研究生: |
黃國綸 |
---|---|
論文名稱: |
國中生幾何圖形心像的研究–以相似三角形為例 Middle School Students' Mental Imagery of Geometric Figure: A Study of Similarity Triangles |
指導教授: | 許慧玉 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 心像 、心像 、相似三角形 、相似三角形 、幾何圖形 、幾何圖形 |
外文關鍵詞: | mental imagery, mental imagery, similar triangle, similar triangle, geometric figure, geometric figure |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
幾何是數學中重要的分支,而幾何圖形的心像在幾何學習上扮演重要的角色。心像操作的本質始終存在著爭議,且目前心理學界尚未清楚心像運作的細節內容。本研究嘗試設計各種不同形式剛性變換下的兩個相似三角形,以探究國中生如何建構心像來知覺其相似性。本研究首先提出心像相關的四個層面:心像的保量情形、心像對作圖歷程的影響、相似圖形作圖的錯誤類型、以及圖形的「位置」對作圖歷程的影響,並以尚未學習過相似概念的五十位八年級學生為樣本,進行施測。
針對國中生心像的保量情形,研究結果清楚指明國中生在直角三角形直角保量的能力較好,對鈍角三角形鈍角保量的能力較差,同時對鈍角三角形次長邊長度保量的能力較強,並對鈍角三角形交疊時鈍角保量的能力更弱,以及國中生對鈍角三角形交疊時子圖個數保量的能力較弱。再者,本研究也分析國中生心像對作圖歷程的影響,結果顯示其歷程大致可區分為四種。另外,關於國中生相似圖形的作圖結果,研究也發現在各種伸縮旋轉變換下作圖的錯誤類型可區分為二十種類型,在各種伸縮鏡射變換下作圖的錯誤類型可區分為十四種類型。
再就圖形的「位置」對作圖歷程的影響而言,研究結果顯示(1)當兩圖形的位置「相離」時,兩相似鈍角三角形的作圖答對率為最低;(2)當兩圖形的位置「共點」時,一般來講,國中生在伸縮鏡射的答對率都比伸縮旋轉的表現來得好。(3)當兩圖形的位置「共邊」時,從訪談中得知學生也會受到某種程度的干擾,例如兩個圖形整個一起看,導致無法在心像上旋轉或翻轉。(4)當圖形的位置「交疊」時,子圖個數會影響對作圖的答對率,一般而言交疊時的子圖個數愈多,則答對率一般愈低。最後,研究結果將提供對數學教學以及對後續研究的相關建議。
Abstract
Geometry is an important branch of mathematics, and the mental imagery of geometric figure is very important during the learning of geometry. The nature of the imagery operation is always controversial, and it is not yet clear about the content details of the imagery operation in psychology. We tried to design two similar triangles of different forms under rigid transformation, to explore how middle school students perceive similarity by forming mental imagery. To this end, we first proposed four main aspects of mental imagery, including conformal invariance of mental imagery, mental imagery's influence on sequential apprehension, error types of similar graphics drawing and the influence of the position of the figure on sequential apprehension. We constructed a survey and administrated it to fifty 8th graders, who have not learned the concepts of similarity before.
There are five finding about conformal invariance of mental imagery in this study. First, middle school students’ ability to maintain conformal of right angle is better. Second, middle school students’ ability to maintain conformal of obtuse angle is worse. Third, middle school students’ ability to maintain congruent of second long side is better. Fourth, middle school students’ ability to maintain conformal of obtuse angle is worst, when two obtuse triangles are overlapped with each other. Fifth, middle school students’ ability to draw the same number of subfigure with original figure is worse, when two obtuse triangles are overlapped with each other. Furthermore, we find four processes about mental imagery's influence on sequential apprehension in this study. Moreover, regarding the error types of similar graphics drawing, we find twenty error types under stretch rotation, and we also find fourteen error types under stretch reflection.
Concerning the influence of the position of the figure on sequential apprehension, there are four finding in this study. First, the correct rate of drawing two similar obtuse triangles is lowest when two triangles are disjoint. Second, general speaking, the correct rate under stretch reflection is better than under stretch rotation when two triangles have only one common point. Third, when two triangles have only one common edge, we find some degree of interference, which is that subjects may look two figures together as entire one, cause subjects to be not able to rotate or flip the image. Fourth, when two triangles are overlapped with each other, the number of subfigure will affect the correct rate of drawing. Generally, the more the number of subfigure is, the lower the correct rate is. Accordingly, we provide some suggestions regarding mathematics teaching.
參考文獻
一、中文部分
王源豐(民100)。運用互動式電子白板於國三學生數學教學成效之研究-以相似形單元為例(未出版之碩士論文)。國立高雄師範大學,高雄市。
左台益(民91年10月)。圖形理解與幾何概念之建構。新課程建構式教學研討會。臺北市,國立臺灣師範大學。
左台益主編 (民104)。國民中學數學課本第五冊。臺南市:南一書局。
吳宜靜(民94)。八二年版國一學生縮圖與放大圖繪製之概念與表現(未出版之碩士論文)。國立臺南大學,臺南市。
林碧珍(民82)。兒童「相似性」 概念發展之研究-長方形。新竹師院學報,6,333-377。
林福來(民73)。青少年的比例概念發展。科學教育月刊,73,7-26。
林福來(民76)。國中生反射、旋轉、平移概念發展研究。行政院國家科學委員會專題研究計畫報告(編號:NSC75-0111-S003-01、NSC76-0111-S003-12)。
岳修平(民87)。教學心理學—學習的認知基礎(頁98-99)。臺北市:遠流。
周泰立、陸偉明、鄭秋瑾、吳瑞屯(民85)。刺激複雜度與呈現方式對心象旋轉之不同階段的影響。中華心理學刊,38(1),31-40。
洪有情主編 (民104)。國民中學數學課本第五冊。新北市:康軒文教事業。
張幼賢主編 (民104)。國民中學數學課本第五冊。臺南市:翰林出版事業。
張世彗(民92)。創造力–理論、技術/技法與培育。臺北市:五南圖書。
張英傑(民90)。兒童幾何形體概念調查及診斷教學之研究。行政院國家科學委員會專題研究計畫成果報告(編號:NSC-89-0111-S-152-003)。
陳創義(民92)。青少年的數學概念學習研究-子計劃六:青少年的幾何形狀概念發展研究(2/2)。行政院國家科學委員會補助專題研究計畫成果精簡報告 (編號:NSC91-2522-S-003-007)。
康木村、柳賢(民93年12月)。國中學生「相似形」迷思概念之研究。中華民國第二十屆科學教育學術研討會。高雄市,國立高雄師範大學。
黃國展(民92)。國三學生解相似形問題之歷程分析研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
楊智為、趙琬津、許天維(民95)。KSAT與數位個別指導的應用─以「三角形」單元為例。測驗統計年刊,14,53-135。
劉好(民87年5月)。平面圖形教材的處理。國立嘉義師範學院八十六學年度數學教育研討會。嘉義市:國立嘉義師範學院。
劉秋木(民85)。國小數學科教學研究(頁444-446)。臺北市:五南圖書。
鄭昭明(民86)。認知心理學:理論與實踐。臺北市:桂冠。
韓承靜(民96)。心像旋轉作業中的心智表徵(未出版之博士論文)。國立臺灣師範大學,臺北市。
韓承靜、洪蘭、蔡介立(民99)。心像旋轉中之心智表徵特性-探討圖形複雜度與整合性的影響。教育心理學報,41(3),551-578。
蘇聖文(民97)。國中相似形GSP電腦輔助教學之成效研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
二、英文部分
Anderson, J. R. (1995). Cognitive psychology and its implications (4th ed.) . New York: Freeman.
Arnheim, R. (1976). Art and visual perception: The new version. University of California Press.
Bethell-Fox, C. E., & Shepard, R. N. (1988). Mental rotation: Effects of stimulus complexity and familiarity. Journal of Experimental Psychology: Human Perception and
Performance, 14(1), 12-23.
Bishop, A. J. (1989). Review of research on visualization in mathematics education. Focus on Learning Problems in Mathematics, 11(1), 7-16.
Chazan, D. (1988). Similarity: Exploring the understanding of a geometric concept (Technical Report 88-15). Cambridge, MA: Educational Technology Center.
Cooper, L. A. (1975). Mental rotation of random two-dimensional shapes. Cognitive Psychology, 7, 20-43.
Cooper, L. A., & Podgorny, P. (1976). Mental transformations and visual comparison processes: effects of complexity and similarity. Journal of Experimental Psychology: Human Perception and Performance, 2(4), 503-514.
Cooper, L. A., & Shepard, R. N. (1973a). Chronometric studies of the rotation of mental images. In W. G. Chase (Ed.), Visual information processing. NY: Academic Press.
Cooper, L. A., & Shepard, R. N. (1973b). The time required to prepare for a rotated stimulus. Memory and Cognition, 1, 246-250.
Cooper, L. A., & Shepard, R. N. (1975). Mental transformations in the identification of left
and right hands. Journal of Experimental Psychology : Human Perception and
Performance, 104(1), 48-56.
Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processings. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in
mathematics education (pp. 142-157). Berlin: Springer.
Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for 21st century (pp. 37-52). Dordrecht: Kluwer.
Gal, H., & Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74(2), 163-183.
Haberlandt, K. (1997). Cognitive Psychology (2nd ed.). Boston: Allyn and Bacon.
Hershkowitz, R. (1989). Visualization in Geometry-Two Sides of the Coin. Focus on learning problems in mathematics, 11, 61-76.
Hochberg, J., & Gellman, L. (1977). The effect of landmark features on mental rotation times. Memory and Cognition, 5, 23-26.
Jolicoeur, P., Snow, D., & Murray, J. (1987). The time to identify disoriented letters: Effects of practice and font. Canadian Journal of Psychology, 41(3), 303-316.
Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems accounts of mental rotation and individual differences in spatial ability. Psychological review, 92(2),
137-172.
Kosslyn, S. M. (1983). Ghosts in the mind's machine: Creating and using images in the brain. Norton.
Kosslyn, S. M. (1994). Image and Brain: The Resolution of the Imagery Debate. Cambridge: MIT press.
Kosslyn, S. M., Ball, T. M., & Reiser, B. J. (1978). Visual images preserve metric spatial information: evidence from studies of image scanning. Journal of Experimental Psychology: Human Perception and Performance, 4(1), 47-60.
Kosslyn, S. M., DiGirolamo, G. J., Thompson, W. L., & Alpert, N. M. (1998). Mental rotation of objects versus hands: Neural mechanisms revealed by positron emission
tomography. Psychophysiology, 35, 151 -161.
Lean, G., & Clements, M. A. (1981). Spatial ability, visual imagery, and mathematical performance. Educational Studies in Mathematics, 12(3), 267-299.
Lémonidis, E. C. (1990). Conception, réalisation et résultats d'une expérience d'enseignement de l'homothétie (Unpublished Doctoral dissertation, University Louis Pasteur, Strasbourg, France).
Mayer, R. E. (1987). Educational psychology: A cognitive approach. Boston: Little, Brown and Company.
McDonald, J. L. (1989). Cognitive development and the structuring of geometric content. Journal for Research in Mathematics Education, 76-94.
Marnor, G. S., & Zaback, L. A. (1976). Mental rotation by the blind:Does mental rotation depend on visual imagery?Journal of Experimental Psychology : Human Perception
and Performance, 2(4), 515-521.
Palmer, S. E. (1975). Visual perception and world knowledge: Notes on a model of sensory-cognitive interaction. Explorations in cognition (pp.279-307). San Francisco: W. H.
Freeman.
Piaget, J., & Inhelder, B. (1971). Mental imagery in the child. New York: Basic.
Pylyshyn, Z. W. (1973). What the mind's eye tells the mind's brain: A critique of mental imagery. Psychological Bulletin, 80, 1 -24.
Pylyshyn, Z. W. (1981 ). The imagery debate: Analogue media versus tacit knowledge. Psychological Review, 88(1), 16-45.
Pylyshyn, Z. W. (2003). Return of the mental image: are there really pictures in the brain? TRENDS in cognitive sciences, 7(3), 113-118.
Reed, S. K. (1974). Structural descriptions and the limitations of visual images. Memory &
Cognition, 2(2), 329-336.
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701-703.
Smith, W., & Dror, I. E. (2001). The role of meaning and familiarity in mental transformations. Psychonomic Bulletin & Review, 8(4), 732-741.
Sternberg, R. J.(1999). Cognitive Psychology. Fort Worth: Harcourt Brace College Publishers.
Thomas, N. J. T. (2003). Mental imagery, philosophical issues about. In L. Nadel (Ed), Encyclopedia of Cognitive Science(Vo1.2)(pp.1147-1153). London: Macmillan.
Vollrath, H. J. (1977). The understanding of similarity and shape in classifying tasks. Educational Studies in Mathematics, 8(2), 211-224.
Wraga, M., Thompson, W. L., Alpert, N. M., & Kosslyn, S. M. (2003). Implicit transfer of motor strategies in mental rotation. Brain and Cognition, 52, 135-143.
Yakimanskaya, I. S. (1991). Volume 3. In R. Silverman, Trans. P. Wilson, & E. Davis (Eds.), The development of spatial thinking in school children. Reston, VA: National Council of Teachers of Mathematics.