研究生: |
彥 倪 Yeni Maulidah Muflihah |
---|---|
論文名稱: |
印度尼西亞本土草藥的天然抗氧化物來源和化妝品防腐劑對大型蚤的毒性 Natural Antioxidant Sources from Indonesian Indigenous Herbs and the Toxicity of Cosmetics Preservatives to Daphnia magna |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: |
陳貴通
Tan, Kui-Thong 帕偉鄂本 Urban, Pawel Lukasz 王勝盟 Wang, Sheng-Meng 杜敬民 Duh, Jing-Min |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 天然產品, 化妝品, 對羥基苯甲酸酯, 、天然產品 、化妝品 、對羥基苯甲酸酯 、毒性 |
外文關鍵詞: | Natural products, cosmetics,toxicity, cosmetics, parabens, D.magna, toxicity |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
許多化學物質已被添加為化妝品配方的活性成分,如抗氧化劑、著色劑、防腐劑、增白劑、香料和抗紫外線劑,以提高化妝品的功效。有些產品因此在過度、持續或不當使用時,對人體和環境有潛在危害。如今,化妝品配方成分的安全性,越來越受到重視。化妝品的廣泛和持續使用,其對環境的影響已成為人們關注的問題。使用更安全的成分或天然產品優於合成產品,且能避免對環境的影響。因此,從天然產物中發現替代物質的研究,已成為一個有吸引力的課題。已有許多報導,研究來自不同原產地的許多植物,以尋找潛在的生物活性化合物來源。
本論文研究化妝品成分,以解決與化妝品相關的問題。論文由三部分組成,第一部分涉及尋找從草藥中萃取抗氧化化合物的最佳條件。第二部分涉及從選定的草藥中篩選抗氧化化合物。最後,第三部分涉及化妝品中防腐劑對水生生物的毒性試驗。
在第一部分,考慮到最近在任何領域(包括化妝品)中使用來自天然產品的抗氧化劑的趨勢,我們應用田口方法來簡化從草藥中獲取最佳抗氧化劑量的過程。然後,我們應用 L16 正交陣列,並研究超音波萃取中的幾個參數,例如溶劑濃度、萃取時間和樣品萃液中的固液比。我們分析了信噪比的結果,以確定最佳條件。
在第二部分,旨在開發一種從精選印度尼西亞草本植物中,篩選具有高抗氧化活性萃取物的有效方法。抗氧化活性可歸因於酚類和類黃酮含量。在最佳條件下通過超音波萃取過程,獲得了12種印度尼西亞草藥萃取物。使用DPPH自由基清除活性測試來測試萃取物的抗氧化活性。利用NaNO2-AlCl3-NaOH 和 Folin-Ciocalteau 方法,分別獲得總黃酮和總酚含量。計算相關程度並表示為 Pearson r 相關性。通過高效液相色譜結合光電二極管陣列檢測器 (HPLC-PDA) 分析萃取物中酚類和黃酮類化合物。本研究中展示的簡便方法,為我們正在進行的配方開發工作,提供了一種有效的工具。
化妝品成分的另一關注點,是所使用的防腐劑及其對環境的影響,因為需要防腐劑來防止細菌或化合物變質,來保證配方品質。然而,化妝品和個人護理產品的廣泛和持續消費,化妝品中的防腐劑對人類和環境的潛在危害,不容忽視。
在第三部分,我們嘗試分析化妝品中最常用的防腐劑,包括對羥基苯甲酸酯和苯氧乙醇的毒性。我們研究了防腐劑含量與其對水生生物的毒性之間的關係。本研究中,我們建立了一種方法來研究20種面霜化妝品以及4種對羥基苯甲酸酯(對羥基苯甲酸甲酯及乙基、丙基和丁基對羥基苯甲酸酯)和苯氧乙醇對 D. Magna(一種用於環境污染評估的水生生物)的急毒性,防腐劑和化妝品在 24 小時和 48 小時內,對新生 D. Magna 的致死濃度中位數以 LC50 表示,用 mg/L 單位表示化妝品毒性。結果顯示,對羥基苯甲酸酯和面霜樣品 48 小時的急毒性數值不相同。對羥基苯甲酸酯和苯氧乙醇的存在,因此加劇了化妝品的毒性,此論點已被統計數據證明。本研究使用氣相層析串聯質譜儀 (GC-MS) 和 DB-5管柱分離和鑑定對羥基苯甲酸酯和苯氧乙醇。在優化條件下,我們發現 20 個面霜樣品中,含有各種組合和濃度的苯氧乙醇和對羥基苯甲酸酯。
Abstract
Numerous chemical substances have been added as cosmetics active ingredients to increase the efficacy of the cosmetic. Antioxidants, coloring agents, preservatives, whitening agents, perfume, and anti-UV are commonly added to cosmetic formulations. According to reports, some are potentially harmful to the human body and the environment when used excessively, continuously, or improperly. Nowadays, the safety of cosmetic formulation ingredients is gaining more and more attention. Due to the widespread and continuous use of cosmetics, the environmental impact of cosmetics has become a concern. The use of safer ingredients or natural products is preferable to synthetic products, avoiding the effect on the environment. Therefore, the studies to discover alternative substances from natural products became an attractive topic. Numerous plants from different places of origin have been studied to find the potential bioactive compounds sources.
We investigated cosmetics ingredients to conquer the problems related to cosmetics. This work has been completed in three parts. The first part of the work concerned the finding of optimum conditions to extract antioxidant compounds from herbs. The second part involved the screening of antioxidant compounds from selected herbs. Finally, the third part was concerned with the toxicity test of cosmetic preservatives to aquatic organisms.
In the first part, by considering the recent trend of using antioxidants from natural products in any field, including cosmetics, we applied the Taguchi method to simplify obtaining optimum amounts of antioxidants from herbs. Then, we applied the L16 orthogonal array and investigated several parameters in the ultrasonic extraction, such as solvent concentration, extraction time, and the solid-to-liquid ratio of the samples. Hence, we analyzed the result for the signal-to-noise ratio to determine the optimum condition.
In the second part, this project intended to develop an efficient method for screening selected Indonesian herb extracts with high antioxidant activity. The antioxidant activity was probably attributed to phenolics and flavonoids content. Twelve Indonesian herb extracts were obtained from the ultrasonic extraction process in optimum condition. The antioxidant activity of the extracts was tested using DPPH (2,2’-diphenyl-1-picrylhydrazyl) free radical scavenging activity test. The NaNO2-AlCl3-NaOH and Folin-Ciocalteau method obtained the total flavonoids and total phenolics content, respectively. The correlation extents were calculated and expressed as Pearson r correlation. In the extracts, the phenolics and flavonoid compounds were analyzed by high-performance liquid chromatography combined with photodiode array detector (HPLC-PDA) analysis. The facile method demonstrated in this study provides us an efficient tool for ongoing formulation development work.
Different concern for cosmetics ingredients is the preservatives applied and their environmental effect. Preservatives are needed to guarantee formulation quality by preventing bacteria or compound deterioration. However, preservatives in cosmetics are potentially harmful to humans and the environment due to the extensive and continuous consumption of cosmetics and personal care products.
In the third part, we attempted to analyze the toxicity of parabens and phenoxyethanol, the most commonly used preservatives in cosmetics. We studied the relationship between the preservative contents and their toxicity to the aquatic organism. In this study, we established a method to investigate the acute toxicity of twenty (20) face cream cosmetics as well as four parabens (methyl, ethyl, propyl, and butylparaben) and phenoxyethanol to D. Magna, an aquatic organism for environmental contamination assessment. The median lethal concentration of preservatives and cosmetic products to neonate D. Magna exposed in 24 h and 48 h were expressed in LC50, representing cosmetics toxicity in mg/L. The result revealed the acute toxicity of 48 h of parabens and face cream samples ranging in diverse values. Thus, the presence of parabens and phenoxyethanol intensified the toxicity of cosmetics and has been proven by statistical data. Gas chromatography-mass spectrometry (GC-MS) with DB-5 column was used to separate and identify parabens and phenoxyethanol. Under the optimized condition, we found that the 20 face cream samples contain phenoxyethanol and parabens in various combinations and concentrations.
Chapter 1
1. Chaudhri, S.K.; Jain, N.K. History of cosmetics. Asian Journal of Pharmaceutics 2009. https:///doi.org/10.4103/0973-8398.56292
2. Pacifici, E.; Bain, S. (Eds). An overview of FDA Regulated Products: From Drug and Medical Devices to Food and Tobacco, 1st edition. 2018.Academic press: Elsevier. https:///doi.org/10.1016/C2016-0-00994-4
3. Iwata, H.; Shimada, K. Formulas, Ingredients and Production of Cosmetics: Technology of Skin and Hair-Care Products in Japan. Formulas, Ingredients and Production of Cosmetics. 2013. Springer. https:///doi.org/10.1007/978-4-431-54061-8
4. Salvador, A.; Pascual-Martí, M. Cosmetics and Toiletries. 2005. https:///doi.org/10.1016/B0-12-369397/00103-5
5. Dorato, S. Chapter 1-General Concepts: Current Legislation on Cosmetics in Various Countries. In: A. Salvador, A. Chisvert (Eds.), Anal. Cosmet. Prod. (Second Ed., Second Ed. 2018. Elsevier, Boston, pp. 3–37. https://doi.org/https://doi.org/10.1016/B978-0-444-63508-2.00001-1
6. Annexes of the ASEAN Cosmetic Directive, Annex VI, List of preservatives allowed for use in cosmetics, Updated Nov 2020
7. Cheynier, V. Phenolic Compounds: From Plants to Foods. Phytochemistry Reviews 2012, 11, 153-177. https:///doi.org/10.1007/s11101-012-9242-8 .
8. Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant Activity and Phenolic Compounds of 112 Traditional Chinese Medicinal Plants Associated with Anticancer. Life Sci. 2004, 12:74, 2157-84. https:///doi.org/10.1016/j.lfs.2003.09.047 . PMID: 14969719; PMCID: PMC7126989.
9. Vladimir-Kneţević, S.; Blaţeković, B.; Štefan, M. B.; Babac, M. Plant Polyphenols as Antioxidants Influencing the Human Health. In: Rao, V. (Ed.), Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health 2012, Croatia: InTech. pp. 155-180.
10. Pyrzynska, K.; Biesaga, M. Analysis of Phenolic Acids and Flavonoids in Honey. Trends in Analytical Chemistry 2009, 28:7, 893-902. http://doi.org/10.1016/j.trac.2009.03.015
11. Ignat, I.; Volf, I.; Popa, V.I. A Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chem. 2011, 126:4, 1821-35. http://doi.org/10.1016/j.foodchem.2010.12.026.
12. Chemat, F.; Vian, M. A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. International Journal of Molecular Sciences 2012, 13, 8615-8627. http://doi.org/10.3390/ijms13078615
13. Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew Chem Int Ed Engl 2011, 50:3, 586-621. http://doi.org/10.1002/anie.201000044.
14. Dangles, O. Antioxidant Activity of Plant Phenols: Chemical Mechanisms and Biological Significance. Current Organic Chemistry 2012, 16:6. https://doi.org/10.2174/138527212799957995
15. Craft, B.D.; Kerrihard, L.; Amarowicz, R.; Pegg, R.B. Phenol-based antioxidants and the in vitro methods used for their assessment. Comprehensive reviews in Food Science and Food Safety 2012, 11:2, 148-173. https://doi.org/10.1111/j.1541-4337.2011.00173.x
16. Berton-Carabin, C.; Ropers, M.H.; Genot, C. Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer. Comprehensive reviews in Food Science and Food safety 2014, 13,945-977. http://doi.org/10.1111/1541-4337.12097
17. Iswantini, D.; Silitonga, R.F.; Martatilofa, E.; Darusman, L.K. Zingiber cassumunar, Guazuma ulmifolia, and Murraya paniculate Extracts as Antiobesity: In vitro Inhibitory Effect on Pancreatic Lipase Activity. Hayati Journal of Biosciences 2011, 18:1, 6-10. http://doi.org/10.4308/hjb.18.1.6
18. Riswan, S.; Sangat-Roemantyo, H. Jamu as Traditional medicine in Java, Indonesia, South Pacific Study 2002, 23:1
19. Hartati, R.; Suganda, A.G.; Fidrianny, I. Botanical, Phytochemical and Pharmacological Properties of Hedychium (Zingiberaceae)-A Review. Procedia Chemistry 2014,13, 150-163. https://doi.org/10.1016/j.proche.2014.12.020
20. Tanvir, E.M.; Hossen, M.S.; Hossain, M.F.; Afroz, R.; Gan, S.H.; Khalil, M.I.; Karim, N. Antioxidant Properties of Popular Turmeric (C. longa) Varieties from Bangladesh. Hindawi Journal of Food Quality 2017. https://doi.org/10.1155/2017/8471785
21. Li, M.F.; Pare, W.P.; Zhang, J.; Kang, T.; Zhang, Z.; Yang, D.; Wang, K.; Xing, H. Antioxidant Capacity Connection with Phenolic and Flavonoid Content in Chinese Medicinal Herbs. Rec. Nat. Prod. 2018, 12:3, 239-250. http://doi.org/10.25135/rnp.24.17.08.138
22. Widyowati, R.; Agil, M. Chemical Constituent and Bioactivities of Several Indonesian Plants Typically Used in Jamu. Chem. Pharm. Bull.2018, 66, 506–518. http://doi.org/10.1248/cpb.c17-00983
23. Zainin, N.S.; Lau, K.Y.; Zakaria, M.; Son, R.; Abdull Razis, A.F.; Rukayadi, Y. Antibacterial activity of Boesenbergia rotunda (L.) mansf. A. Extract Against Escherichia coli. International Food Research Journal 2013, 20:6, 3319-3323
24. Eng-Chong, T.; Yean-Kee, L.; Chin-fei, C.; Choon-han, H.; Sher-Ming, W.; Li-ping, C.T.; Gen-Teck, F.; Khalid, N.; Rahman, N.A.; Karsani, S.A.; Othman, S.; Othman, R.; Yusof, R. Boesenbergia rotunda: from Ethnomedicine to Drug Discovery. Evidence-Based Complementary and Alternative Medicine 2012, 12, article ID 473637. http://doi.org/10.1155/2012/473637
25. Nurrachma, M.Y.; Fadliyah, H.; Meiyanto, E. Fingerroot (Boesenbergia pandurate): A Prospective Anticancer Therapy. Indonesian Journal of Anticancer Chemoprevent 2018, 9:2, 102-109. http://doi.org/10.14499/indonesianjcanchemoprev9iss2pp102-109
26. Atun, S.; Handayani, S.; Rakhmawati, A. Potential Bioactive Compounds Isolated from Boesenbergia rotunda as Antioxidant and Antimicrobial Agents Pharmacogn J 2018, 10(3). https:///doi.org/10.5530/pj.2018.3.84
27. Abdelwahab, S.I.; Mohan, S.; Abdulla, M.A.; Sukari, M.A.; Abdul, A.B.; Taha, M.M.E.; Syam, S.; Ahmad, S..; Lee, K-H. The Methanolic Extract of Boesenbergia rotunda (L.) Mansf. and Its Major Compound Pinostrobin Induces Anti-ulcerogenic Property in Vivo: Possible involvement of indirect antioxidant action. Journal of Ethnopharmacology 2011, 137, 963-970. http://doi.org/10.1016/j.jep.2011.07.010
28. Victorio, C.P.; Kuster, R.M.; Lage, C.L.S. Detection of flavonoids in Alpinia purpurata (Vieill.) K.Schum. leaves using high performance liquid chromatography. Rev. Bras. Plantas med. 2009, 11:2, 147-153. https://doi.org/10.1590/S1516-05722009000200006
29. Santos, G.K.N.; Dutra, K.A.; Barros, R.A.; Camara, C.A.G.; Lira, D.D.; Gusmao, N.B.; Navarro, D.M.A.F. Essential oils from Alpinia purpurata (Zingiberaceae): chemical compostion, oviposition deterrence, larvicidal and antibacterial activity. Industrial Crops and Products 2012, 40, 254-260. http://dx.doi.org/10.1016/j.indcrop.2012.03.020
30. Raj, C.A.; Sophia, D.; Ragavendran, P.; Starlin, T.; Rathi, M.A.; Gopalakrishnan, V.K. Leaf Extract of Alpinia purpurata (Vieill.) K. Schum Screened for Its Phytochemical Constituents and Antibacterial and Anticancer Activities. Journal of Chinese Integrative Medicince 2012, 10:12. https:///doi.org/10.3736/jcim20121219
31. Chan, E.W.C.; Wong, S.K. Phytochemistry and Pharmacology of Ornamental Gingers, Hedychium coronarium and Alpinia Purpurata: A Review. Journal of Integated Medicine 2015, 13:6. http://dx.doi.org/10.1016/S2095-4964(15)60208-4
32. Villaflores, O.; Macabeo, A.P.G.; Aguinaldo, A.M. Phytoconctituents from Alpinia purpurata and Their in Vitro Inhibitory Activity Against Mycobacterium tuberculosis. Pharmacogn Mag 2010, 6:24, 339-344. https:///doi.org/10.4130/0973-1296.71785
33. Batubara, I.; Julita, I.; Darusman, L.K.; Muddathir, A.M.; Mitsunaga, T. Flower Bracts of Temulawak (Curcuma xanthorriza) for Skin Care: Anti-acne and Whitening Agents. Procedia Chemistry 2015, 14, 216-224. https:///doi/org/10.1016/j.proche.2015.03.031
34. Ngadino.; Setiawan; Ernawati; Sudjarwo, S.A. Evaluation of Antimycobacterial Activity of Curcuma xanthorriza Ethanolic Extract Against Mycobacterium tuberculosis H37Rv in Vitro. Veterinary World 2018, 11:3, 368-372. http://doi.org/10.14202/vetworld.2018.368-372
35. Jantan, I.; Saputri, F.C.; Qaisar, M.N.; Buang, F. Correlation Between Chemical Composition of Curcuma domestica and Curcuma xanthorriza and Their Antioxidant Effect on Human Low-density Lipoprotein Oxidation. Evidence-Based complementary and Alternative Medicine 2012, article ID 438356. https:///doi.org/10.1155/2012/438356
36. Malek, S.N.A.; Lee, G.S.; Hong, S.L.; Yaacob, H.L.; Wahab, N.A.; Weber, J.F.A.; Shah, S.A.A. Phytochemical and cytotoxic investigations of Curcuma manga rhizhomes. Molecules 2011, 16, 4539-4548; https://doi.org/10.3390/molecules16064539
37. Sahoo, S.; Parida, R.; Singh, S.; Padhy, R.N.; Nayak, S. Evaluation of Yield, Quality and Antioxidant Activity of Essential Oil of In vitro Propagated Kaempferia galangal Linn. J. of Acute Disease 2014, 124-130. https:///doi.org/10.1016/S2221-6189(14)60028-7
38. Umar, M.I.; Asmawi, M.Z.; Sadikun, A.; Atangwho, I.J.; Yam, M.F.; Altaf, R.; Ahmed, A. Bioactivity-guided Isolation of Ethyl-p-methoxycinnamate, An Anti-Inflammatory Constituent, from Kaempferia galanga L. Extracts. Molecules 2012, 17:7, 8720-34. https:///doi.org/10.3390/molecules17078720
39. Dash, P.R.; Nasrin, M.; Morshed, M.T.I.; Ali, M.S. Study of Antinociceptive Activity of Kaempferia galanga from Bangladesh in Swiss albino Mice. American Journal of Food and Nutrition 2015, 3:3, 64-68. http://doi.org/10.12691/ajfn-3-3-1
40. El-Ghorab, A.H.; Nauman, M.; Anjum, F.M.; Hussain, S.; Nadeem, M. A Comparative Study on Chemical Composition and Antioxidant Activity of Ginger (Zingiber officinale) and Cumin (Cuminum cymimum). Journal of Agrocultural and Food Chemistry 2010, 58, 8231-8237. https:///doi.org/10.1021/jf101202x
41. De Smet, P.A.G.M.; Keller, K.; Hiinsel, R.F. (eds). Adverse Effects of Herbal Drugs, Vol. 3, 1997. Springer-Verlag, Berlin Heidelberg.
42. Yob, N.J.; Joffr, S.M.; Affandi, M.M.R.; Teh, L.K.; Salleh, M.Z. Zingiber zerumbet (L) Smith. A Review of Its Ethnomedicinal, Chemical, and Pharmacological Uses. Evidence-Based complementary alternative medicine 2011. https://doi.org/10.1155/2011/543216
43. Koga, A.Y.; Beltrame, F.L.; Pereira, A.V. Several Aspects of Zingiber zerumbet: A Review. Revista Brasileira de Farmacognosia 2016, 26;3, 385-391. https://doi.org/10.1016/j.bjp.2016.01.006
44. Kamazeri, Tg S.A.; Abdussamah, O.; Taher, M.; Susanti, D; Qaralleh, H. Antimicrobial Activity and Essential Oils of Curcuma aeruginosa, Curcuma manga, and Zingiber cassumunar from Malaysia. Asian Pacific Journal of Tropical Medicine 2012, 202-209. http://doi.org/10.1016/S1995-7645(12)60025-X
45. Chen, H-H.; Chung, C-C.; Wang, H-Y.; Huang, T-C. Application of Taguchi Method to Optimize Extracted Ginger Oil in Different Drying Conditions, IPCBEE 2011, 9.
46. Chandrasekar, V.; Kannan, K.; Priyavarshini.; Gayathri, R. Application of Taguchi Method in Optimization of Process Factors of Ready to Eat Peanut (Arachis hypogaea) and Chutney. Internation Food Research Journal 2015, 22:2, 510-516
47. Commission of the European Communities. 1996. Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substances. Office for Official Publications of European Communities; LuxemburgHuang, Y-K.
48. Koivisto, S. Is Daphnia magna an ecologically representative zooplankton species in Toxicity test?. Environmental Pollution, Vol. 90, No. 2, pp. 263-267, 1995
49. Ebert, D. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology, 2005.
50. McLaughlin, P.A.; et al. Common and Scientific Names of Aquatic Invertebrates from the United States and Canada: Crustaceans. American Fisheries Society Special Publication 31,2005, American Fisheries Society, Maryland, USA.
51. Wang, K.-S.; Lu, C.-Y.; Chang, S.-H. Evaluation of Acute Toxicity and Teratogenic Effects of Plant Growth Regulators by Daphnia magna Embryo Assay. Journal of Hazardous Materials 2011, 190:1-3, 520–528. https://doi.org/10.1016/j.jhazmat.2011.03.068.
Chapter 2
1. Huang, D.; Boxin, O. U.; Prior, R. L. The Chemistry Behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry 2005, 53:6, 1841–1856. https://doi.org/10.1021/jf030723c
2. Saeed, N.; Khan, M. R.; Shabbir, M. Antioxidant Activity, Total Phenolic and Total Flavonoid Contents of Whole Plant Extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine 2012, 12. https://doi.org/10.1186/1472-6882-12-221
3. Xu, D. P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Li, H. B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. International Journal of Molecular Sciences 2017, 18:1, 20–31. https://doi.org/10.3390/ijms18010096
4. Azwanida, N.N. Review on The Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4:3. https://doi.org/10.4172/2167-0412.1000196
5. Ravanfar, R.; Tamadon, A.M.; Niakousari, M. Optimization of Ultrasound Assisted Extraction of Anthocyanins from Red Cabbage using Taguchi Design Method. J Food Technol 2015, 52:12:81, 40-8147. https:///doi.org/10.1007/s13197-015-1880-6
6. Xu, D. P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J., … Li, H. Bin. (2017). Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. International Journal of Molecular Sciences, 18(1), 20–31. https://doi.org/10.3390/ijms18010096
7. Şahin, S. Optimization of Ultrasonic-Assisted Extraction Parameters for Antioxidants from Curcuma longa L. Trakya University Journal of Natural Sciences 2018, 19:2, 121–128. https://doi.org/10.23902/trkjnat.344985
8. Widyowati, R.; Agil, M. Chemical Constituents and Bioactivities of Several Indonesian Plants Typically Used in Jamu. Chemical and Pharmaceutical Bulletin 2018, 66:5, 506–518. https://doi.org/10.1248/cpb.c17-00983
9. Hernández-Rodríguez, G.; Espinosa-Solares, T.; Hernández-Eugenio, G.; Villa-García, M.; Reyes-Trejo, B.; Guerra-Ramírez, D. Influence of Polar Solutions on The Extraction of Phenolic Compounds from Capulín Fruits (Prunus serotina). Journal of the Mexican Chemical Society 2016, 60:2, 73–78. https://doi.org/10.29356/jmcs.v60i2.76
10. Song, J.; Li, D.; Liu, C.; Zhang, Y. Optimized Microwave-assisted Extraction of Total Phenolics (TP) from Ipomoea batatas Leaves and Its Antioxidant Activity. Innovative Food Science and Emerging Technologies 2011, 12:3, 282–287. https://doi.org/10.1016/j.ifset.2011.03.001
11. Wang, S.; Su, T-L.; Ye, J-Y.; Lo, L. Application of Taguchi method in the optimization of antioxidant activity for Australian tea tree, Applied Mechanics and Materials 2014, 595, 253-257. https:///doi.org/10.4028/www.scientific.net/AMM.595.253
12. Chen, H-H.; Chung, C-C.; Wang, H-Y.; Huang, T-C. Application of Taguchi Method to Optimize Extracted Ginger Oil in Different Drying Conditions. International Conference on Food Engineering and Biotechnology, 2011, IPCBEE vol. 9, IACSIT press, Singapore
13. Davis, R.; John, P. Application of Taguchi-Based Design of Experiments for Industrial Chemical Processes. Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes. 2018. Intechopen, https://doi.org/10.5772/intechopen.69501
14. Salacheep, S.; Kasemsiri, P.; Pongsa, U.; Okhawiai, M.; Chindaprasirt, P.; Hiziroglu, S. Optimization of Ultrasound-assisted Extraction of Anthocyanins and Bioactive Compounds from Butterfly Pea Petals Using Taguchi Method and Grey Relational Analysis. Journal Food Sci. Technology 2020. https:///doi.org/10.1007/s13197-020-04404-7
15. Alafiatayo, A. A.; Sahidah, A.; Mahmood, M. Total Anti-oxidant Capacity, Flavonoid, Phenolic Acid and Polyphenol Content in Ten Selected Species of Zingiberaceae rhizomes. African Journal of Traditional Complementary Alternative Medicine 2014, 11:3, 7–13. http://doi.org/ 10.4314/ajtcam.v11i3.2
16. Makasana, J.; Dholakiya, B.Z.; Gajbhiye, N.A.; Raju, S. Extractive Determination of Bioactive Flavonoids from Butterfly Pea (Clitoria ternatea Linn.). Research on Chemical Intermediates 2017, 43, 783–799. https://doi.org/10.1007/s11164-016-2664-y
17. Li, M.; Pare, P. W.; Zhang, J.; Kang, T.; Zhang, Z.; Yang, D.; Xing, H. Antioxidant Capacity Connection with Phenolic and Flavonoid Content in Chinese Medicinal Herbs. Records of Natural Products 2018, 12:3, 239–250. https://doi.org/10.25135/rnp.24.17.08.138
18. Ramadanil; Damry; Rusdi; Hamzah, B.; Zubair, M. S. Traditional Usages and Phytochemical Screenings of Selected Zingiberaceae from Central Sulawesi, Indonesia. Pharmacognosy Journal 2019, 11:3, 505–510. https://doi.org/10.5530/pj.2019.11.80
19. Do, Q. D.; Angkawijaya, A. E.; Tran-Nguyen, P. L.; Huynh, L. H.; Soetaredjo, F. E.; Ismadji, S.; Ju, Y. H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila aromatica. Journal of Food and Drug Analysis 2014, 22:3, 296–302. https://doi.org/10.1016/j.jfda.2013.11.001
20. Sepahpour, S.; Selamat, J.; Manap, M. Y. A.; Khatib, A.; Razis, A. F. A. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems. Molecules 2018, 23:2, 1–17. https://doi.org/10.3390/molecules23020402
21. Zhang, H-F.; Yang, X-H.; Wang, Y. Microwave Assisted Extraction of Secondary Metabolites Plants: Current Status and Future Directions. Trends in Food Sci. and Tech 2011, 22, 672-688. https://doi.org/10.1016/j.tifs.2011.07.003
Chapter 3
3.1
1. Huang, D.; Boxin, O. U.; Prior, R. L. The Chemistry Behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry 2005, 53:6, 1841–1856. https://doi.org/10.1021/jf030723c
2. Saeed, N.; Khan, M. R.; Shabbir, M. Antioxidant Activity, Total Phenolic and Total Flavonoid Contents of Whole Plant Extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine 2012, 12. https://doi.org/10.1186/1472-6882-12-221
3. Li, M.; Pare, P. W.; Zhang, J.; Kang, T.; Zhang, Z.; Yang, D.; Xing, H. Antioxidant Capacity Connection with Phenolic and Flavonoid Content in Chinese Medicinal Herbs. Records of Natural Products 2018, 12:3, 239–250. https://doi.org/10.25135/rnp.24.17.08.138
4. Silva, S.; Ferreira, M.; Oliveira, A. S.; Magalhães, C.; Sousa, M. E.; Pinto, M.; Almeida, I. F. Evolution of The Use of Antioxidants in Anti-ageing Cosmetics. International Journal of Cosmetic Science 2019, 41:4, 378–386. https://doi.org/10.1111/ics.12551
5. Mukherjee, P. K.; Maity, N.; Nema, N. K.; Sarkar, B. K. Bioactive Compounds from Natural Resources Against Skin Aging. Phytomedicine 2011, 19:1, 64–73. https://doi.org/10.1016/j.phymed.2011.10.003
6. Xu, D. P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Li, H. B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. International Journal of Molecular Sciences 2017, 18:1, 20–31. https://doi.org/10.3390/ijms18010096
7. Cahyaningsih, R.; Brehm, J.M.; Maxted, N. Gap Analysis of Indonesian Priority Medicinal Plant Species as Part of Their Conservation Planning. Global Ecology and Conservation 2021, 26, e01459. https://doi.org/10.1016/j.gecco.2021.e01459
8. Ramadanil; Damry; Rusdi; Hamzah, B.; Zubair, M. S. Traditional Usages and Phytochemical Screenings of Selected Zingiberaceae from Central Sulawesi, Indonesia. Pharmacognosy Journal 2019, 11:3, 505–510. https://doi.org/10.5530/pj.2019.11.80
9. Widyowati, R.; Agil, M. Chemical Constituents and Bioactivities of Several Indonesian Plants Typically Used in Jamu. Chemical and Pharmaceutical Bulletin 2018, 66:5, 506–518. https://doi.org/10.1248/cpb.c17-00983
10. Do, Q. D.; Angkawijaya, A. E.; Tran-Nguyen, P. L.; Huynh, L. H.; Soetaredjo, F. E.; Ismadji, S.; Ju, Y. H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila aromatica. Journal of Food and Drug Analysis 2014, 22:3, 296–302. https://doi.org/10.1016/j.jfda.2013.11.001
11. Guardado, E.; Molina, E.; Joo, M.; Uriarte, E. Antioxidant and Pro-oxidant Effects of Polyphenolic Compounds and Structure-Activity Relationship Evidence. Nutrition, Well-Being and Health. 2012. https://doi.org/10.5772/29471
12. Song, J.; Li, D.; Liu, C.; Zhang, Y. Optimized Microwave-Assisted Extraction of Total Phenolics (TP) from Ipomoea batatas Leaves and Its Antioxidant Activity. Innovative Food Science and Emerging Technologies 2011, 12;3, 282–287. https://doi.org/10.1016/j.ifset.2011.03.001
13. Hernández-Rodríguez, G.; Espinosa-Solares, T.; Hernández-Eugenio, G.; Villa-García, M.; Reyes-Trejo, B.; Guerra-Ramírez, D. Influence of Polar Solutions on The Extraction of Phenolic Compounds from Capulín Fruits (Prunus serotina). Journal of the Mexican Chemical Society 2016, 60:2, 73–78. https://doi.org/10.29356/jmcs.v60i2.76
14. Davis, R.; John, P. Application of Taguchi-based Design of Experiments for Industrial Chemical Processes. Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes. 2018. Intechopen. https://doi.org/10.5772/intechopen.69501
15. Wang, S. W.; Su, T. L.; Ye, J. Y.; Lo, L. Application of Taguchi Method in The Optimization of Antioxidant Activity for Australian Tea Tree. Applied Mechanics and Materials 2014, 595, 253–257. https://doi.org/10.4028/www.scientific.net/AMM.595.253
16. Şahin, S. Optimization of Ultrasonic-Assisted Extraction Parameters for Antioxidants from Curcuma longa L. Trakya University Journal of Natural Sciences 2018, 19:2, 121–128. https://doi.org/10.23902/trkjnat.344985
17. Alafiatayo, A. A.; Sahidah, A.; Mahmood, M. Total Anti-oxidant Capacity, Flavonoid, Phenolic Acid and Polyphenol Content in Ten Selected Species of Zingiberaceae rhizomes. African Journal of Traditional Complementary Alternative Medicine 2014, 11:3, 7–13. http://doi.org/ 10.4314/ajtcam.v11i3.2
18. Kuppusamy, P.; Lee, K. D.; Song, C. E.; Ilavenil, S.; Srigopalram, S.; Arasu, M. V.; Choi, K. C. Quantification of Major Phenolic and Flavonoid Markers in Forage Crop Lolium multiflorum using HPLC-DAD. Brazilian Journal of Pharmacognosy 2018, 28:3, 282–288. https://doi.org/10.1016/j.bjp.2018.03.006
19. Azwanida, N.N. Review on The Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4:3. https://doi.org/10.4172/2167-0412.1000196
20. Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant Activity of Some Algerian Medicinal Plant Extracts Containing Phenolic Compounds. Food Chemistry 2006, 97, 654-660. https://doi.org/10.1016/j.foodchem.2005.04.028
21. Kainama, H.; Fatmawati, S.; Santoso, M.; Papilaya, P.M.; Ersam, T. The Relationship of Free Radical Scavenging and Total Phenolic and Flavonoid Contents of Garcinia lasoar PAM. Pharm. Chem. J 2020, 53(12). https://doi.org/10.1007/s11094-020-02139-5
22. Sepahpour, S.; Selamat, J.; Manap, M. Y. A.; Khatib, A.; Razis, A. F. A. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems. Molecules 2018, 23:2, 1–17. https://doi.org/10.3390/molecules23020402
23. Akarchariya, N.; Sirilun, S.; Julsrigival, J.; Chansakaowa, S. Chemical Profiling and Antimicrobial Activity of Essential Oil from Curcuma aeruginosa Roxb., Curcuma glans K. Larsen & J. Mood and Curcuma cf. xanthorrhiza Roxb. collected in Thailand. Asian Pacific Journal of Tropical Biomedicine 2017, 7:10, 881–885. https://doi.org/10.1016/j.apjtb.2017.09.009
24. Seal, T. Quantitative HPLC Analysis of Phenolic Acids, Flavonoids and Ascorbic Acid in Four Different Solvent Extracts of Two Wild Edible Leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern Region in India. Journal of Applied Pharmaceutical Science 2016, 6:2, 157–166. https://doi.org/10.7324/JAPS.2016.60225
25. Ovando-Domínguez, M. Y.; Luján-Hidalgo, M. C.; González-Mendoza, D.; Vargas-Díaz, A. A.; Ruiz-Lau, N.; Gutiérrez-Miceli, F. A.; Lecona-Guzmán, C. A. Total Phenols, Flavonoids and Antioxidant Activity in Annona muricata and Annona purpurea Callus Culture. Phyton 2019, 88:2, 139–147. https://doi.org/10.32604/phyton.2019.06546
26. Aryal, S.; Baniya, M. K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8:4. https://doi.org/10.3390/plants8040096
27. Jantan, I.; Saputri, F. C.; Qaisar, M. N.; Buang, F. Correlation Between Chemical Composition of Curcuma domestica and Curcuma xanthorrhiza and their antioxidant effect on human low-density lipoprotein oxidation. Evidence-Based Complementary and Alternative Medicine 2012. https://doi.org/10.1155/2012/438356
28. Yusuf, N. A.; Suffian, M.; Annuar, M.; Khalid, N. Existence of Bioactive Flavonoids in Rhizomes and Plant Cell Cultures of Boesenbergia rotunda (L.) Mansf. Kulturpfl. Australian Journal of Crop Science 2013, 7:6, 730–734.
29. Raj, C.A.; Sophia, D.; Ragavendran, P.; Sarlin, T.; Rathi, M. A.; Gopalakrishnan, V. K. Leaf extract of Alpinia purpurata (VIeill.) K. Schum Screened for Its Phytochemical Constituents and Anticancer Activities. Journal of Chinese Integrative medicine 2012,10:12, 1460-1464. https://doi.org/10.3736/jcim20121219
30. Sahoo, S.; Parida, R.; Singh, S.; Padhy, R.N.; Nayak, S. Evaluation of Yield, Quality and Antioxidant Activity of Essential Oil of In vitro Propagated Kaempferia galangal Linn. Journal of Acute Disease 2014, 124-130. https://doi.org/10.1016/S2221-6189(14)60028-7
31. Sanchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velazquez, D.A. The Folin Ciocalteau Assay Revisited: Improvement of Its Specifity for Total Phenolic Content Determination. Analytical Method 2013, 5, 5990. https://doi.org/10.1039/c3ay41125g
32. Pereira, D.M.; Valentao, P.; Pereira, J.A.; Andrade, P.B. Phenolics: From Chemistry to Biology. Molecules 2009, 14, 2202-2211. https://doi.org/10.3390/molecules14062202
33. Ignat, I.; Volf, I.; Popa, V.I. A Critical Review of Methods for Characterization of Polyphenolic Compounds in Fruits and Vegetables. Food Chemistry 2011, 126, 1821-1835. https://doi.org/10.1016/j.foodchem.2010.12.026
34. Tsao, R.; Yang, R. Optimization of a New Mobile Phase to Know The Complex and Real Polyphenolic Composition: Towards a Total Phenolic Index Using High-Performance Liquid Chromatography. Journal of Chromatography A 2003, 1018, 29-40. https://doi.org/10.1016/j.chroma.2003.08.034
Chapter 4
1. Huang, Y-K.; Wu, Y-H.; Lu, P-H.; Tu, M-E. Contact Allergy to Preservatives in Taiwan Between 1996 and 2015. Dermatol Sin. 2019, 37:3. https://doi.org/10.4103/ds.ds_21_18
2. Neza, E.; Centini, M. Microbiologically Contaminated and Over-preserved Cosmetic Products According RApex 2008-2014. Cosmetics 2016, 3:3. https://doi.org/10.3390/cosmetics3010003
3. Kim, D.; Cui, R.; Moon, J.; Kwak, J.I.; Kim, S.W.; Kim, D.; An, Y-J. Estimation of The Soil Hazardous Concentration of Methylparaben Using a Species Sensitivity Approach. Environmental Polution 2018. https://doi.org/10.1016/j.envpol.2018.07.053
4. Petric, Z.; Ruzic, J.; Zuntar, I. The Controversies of Parabens- An Overview Nowadays. Acta Pharm. 2021, 71, 17-32. https://doi.org/10.2478/acph-2021-0001
5. Wang, J.; Liu, Y.; Kam, W.R.; Li, Y.; Sullivan, D.A. Toxicity of The Cosmetics Preservative Parabens, Phenoxyethanol and Chlorphenesin on Human Meibomian Gland Epithelial Cells. Experimental Eye Research 2020, 196, 108057. https://doi.org/10.1016/j.exer.2020.108057
6. Bledzka, D.; Gromadzinska, J.; Wasowicz, W. Parabens from Environmental Studies to Human Health 2014, 67, 27-42. http://dx.doi.org/10.1016/j.envint.2014.02.007
7. Eriksson, E.; Andersen, H.R.; Ledin, A. Substance Flow Analysis of Parabens in Denmark Complemented With a Survey of Presence and Frequency in Various Commodities, Journal of Hazardous Materials 2008, 156, 240-259. https://doi.org/10.1016/j.jhazmat.2007.12.022
8. Brausch, J.M.; Rand, G.M. A Review of Personal Care Products in The Aquatic Environment: Environmental Concentrations and Toxicity. Chemosphere 2011, 82, 1518-1532. https://doi.org/10.1016/j.chemosphere.2010.11.018
9. Akgunduz, M.C.; Cavusoglu, K.; Yakin, E. The Potential Risk Assessment of Phenoxyethanol With a Versatile Model System. Scientific Reports 2020, 10:1209. https://doi.org/10.1038/s41598-020-58170-9
10. Kimura, K.; Kameda, Y.; Yamamoto, H.; Nakada, N.; Tamura, I.; Miyazaki, M.; Masunaga, S. Occurrence of Preservatives and Antimicrobials in Japanese River. Chemosphere 2014, 107, 393-399
11. Evans, W. A.; Davies, P. J.; McRae, C. The Occurrence of Methyl, Ethyl, Propyl, and Butyl Parabens in The Urban Rivers and Storm waters of Sydney, Australia. Environmental Science: Water Research and Technology 2016, 2:4, 733-742. https://doi.org/10.1039/c5ew00240k
12. Juliano, C.; Magrini, G.A. Cosmetics Ingredients as Emerging Pollutants of Environmental and Health Concern. A Mini Review. Cosmetics 2017, 4:11. https://doi.org/10.3390/cosmetics4020011
13. Yamamoto, H.; Tamura, I.; Hirata, Y.; Kato, J.; Kagota, K.; Katsuki, S.; Yamamoto, A.; Kagami, Y.; Tatarazako, N. Aquatic Toxicity and Ecological Risk Assessment of Seven Parabens: Individual and Additive Approach. Science of The Total Environment 2011, 410-411, 102-111. https://doi.org/10.1016/j.scitontev.2011.09.040
14. Haman, C.; Dauchy, X.; Rosin, C.; Munoz, J-F. Occurrence, Fate and Behavior of Parabens in Aquatic Environments: A Review. Water Research 2015, 68, 1-11. http://doi.org/10.1016/j.watres.2014.09.030
15. Fransway, A.F.; Fransway, P.J.; Belsito, D.V.; Yiannias, J.A. Paraben Toxicology. Dermatitis 2019, 30:1, 32-45. https://doi.org/10.1097/der.0000000000000428.
16. Ma, W-L.; Zhao, X.; Zhang, Z-F; Xu, T-F.; Zhu, F.J.; Li, Y-F. Concentrations and Fate of Parabens and Their Metabolites in Two Typical Wastewater Treatment Plants in Northeastern China. Science of The Total Environment 2018, 644, 754-761. https://doi.org/10.1016/j.scitotenv.2018.06.358
17. Liao, C.; Lee, S.; Moon, H-B.; Yamashita, N.; Kannan, K. Parabens in Sediment and Sewage Sludge from The United States, Japan, and Korea: Spatial Distribution and Temporal Trends. Environmental Science and Technology 2013, 47, 10895-10902. https://doi.org/10.1021/es402574k
18. 18. Annexes of the ASEAN Cosmetic Directive, Annex VI, List of preservatives allowed for use in cosmetics, Updated Nov 2020
19. Ross, G. (ed). A perspective on The Safety of Cosmetic Products: A Position Paper of The American Council on Science and Health. International Journal of Toxicology 2006, 25, 269-277. https://doi.org/10.1080/10915810600746049
20. Farre, M.; Barcello, D. Toxicity Testing of Wastewater and Sewage Sludge by Biosensors, Bioassays and Chemical Analysis. Trends in Analytical Chemistry 2003, 22:5, 299-310. https://doi.org/10.1016/S0165-9936(03)00504-1
21. Ren, Z.; Li, Z.; Ma, M.; Wang, Z.,;Fu, R. Behavioral Responses of Daphnia magna to Stresses of Chemicals With Different Toxic Characteristics. Bull Environ Contam Toxicol 2009, 82:3, 310-316. https://doi.org/10.1007/s00128-008-9588-1
22. 21. OECD guidelines, Guidelines for the Testing of Chemicals. Guideline 202: Daphnia sp., Acute Immobilization test. OECD, 2004.
23. Wu, T.; Wang, C.; Wang, X.; Ma, Q. Simultaneous Determination of 21 Preservatives in Cosmetics by Ultra-Performance Liquid Chromatography. International Journal of Cosmetic Science 2008, 30, 367-372
24. Ocana-Gonzales, J.A.; Villar-Navarro, Ramos-Payan, M., Fernandez-Torres, R., Bello-Lopez, M.A. New Developments in The Extraction and Determination or Parabens in Cosmetics and Environmental Samples: A review. Analytica Chimica Acta 2015, 858, 1-15. https://dx.doi.org/10.1016/j.aca.2014.07.002
25. NIEA B901.14 B. 2013. Acute Toxicity Test Method for Water Samples-Daphnia Static Water Method. NIEA.
26. Haunschmidt, M.; Buchberger, W.; Klampfl, C.W.; Hertsens, R. Identification and Semi-quantitative Analysis of Parabens and UV Filters in Cosmetic Products by Direct-Analysis-in-real-time Mass Spectrometry and Gas Chromatography with Mass Spectrometric Detection. Anal. Methods 2011, 3:99, 99-104. https://dx.doi.org/10.1039/c0ay00588f
27. Villegas-Navarro, A.; Romero Gonzales, M.C.; Lopez, E.R; Aguillar, R.D.; Marcal, W.S. Evaluation of Daphnia magna as an Indicator of Toxicity and Treatment Efficacy of Textile Wastewater. Environment International 1999, 25:5, 619-624. https://dx.doi.org/10.1016/s0160-4120(99)00034-3
28. Terasaki, M.; Makino, M.; Tatarazako, N. Acute Toxicity of Parabens and Their Chlorinated By-Products with Daphnia magna and Vibrio fischeri Bioassays. J. of Applied Toxicology 2008, 29, 242-247. https://doi.org/10.1002/jat.1402
29. Moreira, R.A.; Mansano, A. S.; Da Silva, L.C.; Rocha, O. A Comparative Study of The Acute Toxicity of The Herbicide Atrazine to Cladocerans Daphnia magna, Ceriodaphnia silvestrii and Macrothrix flabelligera. Acta Limnologica Brasiliensia 2014, 26:1, 1-8. https://dx.doi.org/10.1590/s2179-975x2014000100002
30. Terasaki, M.; Takemura, Y.; Makino, M. Paraben-Chlorinated Derivatives in River Water. Environ Chem Lett 2012, 10, 401-406. https://doi.org/10.1007/s10311-012-0367-1
31. Bennani, I.; Chentoufi, M.A.; El Karbane, M.; El Otmani, I.S.; Cheikh, A.; Laatiris, A.; El Harti, J.; Bouatia, M. Preservative stability: stability study of parabens under different condition of stress degradation. Int. J. Res. Pharm. Sci. 2020, 11(3), 4187-4194. https://doi.org/10.26452/ijrps.v11i3.2626
32. Pavlaki, M.D., Ferreira, A.L.G., Soares, A.M.V.M., Loureiro, S. (2014). Changes of chemical chronic toxicity to Daphnia magna under different food regimes. Ecotoxicology and environmental safety, 109, 48-55. http://dx.doi.org/10.1016/j.ecoenv.2014.07.039
33. Imamovic, B., Sober, M., Becic, E. (2012). HPLC determination of some frequently used parabens in sunscreen. International Journal of pharmacy teaching & practices, 3(1), 219-224
34. Lee, J., Bang, S.H., Kim, Y-H., Min, J. (20180. Toxicities of four parabens and their mixture to Daphnia magna and Aliivibrio fischeri. Environmental Health and toxicology, 33(4), article id: e2018018. https://doi.org/10.5620/eht.e2018018
35. Hodges, G. (1997). QSAR studies of surfactant toxicity to Daphnia magna. Liverpool John Moores University, Ph.D Thesis (unpublished)
Lee, J., Park, N., Kho, Y., Lee, K., Ji, K. (2016). Phototoxicity and chronic toxicity of methyl paraben and 1,2-hexanediol in Daphnia magna. Ecotoxicology. https://doi.org/10.1007/s10646-016-1743-6