簡易檢索 / 詳目顯示

研究生: 游濟陽
Yu, Chi-Yang
論文名稱: 錫與銅鋅基材經迴銲及熱處理後之界面反應
Interfacial Reaction between Sn and Cu-xZn Substrate after Reflow and Thermal Aging
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 84
中文關鍵詞: 銅鋅合金金屬墊層無鉛銲料界面反應
外文關鍵詞: Cu-Zn alloy, Under bump metallurgy, Lead-free solder, Interfacial reaction
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主旨是將鋅添加至銅金屬墊層以改善銲料接合的可靠度。實驗的設計是以純錫為銲料與不同鋅濃度的銅鋅基材做接合,其中鋅濃度分別為15以及30 wt.%,形成Sn/Cu-xZn之銲接系統。此Sn/Cu-xZn銲接系統迴銲於250 ℃ 2分鐘後,再經過150℃,10、20以及40天的熱處理。當Zn含量在Sn/Cu-xZn系統中從15 wt.%增加至30 wt.%時,Cu3Sn與Cu6Sn5將分別地被抑制。此外,沒有任何Kirkendall孔洞生成於Sn與Cu-Zn的界面之間。經過40天熱處理後,不同的多層介金屬相,[Cu6Sn5/Cu3Sn/Cu(Zn)] 與 [Cu6Sn5/Cu(Zn,Sn)/CuZn]分別生成於 Sn/Cu-15Zn 與 Sn/Cu-30Zn 系統之界面。 Sn/Cu-Zn 銲接系統中相的生長機制可藉由場發式電子微探儀 (FE-EPMA) 精確的定量分析,進而搭配 Sn-Cu-Zn 三元相圖得到完整的解釋。
    在純錫與銅鋅合金固態反應的過程中, Cu(Zn,Sn) 與 CuZn 相依序生成在 Cu-Sn 化合物下方。在熱處理的過程中,當鋅在 Cu6Sn5 內的增加至飽和濃度時, Cu(Zn,Sn) 會析出於Cu6Sn5的內部,而使得 Cu6(Sn,Zn)5 轉變成 CuZn 相。這樣的 Cu6(Sn,Zn)5 與 CuZn 間相轉變機制與接合界面上 Kirkendall 孔洞的抑制有很明顯的關係。
    在純錫與不同銅鋅基材間液態反應的過程中, Cu6Sn5是主要且共同的界面生成物。經過 250 oC 迴銲後, Sn/Cu-30Zn 界面上的 Cu6Sn5 的形貌呈現出具有多刻面的柱狀結構,且沿著特定方向成長。另一方面,圓球形與扇貝狀的 Cu6Sn5 分別生成於 Sn/Cu-15Zn 與 Sn/Cu 的接合界面處。鋅含量不同造成 Cu6Sn5 形貌差異的現象可藉由Jackson’s parameter (α) 來解釋。隨著鋅含量在Cu6(Sn,Zn)5 化合物中增加, Cu6(Sn,Zn)5 的生成能變化也相對提升。此外,整體介金屬化合物的平均生成厚度隨著鋅含量在銅鋅基板中增加而減少。根據這些研究結果可以得知銅鋅合金是個具有潛力的金屬墊層材料。


    Zn addition to Cu under bump metallurgy (UBM) in the solder joint was the subject of this study. An alternative design was carried out to fabricate pure Sn as the solder and Cu-xZn (x=15 and 30 wt.%) as the UBM to form the reaction couple. As Zn increased from 15 to 30 wt.% in Sn/Cu-Zn system, the growth of both Cu3Sn and Cu6Sn5 could be suppressed. Besides, no Kirkendall void was observed at the interface in both Sn/Cu-Zn couples during heat treatment. After 40-day aging, different multilayered phases of [Cu6Sn5/Cu3Sn/Cu(Zn)] and [Cu6Sn5/Cu(Zn,Sn)/CuZn] formed at the interface of [Sn/Cu-15Zn] and [Sn/Cu-30Zn], respectively. Intermetallic compounds (IMCs) growth mechanism during aging was discussed and proposed on the basis of the composition variation in the joint assembly with the aid of electron microscopic characterization and Sn-Cu-Zn ternary phase diagram. According to these analyses of interfacial morphology and IMCs formation in Sn/Cu-Zn system, Cu-Zn may be a potential UBM for retarding the Cu pad consumption in solder joints.
    In the solid reaction of pure Sn solder and Cu-Zn alloy, Cu(Zn,Sn) and CuZn phases were formed adjacent to the Cu-Sn compounds in sequence. In this study, Cu(Zn,Sn) phase was precipitated inside Cu6Sn5 as the accumulation of Zn atoms in Cu6Sn5 reached the saturated concentration. Finally, Cu(Zn,Sn) phase would transform into the CuZn phase during annealing. The growth mechanism of CuZn phase was related to the suppression of the Kirkendall voids formation at the interface.
    In the liquid reaction of pure Sn on the different Cu-xZn (x= 0, 15 and 30 wt.%) substrates, Cu6Sn5 was the dominating product at each interface. After reflow at 250 oC, the Cu6Sn5 morphology was faceted pillar in the Sn/Cu-30Zn system and it grew along the specific direction with the extended wetting time. On the other hand, round and scallop-like Cu6Sn5 were formed in the Sn/Cu-15Zn and Sn/Cu systems, respectively. The phenomenon can be explained by Jackson’s parameter, which was used to correlate the morphology variation with the formation enthalpy. It was noted that the higher Zn concentration in the Cu6Sn5 led to the larger energy change in Cu6(Sn,Zn)5 formation. Moreover, the average thickness of total IMCs grew slowly as the Zn content in Cu-Zn substrate increased.

    List of Tables………………………………………………………….. III Figures Caption………………………………………………………. IV Abstract…………………………………………............................... VIII Chapter I Introduction………………………………………………….1 1.1 Background…………………………………………....................1 1.2 Motivations and Goals in This Study………………………...….1 Chapter II Literature Review……….………………………...………..4 2.1 Electronic Package……………………………………………….4 2.2 Flip Chip Technology…………………………...……………….5 2.3 Solder Bump……………………………………………………..6 2.4 Under Bump Metallization………………………………………7 2.4.1 Cu-Based UBM…………………………………………....7 2.4.2 Metallurgical Reactions in Solder Joints…….....................8 2.4.3 Metallurgical Reactions between Solders and Cu-Based UBM………………………………………………………….....8 2.4.4 The Critical Issues of Cu UBM and Sn-Ag-Cu Solder Joints…………………………………………………………….9 2.5 Zn Addition to Sn-Based Solder Alloy on Cu-Based UBM…....10 2.5.1 The Effects of Sn-Based Solder with Minor Zn Addition on Interfacial Reaction and Microstructure Variation……………..10 2.5.2 Effect of Zn on the Intermetallics Formation and Reliability of Sn-3.5Ag Solder on a Cu Pad……………………………….12 Chapter III Experimental Procedure…………………………….…..33 3.1 Sample preparation……………………………..……………….33 3.1.1 Cross-Section Samples……………………...……………..33 3.1.2 Top-View Samples………………………...……………….34 3.2 Analysis methods………………………………………….…....34 Chapter IV Results and Discussion…………….……………………..37 4.1 Interfacial Morphology and IMCs Growth after Reflow and Aging……………………………………………………………37 4.2 Quantitative Analysis of the Composition Variation at the Interface…………………………………………………………39 4.3 The Mechanism of IMCs Formation at the Interface of Sn/Cu-Zn………………………………………………………..43 4.4 Phase Transformation from Cu6Sn5 into CuZn after Long Time Aging……………………………………………………………45 4.5 Zn-induced Cu6Sn5 Morphology Variation in Sn/Cu-Zn Liquid Reaction………………………………………………………....49 Chapter V Conclusions…………………………….…………………..70 References………………………………………………….……….......73 Publication Lists…………………………………………………….…83 International Conference Presentation………………….……………84

    1. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Mater. Sci. Eng. R: Rep. 27, 95 (2000).
    2. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, “Pb-Free Solders for Flip-Chip Interconnects”, JOM 53, 1047 (2001).
    3. T. Laurila, V. Vuorinen, and J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Mater. Sci. Eng. R: Rep. 49, 1 (2005).
    4. K. Sakuma, P.S. Andry, B. Dang, J. Maria, C.K. Tsang, C. Patel, S.L. Wright, B. Webb, E. Sprogis, S.K. Kang, R. Polastre, R. Horton, and J.U. Knickerbocker, “3D Chip Stacking Technology with Low-Volume Lead-Free Interconnections”, Electronic Components and Technology Conf. Proc. 57th, p. 627 (2007).
    5. K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita, and K. Takahashi, “Micro Cu Bump Interconnection on 3D Chip Stacking Technology”, Jpn. J. Appl. Phys., 43, 2264 (2004).
    6. G.Y. Jang, J.G. Duh, H. Takahashi, S.W. Lu, and J.C. Chen, “The Influence of Cu Content on Compound Formation near Chip Side for the Flip Chip Sn-3.0Ag-(0.5 or 1.5)Cu Solder Bump During Aging”, J. Electron. Mater. 35, 1745 (2006).
    7. W. Peng, E. Monlevade, and M.E. Marques, “Effect of Thermal Aging on the Interfacial Structure of SnAgCu Solder Joints on Cu”, Microelectron. Reliab. 47, 2161 (2007).
    8. X. Deng, R.S. Sidhu, P, Johnson, and N. Chaela, “Influence of Reflow and Thermal Aging on the Shear Strength and Fracture Behavior of Sn-3.5Ag Solder/Cu Joints”, Metall. Mater. Trans. A 36A, 55 (2005).
    9. Y.K. Jee, Y.H. Ko, and J. Yu, “Effect of Zn on the Intermetallics Formation and Reliability of Sn-3.5Ag Solder on a Cu Pad”, J. Mater. Res. 22, 1879 (2007).
    10. T.C. Chiu, K. Zeng, R. Stierman, D. Edwards, and K. Ano, “Effect of Thermal Aging on Board Level Drop Reliability for Pb-free BGA Packages”, Proc. 54th Electronic Components and Technology Conf., pp. 1256-1262.
    11. J. Yu and J.Y. Kim, “Effects of Residual S on Kirkendall Void Formation at Cu/Sn–3.5Ag Solder Joints”, Acta. Mater. 56, 5514 (2008).
    12. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, and K.N. Tu, “Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and Its Effect on Joint Reliability”, J. Appl. Phys. 97, 024508 (2005).
    13. K.S. Kim, S.H. Huh, K. Suganuma, “Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu”, Microelectron. Reliab. 43, 259 (2003).
    14. I.E. Anderson and J.L. Harringa, “Suppression of Void Coalescence in Thermal Aging of Tin-silver-copper-X Solder Joints”, J. Electron. Mater. 35, 94 (2006).

    15. C.M.L. Wua, D.Q. Yua, C.M.T. Lawa, and L. Wangb, “Properties of lead-free solder alloys with rare earth element additions”, Mater. Sci. Eng. R: Rep. 44, 1 (2004).
    16. M. McCormack and S. Jin, “Progress in the Design of New Lead-free Solder Alloys”, JOM 45, 36 (1993).
    17. M. McCormack and S. Jin, “Improved Mechanical-properties in New, Pb-free Solder Alloys”, J. Electron. Mater. 23, 635 (1994).
    18. A. Fawzy, “Effect of Zn Addition, Strain Rate and Deformation Temperature on the Tensile Properties of Sn-3.3 wt.% Ag Solder Alloy”, Mater. Charact. 58, 323 (2007).
    19. S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S. Cho, J. Yu, and W.K. Choi, “Controlling Ag3Sn Plate Formation in Near-Ternary-Eutectic Sn-Ag-Cu Solder by Minor Zn Alloying”, JOM 56, 34 (2004).
    20. S.K. Kang, D. Leonard, D.Y. Shih, L. Gignac, D.W. Henderson, S. Cho, and J. Yu, “Interfacial Reactions of Sn-Ag-Cu Solders Modified by Minor Zn Alloying Addition”, J. Electron. Mater. 35, 479 (2006).
    21. M.G. Cho, S.K. Kang, D.Y. Shih, and H.M. Lee, “Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging”, J. Electron. Mater. 36, 1501 (2007).
    22. C. Yu, H. Lu, and S. Li, “Effect of Zn Addition on the Formation and Growth of Intermetallic Compound at Sn-3.5 wt% Ag/Cu Interface”, J. Alloys Compd. 460, 594 (2008).
    23. F.J. Wang, F. Gao, X. Ma, and Y.Y. Qian, “Depressing Effect of 0.2wt.%Zn Addition into Sn-3.0Ag-0.5Cu Solder Alloy on the Intermetallic Growth with Cu Substrate During Isothermal Aging”, J. Electron. Mater. 35, 1818 (2006).
    24. A.A. El-Daly, A.M. Abdel-Daiem, A.N. Abdel-Rahman, and S.M. Mohammed, “Effect of Zn-addition and Structural Transformation on the Creep Behaviour of Pb-10 wt.% Sn Alloy”, Mater. Chem. Phys. 85, 163 (2004).
    25. F.J. Wang, X. Ma, and Y. Qian, “Improvement of Microstructure and Interface Structure of Eutectic Sn-0.7Cu Solder with Small Amount of Zn Addition”, Scripta Mater. 53, 699 (2005).
    26. S.C. Yang, C.E. Ho, C.W. Chang, and C.R. Kao, “Strong Zn Concentration Effect on the Soldering Reactions between Sn-based Solders and Cu”, J. Mater. Res. 21, 2436 (2006).
    27. S.C. Yang, Y.W. Wang, C.C. Chang, and C.R. Kao, “Analysis and Experimental Verification of the Volume Effect in the Reaction between Zn-Doped Solders and Cu”, J. Electron. Mater. 37, 1591 (2008).
    28. M.G. Cho, S. Seo, and H.M. Lee, “Wettability and Interfacial Reactions of Sn-based Pb-free Solders with Cu-xZn Alloy Under Bump Metallurgies”, J. Alloys Compd. 474, 510 (2009).
    29. C.Y. Oh, H. Roh, Y.M. Kim, J.S. Lee, H.Y. Cho, and Y. Kim, “A New Solder Wetting Layer for Pb-free Solders”, J. Mater. Res. 24, 297 (2009).

    30. C.Y. Yu, K.J. Wang, and J.G. Duh, “Interfacial Reaction of Sn and Cu-xZn Substrate after Reflow and Thermal Aging”, J. Electron. Mater. (in press).
    31. R.R. Tummala and E. J. Rymaszewski, “Microelectronics packaging handbook 2nd edition”, Van Nostrand Reihold, New York, (1997).
    32. J.H. Lau, “Ball grid array technology”, McGraw-Hill, New York, (1995).
    33. L. F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13, 239 (1969).
    34. P.A. Totta, R. P. Sopher, “SLT device metallurgy and its monolithic extensions” IBM J. Res. Develop. 13, 226 (1969).
    35. J.H. Lau and S.W.R. Lee, “Chip scale package, CSP: Design, Materials, Process and Applications”, McGraw-Hill, New York, (1999).
    36. K.N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology”, Mater. Sci. Eng. R 34, 1 (2001).
    37. C.A. Harper, “Electronic packaging and interconnection handbook, 3rd edition”, McGraw-Hill, New York, (2000).
    38. J.W. Morris, J.L.F. Goldstein and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solder”, JOM 45, 25 (1993).
    39. R.E. Reed-Hill and R. Abbaschian, “Physical metallurgy principles”, PWS, Boston, (1994).
    40. W.R. Lewis, “Notes on soldering”, Tin Research Institute, 66, (1961).
    41. J.H. Lau, “Flip Chip Technologies”, McGraw-Hill, New York, pp. 26-30 (1996).
    42. A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Spalling of Cu6Sn5 Spheroids in the Soldering Reaction of Eutectic SnPb on Cr/Cu/Au Thin Films”, J. Appl. Phys. 80, 2774 (1996).
    43. H.K. Kim, K.N. Tu and P.A. Totta, “Ripening-assisted Asymmetric Spalling of Cu-Sn Compound Spheroids in Solder Joint on Si Wafer”, Appl. Phys. Lett. 68, 2204 (1996).
    44. J.L. Fang, “Bondability & Solderability of Neutral Electroless Gold”, Plat. Surf. Finish. 88, 44 (2001).
    45. P. Snugovsky, P. Arrowsmith, M. Romansky, “Electroless Ni/immersion Au Interconnects: Investigation of Black Pad in Wire Bonds and Solder Joints”, J. Electron. Mater. 30, 1262 (2001).
    46. K.J. Zeng, R. Stierman, T. C. Chiu, and D. Edwards, “Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and Its Effect on Joint Reliability”, J. Appl. Phys. 97, 024508 (2005)
    47. T.T. Mattila, J.K. Kivilahti, “Failure Mechanisms of Lead-free Chip Scale Package Interconnections under Fast Mechanical Loading”, J. Electron. Mater. 34, 969 (2005).
    48. N. Shaigan, S.N. Ashrafizadeh, M.S.H. Bafghi, S. Rastegari, “Elimination of the Corrosion of Ni-P Substrates During Electroless Gold Plating”, J. Electrochem. Soc. 152, C173 (2005).
    49. K. Sugiura, “Advanced Analysis Technology Supporting SiP”, Jeol News. 40, 24 (2005).
    50. K.J. Zeng, R. Stierman, D. Abbott, and M. Murtuza, “The Root Cause of Black Pad Failure of Solder Joints with Electroless Ni/immersion Gold Plating”, JOM. 58, 75 (2006).
    51. Y.D. Jeon, Y.B. Lee and Y.S. Choi, “Thin Electroless Cu/OSP on Electroless Ni as a Novel Surface Finish for Flip Chip Solder Joints”, Electronic Components and Technology Conference. Proceedings, p.119 (2006).
    52. N. Biunno, “A Root Cause Failure Mechanism for Solder Joint Integrity of Electroless Nickel/Immersion Gold Surface Finishes”, a report from HADCO Santa Clara, Inc.
    53. B.K. Kim, S.J. Lee, J.Y. Kim, K.Y. Ji, Y.J. Yoon, M.Y. Kim, S.H. Park, and J.S. Yoo, “Origin of Surface Defects in PCB Final Finishes by the Electroless Nickel Immersion Gold Process”, J. Electron. Mater. 37527 (2008).
    54. R.G. Werner, D.R. Frear, J. DeRosa and E. Sorongon, “Flip chip packaging” Int. Symp. on Advanced Packaging Materials (Braselton, GA, USA, 1999), pp. 246-251 (1999).
    55. K. Zeng and J.K. Kivilahti, “Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems”, J. Electron. Mater. 30, 35 (2001).
    56. T.B. Massalski; H. Okamoto, P.R. Subramanian, L. Kacprzak, “Binary Alloy Phase Diagrams”, ASM Int., Materials Park, Ohio, pp. 1481-1483 (1990).
    57. G.Z. Pan, A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Microstructures of Phased-in Cr–Cu/Cu/Au Bump-limiting Metallization and Its Soldering Behavior with High Pb Content and Eutectic PbSn Solders”, Appl. Phys. Lett. 71, 2946 (1997).
    58. B. Ebersberger & C. Lee, “Cu Pillar Bumps as a Lead-Free Drop-in Replacement for Solder-Bumped, Flip-Chip Interconnects”, Electronic Components and Technology Conf. Proc. 57th, p.59, (2008)
    59. D. Monlevade, Eduardo, and Weiqun Peng. “Failure Mechanisms and Crack Propagation Paths in Thermally Aged Pb-Free Solder Interconnects” J. Electron. Mater. 36, 783 (2007).
    60. K.S. Kim, S.H. Huh, and K. Suganuma, “Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu”, Microelectron. Reliab. 43, 259 (2003).
    61. I. De Sousa, D.W. Henderson, L. Patry, S.K. Kang, and D.-Y. Shih, Proceedings of 56th Electronic Components and Technology Conference, pp. 1454-1462 (2006).
    62. S.K. Kang, M.G. Cho, D.-Y. Shih, S.-K. Seo, and H.M. Lee, “Controlling the Interfacial Reactions in Pb-free Interconnections by Adding Minor Alloying Elements to Sn-rich Solders”, Proceedings of 58th Electronic Components and Technology Conference, pp. 478-484 (2008).
    63. C.Y. Chou and S.W. Chen, “Phase Equilibria of the Sn-Zn-Cu Ternary System”, Acta Mater. 54, 2393 (2006).
    64. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley, “Selected values of the thermodynamic properties of binary alloys”, Metals Park, Ohio, American Society for Metals, p. 816 (1973).
    65. M. Date, K.N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato, “Interfacial Reactions and Impact Reliability of Sn–Zn Solder Joints on Cu or Electroless Au/Ni(P) Bond-pads”, J. Mater. Res. 19, 2887 (2004).
    66. C.H. Yu, and K.L. Lin, “Early Stage Soldering Reaction and Interfacial Microstructure Formed between Molten Sn-Zn-Ag Solder and Cu Substrate”, J. Mater. Res. 20, 1242 (2005).
    67. W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, and C.R. Kao, “Solid-state Reactions between Ni and Sn–Ag–Cu Solders with Different Cu Concentrations”, Mater. Sci. Eng. A 396, 385 (2005).
    68. G.Y. Jang, C.S. Huang, L.Y. Hsiao, J.G. Duh, and H. Takahashi, “Mechanism of Interfacial Reaction for the Sn-Pb Solder Bump with Ni/Cu Under-bump Metallization in Flip-chip Technology”, J. Electron. Mater. 33, 1118 (2004).
    69. C.Y. Li, G.J. Chiou, and J.G. Duh, “Phase Distribution and Phase Analysis in Cu6Sn5, Ni3Sn4, and the Sn-rich Corner in the Ternary Sn-Cu-Ni Isotherm at 240°C”, J. Electron. Mater. 35, 343 (2006).
    70. K.J. Wang, and J.G. Duh, “Shear and Pull Testing of Sn3.0Ag0.5Cu Solder with Ti/Ni(V)/Cu UBM During Aging”, J. Electron. Mater. (in press)
    71. W.K. Choi, S.-Y Jang, J.H. Kim, K.-W Paik, and H.M. Lee, “Grain Morphology of Intermetallic Compounds at Solder Joints”, J. Mater. Res. 17, 597 (2002).
    72. F. Gao, and T. Takemoto, “Effects of Addition Participation in the Interfacial Reaction on the Growth Patterns of Cu6Sn5-based IMCs During Reflow Process”, J. Alloys Compd. 421, 283 (2006).
    73. J.Y. Tsai, Y.C. Hu, C.M. Tsai, and C.R. Kao, “A Study on the Reaction between Cu and Sn3.5Ag Solder Doped with Small Amounts of Ni”, J. Electron. Mater. 32, 1203 (2003).
    74. G.Y. Jang and J.G. Duh, “The Effect of Intermetallic Compound Morphology on CuDiffusion in Sn-Ag and Sn-Pb Solder Bump on the Ni/CuUnder-Bump Metallization”, J. Electron. Mater. 34, 68 (2005).
    75. Y.W. Yen, W.T. Chou, Y. Tseng, C. LEE, and C.L. Hsu, “Investigation of Dissolution Behavior of Metallic Substrates and Intermetallic Compound in Molten Lead-free Solders”, J. Electron. Mater. 37, 73 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE