簡易檢索 / 詳目顯示

研究生: 陳宥廷
Chen, You-Ting
論文名稱: 二茂鐵輪烷晶體之光照引發機械運動
Photo-responsive mechanical motions of ferrocene-based anthryl rotaxane crystals
指導教授: 堀江正樹
Horie, Masaki
口試委員: 王潔
Wang, Jane
游進陽
Yu, Chin-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 78
中文關鍵詞: 超分子化學晶體分子機械
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文將探討具有光反應性之輪烷超分子,此輪烷超分子之軸分子含二茂鐵及蒽結構,並與冠醚環分子所共同組成。藉由在二茂鐵軸分子中導入蒽作為取代基,該輪烷超分子晶體將同時擁有兩者的光引發機械運動,可應用發展為具獨特光引發效應之晶體分子機械,因此將針對該含蒽二茂鐵輪烷超分子之溶液與晶體特性進行測量及探討。
      在第二章前半部分當中,主要著重於含蒽二茂鐵輪烷超分子的合成,藉由測量核磁共振氫譜、質譜分析確認該分子;並透過分析其單晶之X射線晶體學得知其分子結構。第二章後半部分詳述該輪烷超分子於溶液狀態與晶體狀態下之性質探討,首先溶液態透過紫外¬-可見分光光度法量測吸收光譜,得知蒽吸收介於300至400奈米波長光,二茂鐵則吸收450奈米波長光;透過螢光光譜量測發射光譜確認蒽之螢光特性。此外也發現溶液態下照射紫外雷射光會導致蒽發生氧化反應,該氧化反應被預期可作為新發現之輪烷分子封端反應。於第二章最後探討含蒽二茂鐵輪烷超分子晶體之光引發機械運動,其晶體可藉由雷射光照射產生顯著的體積變化。
      第三章將對該研究計畫所得成果進行結論,此外也提出未來可延伸進行之研究主題方向;第四章當中詳細總結並整理本項研究中所使用之方法、儀器與測量結果。


      In this thesis, photo-responsive [2]pseudorotaxanes composed of ferrocene and anthryl groups in an axle and crown ether ring are reported. Here, we introduce anthracene group in ferrocene-containing [2]pseudorotaxane and attempt photochemical reaction in crystal and solution state. The photo-induced mechanical motions are unique and important for development of crystalline molecular machines.
      In Chapter 2, the synthesis, characterization, and optical properties of the new [2]pseudorotaxane, [(Fc-anthryl)·DB24C8]+(PF6)-, are described. Obtained [2]pseudorotaxane was characterized by NMR and mass spectrometry. The molecular structure was confirmed by single-crystal X-ray crystallography. The optical properties of the pseudorotaxane were examined by UV-vis absorption and fluorescence emission spectroscopies in solution. The results revealed that the pseudorotaxane absorbed light in a range between 300 nm and 400 nm owing to anthryl group and around 450 nm because of ferrocenyl group. In addition, we discovered the oxidation of anthryl group to provide anthraquinone group induced by UV irradiation. This can be applied to end-capping reaction to convert the pseudorotaxane into rotaxane. Finally, the photo-responsive mechanical motions of the crystals are described. Crystals of [2]pseudorotaxane show significant volume change induced by photoirradiation.
      In Chapter 3, conclusions and future works are described. Experimental details are summarized in Chapter 4.

    Abstract I 中文摘要 II Table of Contents III Chapter 1  Introduction and aim 1 1.1  Supramolecular chemistry 1 1.2  Mechanically-interlocked molecular architectures 2 1.3  Applications of supramolecular chemistry 4 1.3.1  Molecular machines 4 1.3.2  Molecular switches 8 1.3.3  Crystalline Molecular Machines 9 1.3.4  Rapid and reversible photoinduced switching of a rotaxane crystal 11 1.3.5  Photoinduced photochemical reactions driven mechanical motion of anthracene crystals 15 1.4  Aim of the work 20 Chapter 2  Synthesis and characterization of crown ether ferrocene-based anthryl rotaxane 24 2.1  Introduction 24 2.2  Synthesis of ferrocene-containing pseudorotaxane 25 2.2.1  Preperation of Ferrocenemethylamine 25 2.2.2  Preperation of 2-(bromomethyl)anthracene 26 2.2.3  Preperation of [(Fc-anthryl)·DB24C8]+(PF6)- 27 2.3  Characterization of [(Fc-anthryl)·DB24C8]+(PF6)- 29 2.3.1  NMR analysis 29 2.3.2  Mass spectrometry analysis 34 2.3.3  Single-crystal X-ray crystallography 37 2.4  Optical properties of [(Fc-anthryl)·DB24C8]+(PF6)- in solution. 39 2.4.1  Photochemical reaction in solution 39 2.4.2  UV-vis absorption spectra 40 2.4.3  Fluorescence emission spectra 43 2.4.4  Mass spectrometry analysis of irradiated solution 47 2.5  Properties of [(Fc-anthryl)·DB24C8]+(PF6)- crystal 49 2.5.1  Thermal properties 49 2.5.2  Optical properties 50 2.6  Photo-responsive mechanical motion of crystals 52 Chapter 3  Conclusion and future works 57 3.1  Conclusion 57 3.2  Future works 59 Chapter 4  Experimental section 61 4.1  General methods 61 4.2  Experimental method 62 4.2.1  Photo-induced size change measurement 62 4.2.2  Measurement of the time dependence of the displacement 62 4.2.3  Birefringence measurement 63 4.2.4  Single crystal X-ray crystallography 63 4.3  Preparation of ferrocenecarbaldehyde oxime 64 4.4  Preparation of ferrocenemethylamine (FCMA) 65 4.5  Preparation of 2-Methylanthracene 66 4.6  Preparation of 2-(Bromomethyl)anthracene 68 4.7  Preparation of [(Fc-anthryl)]+PF6- 69 4.8  Preparation of [(Fc-anthryl)·DB24C8]+(PF6)- 71 4.9  X-ray single crystallography 73 References 75

    1. Lehn, J. M. Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem., Int. Ed. 1988, 27 (1), 89-112.
    2. Lehn, J.-M., Supramolecular chemistry. Vch, Weinheim: 1995; Vol. 1.
    3. Cram, D. J.; Cram, J. M. Host-guest chemistry. Science 1974, 183 (4127), 803-809.
    4. Leigh, D. A.; Wong, J. K.; Dehez, F.; Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 2003, 424 (6945), 174-179.
    5. Ariga, K.; Hill, J. P.; Lee, M. V.; Vinu, A.; Charvet, R.; Acharya, S. Challenges and breakthroughs in recent research on self-assembly. Sci. Technol. Adv. Mater. 2008, 9 (1), 014109, 1-96.
    6. Kahn, O. Chemistry and physics of supramolecular magnetic materials. Acc. Chem. Res. 2000, 33 (10), 647-657.
    7. Anslyn, E. V. Supramolecular analytical chemistry. J. Org. Chem. 2007, 72 (3), 687-699.
    8. Gomez-Lor, B.; Gutierrez-Puebla, E.; Iglesias, M.; Monge, M.; Ruiz-Valero, C.; Snejko, N. In2 (oh) 3 (bdc) 1.5 (bdc= 1, 4-benzendicarboxylate): an In (iii) supramolecular 3d framework with catalytic activity. Inorg. Chem. 2002, 41 (9), 2429-2432.
    9. Chen, K.-J.; Tsai, Y.-C.; Suzaki, Y.; Osakada, K.; Miura, A.; Horie, M. Rapid and reversible photoinduced switching of a rotaxane crystal. Nat. Commun. 2016, 7, 13321.
    10. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment‐sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew. Chem., Int. Ed. 2003, 42 (38), 4640-4643.
    11. Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.; Cave, G. W.; Atwood, J. L.; Stoddart, J. F. Molecular borromean rings. Science 2004, 304 (5675), 1308-1312.
    12. Wasserman, E. THE PREPARATION OF INTERLOCKING RINGS: A CATENANE1. J. Am. Chem. Soc. 1960, 82 (16), 4433-4434.
    13. Cesario, M.; Dietrich-Buchecker, C.; Guilhem, J.; Pascard, C.; Sauvage, J. Molecular structure of a catenand and its copper (I) catenate: complete rearrangement of the interlocked macrocyclic ligands by complexation. Chem. Commun. 1985, (5), 244-247.
    14. Hubin, T. J.; Busch, D. H. Template routes to interlocked molecular structures and orderly molecular entanglements. Coord. Chem. Rev. 2000, 200, 5-52.
    15. Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Venturi, M. Artificial molecular-level machines: which energy to make them work? Acc. Chem. Res. 2001, 34 (6), 445-455.
    16. Sauvage, J.-P. Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 1998, 31 (10), 611-619.
    17. Collin, J.-P.; Dietrich-Buchecker, C.; Gaviña, P.; Jimenez-Molero, M. C.; Sauvage, J.-P. Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 2001, 34 (6), 477-487.
    18. Anelli, P. L.; Spencer, N.; Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 1991, 113 (13), 5131-5133.
    19. Bissell, R. A.; Córdova, E.; Kaifer, A. E.; Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 1994, 369 (6476), 133-137.
    20. Badjić, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. A molecular elevator. Science 2004, 303 (5665), 1845-1849.
    21. Huang, T. J.; Brough, B.; Ho, C.-M.; Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Tseng, H.-R.; Stoddart, J. F.; Baller, M.; Magonov, S. A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 2004, 85 (22), 5391-5393.
    22. Luo, Y.; Collier, C. P.; Jeppesen, J. O.; Nielsen, K. A.; DeIonno, E.; Ho, G.; Perkins, J.; Tseng, H. R.; Yamamoto, T.; Stoddart, J. F. Two‐Dimensional Molecular Electronics Circuits. ChemPhysChem 2002, 3 (6), 519-525.
    23. Koumura, N.; Zijlstra, R. W.; van Delden, R. A.; Harada, N.; Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 1999, 401 (6749), 152-155.
    24. Bauer, J.; Hou, L.; Kistemaker, J. C.; Feringa, B. L. Tuning the rotation rate of light-driven molecular motors. J. Org. Chem. 2014, 79 (10), 4446-4455.
    25. Eelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C. W.; Broer, D. J.; Feringa, B. L. Molecular machines: nanomotor rotates microscale objects. Nature 2006, 440 (7081), 163.
    26. Kudernac, T.; Ruangsupapichat, N.; Parschau, M.; Maciá, B.; Katsonis, N.; Harutyunyan, S. R.; Ernst, K.-H.; Feringa, B. L. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 2011, 479 (7372), 208-211.
    27. Feringa, B. L.; Browne, W. R., Molecular switches. Wiley Online Library: 2001; Vol. 42.
    28. Coskun, A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.; Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 2012, 41 (1), 19-30.
    29. Koshima, H.; Ojima, N.; Uchimoto, H. Mechanical motion of azobenzene crystals upon photoirradiation. J. Am. Chem. Soc. 2009, 131 (20), 6890-6891.
    30. Muraoka, T.; Kinbara, K.; Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 2006, 440 (7083), 512-515.
    31. Khuong, T.-A. V.; Nuñez, J. E.; Godinez, C. E.; Garcia-Garibay, M. A. Crystalline molecular machines: A quest toward solid-state dynamics and function. Acc. Chem. Res. 2006, 39 (6), 413-422.
    32. Zhu, L.; Al-Kaysi, R. O.; Bardeen, C. J. Reversible photoinduced twisting of molecular crystal microribbons. J. Am. Chem. Soc. 2011, 133 (32), 12569-12575.
    33. Zhu, L.; Tong, F.; Salinas, C.; Al-Muhanna, M. K.; Tham, F. S.; Kisailus, D.; Al-Kaysi, R. O.; Bardeen, C. J. Improved solid-state photomechanical materials by fluorine substitution of 9-anthracene carboxylic acid. Chem. Mater. 2014, 26 (20), 6007-6015.
    34. Terao, F.; Morimoto, M.; Irie, M. Light‐Driven Molecular‐Crystal Actuators: Rapid and Reversible Bending of Rodlike Mixed Crystals of Diarylethene Derivatives. Angew. Chem. 2012, 124 (4), 925-928.
    35. Lee, J.; Oh, S.; Pyo, J.; Kim, J.-M.; Je, J. H. A light-driven supramolecular nanowire actuator. Nanoscale 2015, 7 (15), 6457-6461.
    36. Panda, M. K.; Runčevski, T. e.; Husain, A.; Dinnebier, R. E.; Naumov, P. e. Perpetually self-propelling chiral single crystals. J. Am. Chem. Soc. 2015, 137 (5), 1895-1902.
    37. Zhu, L.; Al‐Kaysi, R. O.; Bardeen, C. J. Photoinduced Ratchet‐Like Rotational Motion of Branched Molecular Crystals. Angew. Chem., Int. Ed. 2016, 55 (25), 7073-7076.
    38. Al-Kaysi, R. O.; Tong, F.; Al-Haidar, M.; Zhu, L.; Bardeen, C. J. Highly branched photomechanical crystals. Chem. Commun. 2017, 53 (17), 2622-2625.
    39. Singh, S.; Jones, W.; Siebrand, W.; Stoicheff, B.; Schneider, W. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 1965, 42 (1), 330-342.
    40. Nath, N. K.; Runcevski, T.; Lai, C.-Y.; Chiesa, M.; Dinnebier, R. E.; Naumov, P. Surface and bulk effects in photochemical reactions and photomechanical effects in dynamic molecular crystals. J. Am. Chem. Soc. 2015, 137 (43), 13866-13875.
    41. Li, W.; Wei, T.; Gao, Y.; Xi, K.; Jia, X. Preparation of novel benzoxazine monomers containing ferrocene moiety and properties of polybenzoxazines. Polymer 2012, 53 (6), 1236-1244.
    42. Cabellero, A. G.; Croft, A. K.; Nalli, S. M. Remote aromatic stabilization in radical reactions. Tetrahedron Lett. 2008, 49 (22), 3613-3615.
    43. Thorum, M. S.; Anderson, C. A.; Hatch, J. J.; Campbell, A. S.; Marshall, N. M.; Zimmerman, S. C.; Lu, Y.; Gewirth, A. A. Direct, electrocatalytic oxygen reduction by laccase on anthracene-2-methanethiol-modified gold. J. Phys. Chem. Lett. 2010, 1 (15), 2251-2254.
    44. Winkler, M.; Steinbiß, M.; Meier, M. A. A more sustainable Wohl–Ziegler bromination: Versatile derivatization of unsaturated FAMEs and synthesis of renewable polyamides. Eur. J. Lipid Sci. Technol. 2014, 116 (1), 44-51.
    45. Lüthy, M.; Schenk, K.; Renaud, P. Synthesis of Unusual Oxime Ethers by Reaction of Tetranitromethane with B‐Alkylcatecholboranes. Chem. Eur. J. 2010, 16 (33), 10171-10177.
    46. Schmidt, G. Photodimerization in the solid state. Pure and Applied Chemistry 1971, 27 (4), 647-678.
    47. Bouas-Laurent, H.; Castellan, A.; Desvergne, J.-P.; Lapouyade, R. Photodimerization of anthracenes in fluid solution: structural aspects. Chem. Soc. Rev. 2000, 29 (1), 43-55.
    48. Berlman, I. Handbook of fluorescence spectra of aromatic compounds. Acad. Press, New York 1971, 342.
    49. Bozak, R. Photochemistry in the Metallocenes. Adv. Photochem. Vol. 8 1971, 227-244.
    50. Lakowicz, J. R.; Masters, B. R. Principles of fluorescence spectroscopy. J. Biomed. Opt. 2008, 13 (2), 029901.
    51. Adam, W.; Zhao, C. G.; Jakka, K. Dioxirane oxidations of compounds other than alkenes. Organic Reactions 2007.
    52. Mohammadi, M. K. Microwave-Assisted Oxidation of Organic Compounds with Cetyltrimethylammonium Chlorochromate. Open Journal of Synthesis Theory and Applications 2013, 2 (03), 87-90.
    53. Kihara, N.; Hashimoto, M.; Takata, T. Redox behavior of ferrocene-containing rotaxane: Transposition of the rotaxane wheel by redox reaction of a ferrocene moiety tethered at the end of the axle. Org. Lett. 2004, 6 (11), 1693-1696.

    QR CODE