研究生: |
蕭世熙 Hsiao, Shih-Si |
---|---|
論文名稱: |
雷德堡暗態激子的偶極交互作用與玻色-愛因斯坦凝態之理論研究 Theoretical studies of dipole-dipole interaction and Bose–Einstein condensate of Rydberg dark–state polaritons |
指導教授: |
余怡德
Yu, Ite A. |
口試委員: |
陳應誠
劉怡維 廖文德 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 電磁波誘發透明 、暗態激子 、偶極交互作用 、靜止脈衝 、玻色-愛因斯坦凝態 、頻率擾動 |
外文關鍵詞: | Electromagnetically induced transparency, Dark state polaritons, Dipole-Dipole interaction, Stationary light pulse, Bose–Einstein condensate, Frequency fluctuation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究電磁波誘發透明效應(Electromagnetically induced transparency, EIT)系統中光場與原子同調結合產生的暗態激子(polaritons)系統之性質;與雷德堡電磁波誘發透明系統(Rydberg EIT)中偶極交互作用(Dipole-Dipole interaction, DDI)之理論模型。結合兩者,我們提出一個嶄新的系統:雷德堡暗態激子的弱交互作用多體系統,其滿足玻色-愛因斯坦統計,能研究玻色子的多體現象。我們以理論模型描述暗態激子系統的粒子性質,提出暗態激子的玻色-愛因斯坦凝態(Bose-Einstein Condensation, BEC)形成之理論。並說明BEC形成的熱平衡(thermalization)過程與其達到穩定平衡態之形式,並與實驗結果對照佐證理論。
第一章為本論文之簡介。第二章介紹電磁波誘發透明效應與其產生的暗態激子之性質。第三章介紹系統頻率擾動(frequency fluctuation)對Rydberg EIT的Rydberg coherence之影響,提出頻率擾動對Rydberg coherence影響的理論模型,並以實驗佐證理論。第四章介紹Rydberg EIT系統中的偶極交互作用,說明弱交互作用下DDI如何影響光場的相位與衰減,並以實驗佐證理論。第五章介紹靜止脈衝(stationary light)系統,以暗態激子的觀點描述如何將光脈衝停留在介質中,並解釋其玻色準粒子性質。第六章介紹暗態激子的玻色-愛因斯坦凝態之理論,說明系統的等效溫度與BEC形成之臨界溫度,並引進暗態激子間的交互作用作為熱平衡之機制。第七章介紹以雷德堡慢光的暗態激子所形成的弱交互作用多體系統,說明系統熱平衡過程的現象與現象學模型,並以實驗佐證理論,展示系統的多體性質。
This thesis studies the Dark state polaritons (DSP) in the system of Electromagnetically induced transparency (EIT), which is the superposition state of optical field and atomic coherence, and Dipole-Dipole interaction (DDI) in the system of Rydberg EIT. Based on these theory, we proposal a novel system: A weakly-interacting many-body system of Rydberg polaritons which corresponds to Bose-Einstein statistics, providing a potential to research many-body phenomenon of boson. We analyze the particle property of Rydberg polaritons, proposing theory of the formation of Bose-Einstein Condensation (BEC) in the system of Rydberg polaritons, and study the thermalization process toward thermal equilibrium state of BEC, comparing with experiment to verify our theory.
In chapter. 1, we give the introduction of this thesis. In chapter. 2, we introduce the properties of Electromagnetically induced transparency and Dark state polaritons. In chapter. 3, we study the effect of frequency fluctuation on Rydberg coherence in Rydberg EIT system, providing theory and verified by experiment. In chapter. 4, we study the Dipole-Dipole interaction in Rydberg EIT system, proposing the mean field model to describe the phase shift and attenuation of optical field by means of DDI, and verifying theory with experiment. In chapter. 5, we introduce theory of stationary-light pulse by point of view of dark state polaritons, and exhibit its property of boson. In chapter. 6, we study the theory of formation of Bose-Einstein Condensation in the system of dark state polaritons, introducing the properties about BEC such as critical temperature and effective temperature, and interaction mechanism between particles for thermalization process. In chapter. 7, we introduce the weakly-interacting many-body system of Rydberg slow-light polaritons. We study the phenomenon thermalization process and propose the phenomenological model, and verifying theory with experiment, showing many-body property of the system.
[1] M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[2] H. Schmidt and A. Imamoğlu, Opt. Lett. 21, 1936 (1996).
[3] Y.-F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, Phys. Rev. Lett. 96, 043603 (2006).
[4] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).
[5] M. Fleischhauer and M. D. Lukin, Phys. Rev. A 65, 022314 (2002).
[6] B. Kim, K.-T. Chen, C.-Y. Hsu, S.-S. Hsiao, Y.-C. Tseng, C.-Y. Lee, S.-L. Liang, Y.-H. Lai, J. Ruseckas, Gediminas Juzeliūnas, and I. A. Yu, 013815 (2019).
[7] S. W. Su, Y. H. Chen, S. C. Gou, T. L. Horng, and I. A. Yu, Phys. Rev. A 83, 013827 (2011).
[8] B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, Nat. Phys. 5, 95 (2009).
[9] S.-W. Su, Y.-H. Chen, S.-C. Gou, and I. A. Yu, J. Phys. B 44, 165504 (2011).
[10] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[11] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).
[12] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
[13] J. Kasprzak et al., Nature (London) 443, 409 (2006).
[14] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science 316, 1007 (2007).
[15] S. O. Demokritov et al., Nature (London) 443, 430 (2006).
[16] M. Fleischhauer, J. Otterbach, and R. G. Unanyan, Phys. Rev. Lett. 101, 163601 (2008).
[17] D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin, and E. A. Demler, Nat. Phys. 4, 884 (2008).
[18] J. Otterbach, M. Moos, D. Muth, and M. Fleischhauer, Phys. Rev. Lett. 111, 113001 (2013).
[19] S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, Science 285, 571 (1999).
[20] H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).
[21] A. Posazhennikova, Rev. Mod. Phys. 78, 1111 (2006).
[22] 陳應誠、余怡德,"光速減慢至每秒600公尺—原子的電磁波引發透明效應",物理雙月刊23卷5期,p.572-578(2001年10月)。
[23] Y.-F. Chen et al., Phys. Rev. A 74, 063807 (2006).
[24] R. P. Abel et al., Appl. Phys. Lett. 94, 071107 (2009).
[25] K. J. Weatherill et al., J. Phys. B 41, 201002 (2008).
[26] Q.-Y. Liang, A. V. Venkatramani, S. H. Cantu, T. L. Nicholson, M. J. Gullans, A. V. Gorshkov, J. D. Thompson, C. Chin, M. D. Lukin, and V. Vuletić, Science 359, 783 (2018).
[27] D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, Sci. Adv. 2, e1600036 (2016).
[28] J. Han, T. Vogt, and W. Li, Phys. Rev. A 94, 043806 (2016).
[29] Y. C. Jiao, J. K. Li, L. M. Wang, H. Zhang, L. J. Zhang, J. M. Zhao, and S. T. Jia, Chin. Phys. B 25, 053201 (2016).
[30] M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, Phys. Rev. A 83, 052515 (2011).