出的類比數位轉換器為了節省功率消耗操作在超低電壓,從0.4伏特至0.7伏特,所提出的類比數位轉換器在低電壓操作下利用多種技巧來提高能源效率,首先提出一個電荷平均切換方法(CAS)降低數位類比轉換器(DAC)的切換功耗,並減輕了開關緩衝器在高速轉換中的驅動需求,此方法沒有共模電壓變異和額外的參考電壓產生器,在低壓操作下增進了線性度以及能源效率,此外,一個自我控制的可變延遲時間控制器用來優化數位類比轉換器的穩定時間進而提高電路的操作頻率。
    此架構使用標準90奈米1P9M互補式金氧半導體製程製作,晶片面積為110×380μm2,在0.4至0.7伏電源電壓及0.5至4百萬取樣頻率操作下,此晶片實現SNDR從54.3至56.3dB對應的ENOB為8.73至9.06在Nyquist輸入訊號頻率下,功率消耗為0.5至11微瓦,等效的figure of merit (FOM)為2.4至5.2fJ/conversion-step。


    This thesis presents a 10-bit low-voltage and high power efficiency successive approximation register (SAR) analog-to- digital converter (ADC) for wireless sensor networks and biomedical devices applications.
    The proposed ADC operates at ultra-low supply voltage from 0.4V to 0.7V to save power consumption. Several techniques are utilized to improve the power efficiency of the ADC in low voltage operation. The charge-average switching (CAS) technique is proposed to reduce digital-to-analog converter (DAC) switching energy and relax the driving requirement of switch buffer at high speed conversion phase. Without common-mode voltage variation and extra reference generator, improves the linearity and power efficiency at low voltage operation. A self-time variable delay controller optimizes the settling time of DAC improving the conversion speed.
    The prototype was fabricated using 90nm 1P9M CMOS technology and core area is only 110×380μm2. At 0.4-to-0.7V supply and 0.5-to-4MS/s sampling rate, the ADC achieves SNDR from 54.3 to 56.3dB corresponding ENOB from 8.73 to 9.06 at Nyquist-rate input and consumes 0.5-to-11μW power consumption, resulting in a figure of merit (FOM) from 2.4 to 5.2fJ/conversion-step.

    Abstract II Contents V List of Figures VIII List of Tables XI Chapter1 Introduction 1 1.1 Architecture Selection 2 1.2 Performance Metrics of SAR ADC 3 1.2.1 Resolution 4 1.2.2 Nyquist Criterion 4 1.2.3 Quantization Error 4 1.2.4 Differential Nonlinearity (DNL) 5 1.2.5 Integral Nonlinearity (INL) 5 1.2.6 Offset and Gain Error 5 1.2.7 Signal-to-Noise Ratio (SNR) 6 1.2.8 Effective Number of Bit (ENOB) 6 1.2.9 Figure of Merit (FOM) 6 1.3 Motivation 6 1.4 Target Specifications 7 1.5 Thesis Organization 8 Chapter2 Successive Approximation Register (SAR) ADC Overview 9 2.1 Conventional Single-Ended SAR ADC 9 2.2 Error Terms of Sample and Hold 10 2.2.1 On-Resistance of MOS Switch 11 2.2.2 Charge Injection 12 2.2.3 Clock Feedthrough 13 2.2.4 kT/C Noise 14 2.3 Error Terms of Capacitive DAC 14 2.3.1 DAC Parasitic Capacitance 15 2.3.2 DAC Capacitor Mismatch 16 2.4 Error Terms of Comparator 16 2.4.1 Comparator Input Offset 17 2.4.2 Comparator Kickback Noise 17 2.5 Digital SAR Control Logic 18 2.6 Summary 19 Chapter3 Circuit Design Considerations 20 3.1 Conventional Differential-type SAR ADC 20 3.2 CDAC Switching Energy 22 3.2.1 Conventional DAC Switching 22 3.2.2 Vcm-base DAC Switching 24 3.2.3 Monotonic DAC Switching 27 3.2.4 Switchback DAC Switching 29 3.2.5 Concepts of Proposed CAS DAC Technique 32 3.3 Sample and Hold Design Consideration 33 3.4 Comparator Design Consideration 34 3.5 Digital SAR Control Design Consideration 35 3.6 Summary 35 Chapter4 ADC implementation 36 4.1 ADC Architecture and DAC Design 36 4.2 Sample and Hold (S/H) Design 44 4.3 Dynamic Comparator Design 45 4.4 Digital SAR Control Logic Design 46 4.5 Pre-Layout and Post-Layout Simulation Results 48 4.6 Summary 50 Chapter5 Measurement Results 51 5.1 Measurement Environment Setup 51 5.2 Measurement Parameter Setup 52 5.3 Static Performance 53 5.4 Dynamic Performance 53 5.5 Performance Summary and Comparison 56 5.6 Summary 58 Chapter6 Conclusion and Future Work 60 6.1 Conclusion 60 6.2 Future Work 60 Bibliography 65

    [1] B. W. Cook, et al, “SoC issues for RF smartdust,” Proc. IEEE, vol. 94, no. 6, pp. 1177–1196, Jun. 2006.
    [2] Y.-J. Chen, et al., “A 1-V 8-bit 100kS/s-to-4MS/s Asynchronous SAR ADC with 46fJ/Conv.-Step,” IEEE Symp. VLSI-DAT, pp. 1-4, Apr. 2011.
    [3] T. Lee, et al., “A 10b 1MS/s 0.5mW SAR ADC with Double Sampling Technique,” IEEE ISOCC, pp. 512-515, Nov. 2009.
    [4] M. Yip, et al., “A Resolution-Reconfigurable 5-to-10b 0.4-to-1V Power Scalable SAR ADC,” IEEE ISSCC Dig. Tech. Papers, pp. 190-192, Feb. 2011.
    [5] C.-C. Liu, et al., “A 1V 11fJ/Conversion-Step 10bit 10MS/s Asynchronous SAR ADC in 0.18μm CMOS,” IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 241-242, Jun. 2010.
    [6] B. Murmann, “ADC Performance Survey 1997-2013,” [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.
    [7] R. Jacob Baker, “CMOS Circuit Design, Layout, and Simulation 2/e”, John Wiley, 2006.
    [8] M. Yoshioka, et al., “A 10b 50MS/s 820μW SAR ADC with On-Chip Digital Calibration,” IEEE ISSCC Dig. Tech. Papers, pp. 384-385, Feb. 2010.
    [9] Y. Zhu, et al., “A Voltage Feedback Charge Compensation Technique for Split
    DAC Architecture in SAR ADCs,” IEEE ISCAS, pp. 4061-4064, May. 2010.
    [10] S. Lei, et al., “Analysis on Capacitor Mismatch and Parasitic Capacitors Effect of Improved Segmented-Capacitor Array in SAR ADC,” IEEE Symp. IITA, pp. 280-283, Nov. 2009.
    [11] Y. Zhu, et al., “Linearity Analysis on A Series-Split Capacitor Array for High-Speed SAR ADCs,” IEEE MWSCAS, pp. 922-925, Aug. 2008.
    [12] S.-S. Wong, et al., “Parasitic Calibration by Two-Step Ratio Approaching Technique for Split Capacitor Array SAR ADCs,” IEEE ISOCC, pp. 333-336, Nov. 2009.
    [13] Y. Chen, et al., “Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC,” IEEE CICC, pp. 279-282, Sep. 2009.
    [14] J.-S. Lee, et al., “Capacitor Array Structure and Switch Control for Energy-Efficient SAR Analog-to-Digital Converters,” IEEE ISCAS, pp. 236-239, May. 2008.
    [15] Y.-J. Lee, et al., “Capacitor Array Structure and Switching Control Scheme to Reduce Capacitor Mismatch Effects for SAR Analog-to-Digital Converters,” IEEE ISCAS, pp. 1464-1467, May. 2010.
    [16] J. Lin, et al., “Multi-step capacitor-splitting SAR ADC,” IEEE Electronic Letters, vol. 46, no. 21, pp. 1426-1428, Oct. 2010.
    [17] W. Yu, et al., “Two-step split-junction SAR ADC,” IEEE Electronic Letters, vol. 46, no. 3, pp. 211-212, Feb. 2010.
    [18] H.-Y. Huang, et al., “A 9.2b 47fJ/Conversion-step Asynchronous SAR ADC with Input Range Prediction DAC Switching,” IEEE ISCAS, pp. 2353-2356, May. 2012.
    [19] Y. Zhu, et al., “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, Jun. 2010.
    [20] C.-C. Liu, et al., “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
    [21] G.-Y. Huang, et al., “10-bit 30-MS/s SAR ADC Using a Switchback Switching Method,” IEEE Trans. VLSI, vol. 21, no. 3, pp. 584-588, Mar. 2013.
    [22] C.-C. Liu, et al., “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13μm CMOS Process,” IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 236-237, Jun. 2009.
    [23] Y.-K. Chang, et al., “A 8-bit 500-KS/s Low Power SAR ADC for Bio-Medical Applications,” IEEE ASSCC Dig. Tech. Papers, pp. 228-231, Nov. 2007.
    [24] Y. Chen, et al., “A 9b 100MS/s 1.46mW SAR ADC in 65nm CMOS,” IEEE ASSCC Dig. Tech. Papers, pp. 145-148, Nov. 2009.
    [25] X. Zhu, et al., “A 9-bit 100MS/s Tri-level Charge Redistribution SAR ADC with Asymmetric CDAC Array,” IEEE Symp. VLSI-DAT, pp. 1-4, Apr. 2012.
    [26] W.-Y. Pang, et al., “A 10-bit 500-KS/s Low Power SAR ADC with Splitting Comparator for Bio-Medical Applications,” IEEE ASSCC Dig. Tech. Papers, pp. 149-152, Nov. 2009.
    [27] C.-H. Kuo, et al., “A High Energy-Efficiency SAR ADC Based on Partial Floating Capacitor Switching Technique,” IEEE ESSCIRC, pp. 475-478, Sep. 2011.
    [28] M. Kandala, et al., “A Low Power Charge-Redistribution ADC with Reduced Capacitor Array,” IEEE ISQED, pp. 44-48, Mar. 2010.
    [29] B.-P. Ginsburg, et al., “An Energy-Efficient Charge Recycling Approach for a SAR Converter with Capacitive DAC,” IEEE ISCAS, pp. 184-187, May. 2005.
    [30] B. Kim, et al., “An Energy-Efficient Dual Sampling SAR ADC with Reduced Capacitive DAC,” IEEE ISCAS, pp. 972-975, May. 2009.
    [31] C. Yuan, et al., “An ultra-low energy capacitive DAC array switching Scheme for SAR ADC in biomedical applications,” IEEE ICICDT, pp. 1-4, May. 2011.
    [32] T. Anand, et al., “Energy efficient asymmetric binary search switching technique for SAR ADC,” IEEE Electronic Letters, vol. 46, no. 22, pp. 1487-1488, Oct. 2010.
    [33] C. Yuan, et al., “Low-energy and area-efficient tri-level switching scheme for SAR ADC,” IEEE Electronic Letters, vol. 48, no. 9, pp. 482-483, Apr. 2012.
    [34] V. Hariprasath, et al., “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” IEEE Electronic Letters, vol. 46, no. 9, pp. 620-621, Apr. 2010.
    [35] Z. Zhu, et al., “VCM-based monotonic capacitor switching scheme for SAR ADC,” IEEE Electronic Letters, vol. 49, no. 5, pp. 327-329, Feb. 2013.
    [36] S.-K. Lee, et al., “A 21 fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface,” IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 651-659, Mar. 2011.
    [37] A. Shikata, et al., “A 0.5V 1.1MS/sec 6.3fJ/conversion-step SAR-ADC with Tri-Level Comparator in 40nm CMOS,” IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 262-263, Jun. 2011.
    [38] M. van Elzakker, et al., “A 10-bit Charge-Redistribution ADC Consuming 1.9μW at 1MS/s,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May. 2010.
    [39] P.-M. Figueiredo, et al., “Kickback Noise Reduction Techniques for CMOS Latched Comparators,” IEEE TCASII, vol. 53, no. 7, pp. 541-545, Jul. 2006.
    [40] G.-Y. Huang, et al., “A 10-bit 12-MS/s Successive Approximation ADC with 1.2-pF Input Capacitance,” IEEE ASSCC Dig. Tech. Papers, pp. 157-160, Nov. 2009.
    [41] P. Harpe, et al., “A 0.47-1.6mW 5bit 0.5-1GS/s Time-Interleaved SAR ADC for Low-Power UWB Radios,” IEEE ESSCIRC, pp. 147-150, Sep. 2011.
    [42] P. Harpe, et al., “A 26 W 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1585-1595, Jul. 2011.
    [43] P. Harpe, et al., “A 30fJ/Conversion-Step 8b 0-to-10MS/s Asynchronous SAR ADC in 90nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 388-389, Feb. 2010.
    [44] T.-G. Rabuske, et al., “A Novel Energy Efficient Digital Controller for Charge Sharing Successive Approximation ADC,” IEEE LASCAS, pp. 1-4, Feb. 2011.
    [45] T.-G.-R. Kuntz, et al., “An Energy-Efficient 1MSps 7μW 11.9fJ/conversion step 7pJ/sample 10-bit SAR ADC in 90nm,” IEEE ISCAS, pp. 261-264, May. 2011.
    [46] S.-I. Chang, et al., “A A 0.5V 20fJ/Conversion-Step Rail-to-rail SAR ADC with Programmable Time-Delayed Control Units for Low-Power Biomedical Application,” IEEE ESSCIRC, pp. 339-342, Sep. 2011.
    [47] R. Sekimoto, et al., “A 40nm 50S/s – 8MS/s Ultra Low Voltage SAR ADC with Timing Optimized Asynchronous Clock Generator,” IEEE ESSCIRC, pp. 471-474, Sep. 2011.
    [48] P. Harpe, et al., “A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction,” IEEE ISSCC Dig. Tech. Papers, pp. 270-271, Feb. 2013.
    [49] H.-Y. Tai, et al., “A 3.2fJ/c.-s. 0.35V 10b 100KS/s SAR ADC in 90nm CMOS,” IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 92-93, June 2012.
    [50] A. Shikata, et al., “A 0.5 V 1.1MS/sec 6.3fJ/Conversion-Step SAR-ADC with Tri-Level Comparator in 40 nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 1022-1030, Apr. 2012.
    [51] P. Harpe, et al., “A 7-to-10b 0-to-4MS/s Flexible SAR ADC with 6.5-to-16fJ/conversion-step,” IEEE ISSCC Dig. Tech. Papers, pp. 472-474, Feb. 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE