研究生: |
胡凱婷 Hu, Kai-Ting |
---|---|
論文名稱: |
使用介電係數調變降低表面效應之高壓鰭式電晶體模擬分析 Simulation Study of Dielectric RESURF Implemented in High-Voltage FinFETs |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
龔正
Gong, Jeng 吳添立 Wu, Tian-Li |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 85 |
中文關鍵詞: | 高壓 、鰭式電晶體 、降低表面效應 、介電係數調變 |
外文關鍵詞: | High-voltage, FinFET, RESURF, Dielectric RESURF |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文分析將調變介電係數降低表面電場應用於高壓鰭式電晶體,此高壓鰭式電晶體採用鰭式電晶體的製程製作。並結合電腦模擬軟體(TCAD),以鰭式電晶體製程步驟作為參考,建立高壓鰭式電晶體結構,對於元件的電特性、崩潰電壓做進一步的分析與討論。
此論文提出的鰭式電晶體以閘極長度為1.0μm,汲極延伸區為1.0μm。絕緣層寬度為0.033μm、深度0.1μm作為基準。為了取得汲極延伸區離子佈值的最佳劑量,必須在崩潰電壓及導通電阻之間做抉擇,使用調變介電係數降低表面電場於論文中探討。為了達到汲極延伸區離子佈值的最佳劑量,我們可以增加絕緣層的寬度或是提高絕緣層的介電常數。當絕緣層厚度增加至0.132μm,此時最佳離子佈植劑量可以從3.65*1012 cm-2提升至6.9*1012 cm-2。此外,我們亦針對絕緣層深度進行探討。在使用高介電係數(k=86)材料作為絕緣層,此時可以比二維電晶體更高的崩潰電壓,其最高崩潰電壓為31.55V,以及最高的FOM值為3908 V2/mΩ-cm2。
In this thesis, the analysis of dielectric RESURF implemented in high-voltage Si FinFETs has been studied. The high-voltage FinFET structure with a typical FinFET fabrication process flow has been established by using Technology Computer Aided Design (TCAD) simulation, and electrical characteristics including avalanche breakdown can also be obtained.
For the FinFET under study, the gate length is 1.0μm and the length of drain-extended region is 1.0μm. Typical STI width (WSTI) is 0.033μm, and typical STI thickness (TSTI) is 0.1μm. To find the optimized dose for the n-drift region implant for a better tradeoff between breakdown voltage and specific on-resistance, the concept of dielectric RESURF is explored. It is found that a higher optimal dose for n-drift region implant can be achieved by either increasing the width of the STI or by adopting a higher dielectric constant. As the WSTI increased to 0.132μm, the optimal n-drift dose is increased from 3.65*1012 cm-2 to 6.9*1012 cm-2. Furthermore, the effects of depth of STI when it is larger than the junction depth are studied. As the STI is deeper, the optimized dose can be increased, reducing Ron,sp. When a high-k (k=86) dielectric is used, the breakdown voltage reaches 31.55V, higher than that of a 2-D planar FET, and the FOM is 3908 V2/mΩ-cm2.
[1] C. C. Yeh, C. S. Chang, H. N. Lin, W. H. Tseng, L. S. Lai, T. H. Perng, et al., “A low operating power FinFET transistor module featuring scaled gate stack and strain engineering for 32/28 nm SoC technology,” in Proc. IEDM, 2010 pp. 772–775.
[2] Han, Weihua, and Zhiming M. Wang, eds. Toward Quantum FinFET. Springer, 2013.
[3] X. Chen, “Super-junction voltage sustaining layer with alternating semiconductor and high-k dielectric regions,” U.S. Patent 7 230 310 B2, Jun. 12, 2007.
[4] Lilienfeld Julius Edgar, “Method and apparatus for controlling electric currents,” U.S. Patent 1,745,175, Oct. 8, 1926.
[5] D. Kahng and M. M. Atalla, "Silicon-silicon dioxide field induced surface devices", IRE Solid State Device Res Conf, 1960.
[6] Moore, Gordon. "Moore’s law." Electronics Magazine 38.8 (1965): 114.
[7] ITRS. (2015). International Technology Roadmap for Semiconductors. [Online]. Available: http://www.itrs.net/reports.html, accessed 2015.
[8] Colinge, Jean-Pierre, ed. FinFETs and other multi-gate transistors. Vol. 73. New York: Springer, 2008.
[9] Lee, Jong-Ho. "Bulk FinFETs design at 14 nm node and key characteristics." Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. Springer Netherlands, pp. 33-64, 2016.
[10] J. Kedzierski, P. Xuan, V. Subramanian, J. Bokor, T.-J. King, C. Hu, and E. Anderson, “A 20 nm gate-length ultra-thin body p-MOSFET with silicide S/D,” SuperlatticesMicrostruct., vol. 28, no. 5/6, pp. 445–452, 2000.
[11] T. Low et al., “Electron mobility in Ge and strained-Si channel ultrathin- body metal-oxide semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 85, no. 12, pp. 2042–2044, Sep. 2004.
[12] Y: K. Choi, N. Linden, P. Xuan, S. Tang, D. Ha, E. Anderson. et al., "Sub-20 nm CMOS FinFET technologies," IEDM Tech. Dig., Dec. 2001. pp. 421-424.
[13] T.-S. Park, E. Yoon, and J.-H. Lee, “A 40 nm body-tied FinFET (OMEGA MOSFET) using bulk Si wafer,” Physica E, vol. 19, no. 1, pp. 6–12, Jul. 2003.
[14] B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kava- lieros, T. Linton, R. Rios, and R. Chau, “Tri-gate fully depleted CMOS transistors: Fabrication, design, and layout,” in Proc. VLSI Tech. Symp., June 2003, pp. 133–134.
[15] T .Sekigawa and Y . Hayashi, “Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate,” Solid-state Electron., vol. 27, pp. 827-828, 1984.
[16] H. S. Wong, K. Chan, and Y. Taur, “Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel,” in IEDM Tech. Dig., 1997, pp. 427–430.
[17] B. Agrawal, V. K. De, J. M. Pimbley, and J. D. Meindl, “Short- channel models and scaling limits of SOI and Bulk-MOSFET’s,” IEEE J. Solid-State Circuits, vol. 29, pp. 122–125, Feb. 1994.
[18] D. Hisamoto, T. Kaga, Y.Kawamoto, and E. Takeda, “A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra-thin SOI MOSFET,” in IEDM Tech. Dig., 1989, pp. 833–836.
[19] X. Huang, W: C. Lee, C. Kuo, D. Hisamato, L. Chang, cl al. "Sub- 50nm FinFET: PMOS." IEDM Tech. Dig., Dec. 1999, pp. 67-70.
[20] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, T.-J. King, J. Bokor, and C. Hu, “FinFET—A self-aligned double-gate MOSFET scalable beyond 20 nm,” IEEE Trans. Electron Devices, vol. 47, pp. 2320–2325, Dec. 2000.
[21] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, J. Bokor, and C. Hu, “FinFET scaling to 10 nm gate length,” in Int. Electron Devices Meeting, 2002, pp. 251–254.
[22] L. Chang, Y.-K. Choi, D. Ha, P. Ranade, S.Xiong, J. Bokor, C. Hu, and T.-J. King, “Extremely scaled silicon nano-CMOS devices,” Proc. IEEE, vol. 91, pp. 1860–1873, Nov. 2003.
[23] Y. K. Choi, “FinFET for Terabit era,” Journal of Semiconductor Technology and Science 4-1, 1 (2004).
[24] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, J. Bokor, C. Hu, M.-R. Lin, and D. Kyser, “FinFET scaling to 10 nm gate length,” in IEDM Tech. Dig., 2002, pp. 251–254.
[25] B. S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kacalieros, T. Linton, A. Murthy, R. Rios, and R. Chau, “High performance fully-depleted tri-gate CMOS transistors,” IEEE Electron Device Lett., vol. 24, no. 4, pp. 263–265, Apr. 2003.
[26] F.-L. Yang, H. Y. Chen, F. C. Chen, C. C. Huang, C. Y. Chang, H. K. Chiu, C. C. Lee, C. C. Chen, H. T. Huang, C. J. Chen, H. J. Tao, Y. C. Yeo, and C. Hu, “25 nm CMOS omega FETs,” in IEDM Tech. Dig., 2002, pp. 255–258.
[27] J.-T. Park, J.-P. Colinge, and C. H. Diaz, “Pi-Gate SOI MOSFET,” IEEE Electron Device Lett., vol. 22, pp. 405–406, 2001.
[28] S. Zhang, R. Han, H. Wang, and M. Chan, “A self-aligned gate-all-around MOS transistor on single-grain silicon,” Electrochem. Solid-State Lett., vol. 7, no. 4, pp. G59–G61, 2004.
[29] S. Monfray, T. Skotnicki, B. Tavel, Y. Morand, S. Descombes, A. Talbot, D. Dutartre, C. Jenny, P. Mazoyer, R. Palla, F. Leverd, Y. Le Friec, R. Pantel, M. Haond, C. Charbuillet, C. Vizioz, D. Louis, and N. Buffet, “SON (silicon-on-nothing) P-MOSFETs with totally silicided Polysilicon on 5 nm-thick Si-films: the simplest way to integration of metal gates on thin FD channels,” in IEDM Tech. Dig., 2002, pp. 263–266.
[30] F.-L. Yang, D. H. Lee, H. Y. Chen, C. Y. Chang, S. D. Liu, C. C. Huang, T. X. Chung, H. W. Chen, C. C. Huang, Y. H. Liu, C. C. Wu, C. C. Chen, S. C. Chen, Y. T. Chen, Y. H. Chen, C. J. Chen, B. W. C. P. F. Hsu, J. H. Shieh, H. J. Tao, Y. C. Yeo, Y. Li, J. W. Lee, P. Chne, M. S. Liang, and C. Hu, “5 nm-gate nanowire FinFET,” in VLSI Symp. Tech. Dig., 2004, pp. 196–197.
[31] Rahul Deokar, Gilles Lamant, Hitendra Divecha, Ruben Molina, and Chi-Ping Hsu, FinFET challenges and solutions – custom, digital, and signoff, https://www.eetimes.com/document.asp?doc_id=1280773
[32] M. C. Lemme, T. Mollenhauer, W. Henschel, T. Wahlbrink, M. Baus, O. Winkler, R. Granzner, F. Schwierz, B. Spangenberg, and H. Kurz, “Subthreshold behavior of triple gate MOSFETs on SOI material,” Solid State Electron., vol. 48, no. 4, pp. 529–534, Apr. 2004.
[33] J.-T. Park and J.-P. Colinge, “Multiple-gate SOI MOSFETs: Device design guidelines,” IEEE Trans. Electron Devices, vol. 49, no. 12, pp. 2222–2229, Dec. 2002.
[34] J. P. Coinge, Silicon-on-insulator technology: materials to VLSI, Kluwer academic publishers, 1991, p. 109.
[35] F.-L. Yang et al., “35nm CMOS FinFETs,” in Symp. VLSI Tech. Dig., June 2002, pp. 104–105.
[36] Wilfried Ernst-August Haensch, et al., “Structure and method to fabricate resistor on FinFET process,” U.S. patent 9 385 050, Jan. 6, 2011.
[37] M. Shrivastava, R. Mehta, S. Gupta, N. Agrawal, M. Baghini, D. Sharma, T. Schulz, K. Arnim, W. Molzer, H. Gossner, and V. Rao, “Toward system on chip (SOC) development using FinFET technology: Challenges, solutions, process co-development and optimization guidelines,” IEEE Trans. Electron Devices, vol. 58, no. 6, pp. 1597–1607, Jun. 2011.
[38] H.-Y. Chen, C.-C. Huang, C.-C. Huang, C.-Y. Chang, Y.-C. Yeo, F.-L Yang, and C. Hu, “Scaling of CMOS FinFETs toward 10 nm,” in VLSI Symp. Tech. Dig., Oct. 2003, pp. 6–8.
[39] David M. Fried, et al., “ FinFET devices from bulk semiconductor and method for forming “, U.S. Patent 6 642 090, Jun. 3, 2002.
[40] Y.-K. Choi, T.-J. King, and C. Hu, “Spacer FinFET: Nanoscale double-gate CMOS technology for the terabit era,” Solid State Electron., vol. 46, pp. 1595–1601, 2002.
[41] Y.-K. Choi, T.-J. King, and C. Hu, "A spacer patterning technology for nanoscale CMOS," IEEE Trans. Elec. Dev., vol. 49, no. 3, pp. 436-441, Mar. 2002.
[42] X. Sun and T.-J. K. Liu, “Spacer gate lithography for reduced variability due to line edge roughness,” IEEE Trans. Semicond. Manuf., vol. 23, no. 2, pp. 311–315, Feb. 2010.
[43] T. Park, S. Choi, D. H. Lee, J. R. Yoo, B. C. Lee, J. Y. Kim, C. G. Lee, K. K. Chi, S. H. Hong, S. J. Hynn, Y. G. Shin, J. N. Han, I. S. Park, U. I. Chung, J. T. Moon, E. Yoon, and J. H. Lee, “Fabrication of body-tied FinFETs (Omega MOSFETs) using bulk Si wafers,” in VLSI Symp. Tech. Dig., 2003, pp. 135–136.
[44] T.-S. Park, S. Choi, D.-H. Lee, U.-I. Chung, J. T. Moon, E. Yoon, and J.-H. Lee, “Body-tied triple-gate NMOSFET fabrication using bulk Si wafer,” Solid-State Electron., vol. 49, pp. 377–383, 2005.
[45] R. S. Ghaida, G. Torres, and P. Gupta, “Single-mask double-patterning lithography for reduced cost and improved overlay control,” IEEE Trans. Semicond. Manuf., vol. 24, no. 1, pp. 93–103, Feb. 2011.
[46] S. Natarajan et al., ‘‘A 14 nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size,’’ in Proc. IEEE IEDM, Dec. 2014, pp. 3.7.1–3.7.3.
[47] B. S. Wood, F. A. Khaja, B. P. Colombeau, S. Sun, A. Waite, M. Jin, H. Chen, O. Chan, T. Thanigaivelan, N. Pradhan, H-J. L. Gossmann, S. Sharma, V. R Chavva, M-P. Cai, M. Okazaki, S. S. Munnangi, C-N. Ni, W. Suen, C-P. Chang, A. Mayur, N. Variam, and A. D Brand “Fin Doping by Hot Implant for 14nm FinFET Technology and Beyond”, ECS Trans. 2013 volume 58, issue 9, 249-256.
[48] T. Park et al., “PMOS body-tied FinFET (omega MOSFET) characteristics,” in Proc. Device Research Conf., Jun. 23–25, 2003, pp. 33–34.
[49] G. Eneman, D. P. Brunco, L. Witters, et al., “Stress simulations for optimal mobility group IV p- and nMOS FinFETs for the 14 nm node and beyond,” in Proc. IEEE IEDM, Dec. 2012, pp. 247–250.
[50] M. Togo, J. W. Lee, L. Pantisano, T. Chiarella, R. Ritzenthaler, R. Krom, et al., “Phosphorus doped SiC source drain and SiGe channel for scaled bulk FinFETs,” in Proc. IEEE IEDM, Dec. 2012, pp. 18.2.1–18.2.4.
[51] J. M. Yoon, et al., “Method of forming fin field effect transistor,” U.S. Patent 7 056 781, Jun. 6, 2006.
[52] H. T. Lin, et al., “FINFET AND METHOD OF FABRICATING THE SAME”, U.S. Patent US 8 440 517, May. 14, 2013.
[53] H. H. Lin, et al., “Method for fabricating a FinFET device,” U.S. Patent 8 652 894, Feb. 18, 2014.
[54] M. Xu, et al., “Improved short channel effect control in bulk FinFETs with vertical implantation to form self-aligned halo and punch-through stop pocket,” IEEE Electron Device Lett., vol. 36, no. 7, pp. 648–650, Jul. 2015.
[55] K. Okano, T. Izumida, H. Kawasaki, A. Kaneko, A. Yagishita, T. Kanemura, M. Kondo, S. Ito, N. Aoki, K. Miyano, T. Ono, K. Yahashi, K. Iwade, T. Kubota, T. Matsushita, I. Mizushima, S. Inaba, K. Ishimaru, K. Suguro, K. Eguchi, Y. Tsunashima, and H. Ishiuchi, “Process integration technology and device characteristics of CMOS FinFET on bulk silicon substrate with sub-10 nm fin width and 20 nm gate length,” in IEDM Tech. Dig., 2005, pp. 243–246.
[56] T. Kanemura, T. Izumida, N. Aoki, M. Kondo, S. Ito, T. Enda, K. Okano, H. Kawasaki, A. Yagishita, A. Kaneko, S. Inaba, M. Nakamura, K. Ishimaru, K. Suguro, K. Eguchi, and H. Ishiuchi, “Improvement of drive current in bulk-FinFET using full 3D process/device simulations,” in Proc. SISPAD 2006, pp. 131–134.
[57] Shin, C., Kim, J. K., Shin, C., Kim, J. K., & Yu, H. Y., “Threshold voltage variation-immune FinFET design with metal-interlayer-semiconductor source/drain structure,” Current Applied Physics, vol. 16, no. 6, pp. 618-622, Jun. 2016.
[58] F. A. Khaja, H.-J. L. Gossmann, B. Colombeau, and T. Thanigaivelan, “Bulk FinFET junction isolation by heavy species and thermal implants,” in Proc. 20th Int. Conf. Ion Implantation Technol. (IIT), 2014, pp. 1–4.
[59] J. A. Appels and H. M. J. Vaes, “High voltage thin layer devices (RESURF devices),” in IEDM Tech. Dig., 1979, p. 238.
[60] ] A. W. Ludikhuize, “A review of RESURF technology,” in IEEE Int. Symp. Power Semiconductor Devices and ICs, 2000, pp. 11–18.
[61] Sunitha HD, Keshaveni N. “Reduced Surface Field Technology for LDMOS: A Review,” International Journal of Emerging Technology and Advanced Engineering, June 2014.
[62] J. Zhou, C. F. Huang, and Y. H. Chen, “Theoretical analysis of dielectric modulated drift region for Si power devices,” IEEE Electron Device Lett., vol. 36, no. 4, pp. 378–380, Apr. 2015.
[63] C.F. Huang, J. Zhou, C.H. Cheng, and F. Zhao, “A Comprehensive Analytical Study on Dielectric Modulated Drift Regions—Part II: Switching Performances,” IEEE Transactions on Electron Devices., vol. 63, no. 6, pp. 2261-2267, Jun. 2016.
[64] ] J. Zhou, C.-F. Huang, C.-H. Cheng, and F. Zhao, “A comprehensive analytical study of dielectric modulated drift regions—Part I: Static characteristics,” IEEE Trans. Electron Devices, vol. 63, no. 6, pp. 2255–2260, Jun. 2016.
[65] B. El-Kareh, L.N. Hutter, Silicon Analog Components: Device Design, Process Integration, Characterization, and Reliability, Springer 2015.
[66] J. Sonsky and A. Heringa, “Dielectric resurf: Breakdown voltage control by STI layout in standard CMOS,” in IEEE IEDM Tech. Dig., Dec. 2005, pp. 372–376.
[67] M. Shrivastava, G. Harald, and VR Rao, “Towards Drain Extended FinFETs for SoC Applications,” Toward Quantum FinFET. Springer, 2013
[68] Z. Parpia and C.A.T. Salama. "Optimization Of RESLIRF LDMOS Transistors: An Analytic Approach," IEEE Tram. Electron Devices, Vol. 37, Mar 1990. pp. 789-796.
[69] T. Efland, S. Malhi, W. Bailey, 0. Kwon, W. Ng, M. Torreno, and S. Keller, “An Optimized RESURF LDMOS Power Device Module Compatible with Advanced Logic Process,” IEDM Tech. Digest, p. 227, 1992.
[70] J. Mitros et al., “High-voltage drain extended MOS transistors for 0.18 µm logic CMOS process,” IEEE Trans. Electron Devices, vol. 48, no. 8, pp. 1751–1755, Aug. 2001.
[71] DEMOS, DMOS, LDMOS, and DDMOS; MOS Transistor Structure Against Charge Carrier Degeneration. Available:
http://www.vlsi.itu.edu.tr/ituvlsi/webs/courses/undergraduate/ele413/student-groups-1/20102011/students/cagr131-gurleyuk/homework-i/demos-dmos-ldmos-and-dddmos-mos-transistor-structures-against-charge-carrier-degeneration
[72] M. Shrivastava, H. Gossner, and V. Ramgopal Rao, “A novel drainextended FinFET device for high-voltage high-speed applications,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1432–1434, Oct. 2012.
[73] M. Shrivastava, et al., “Drain extended MOS device for bulk FinFET technology,” U.S. Patent 8 629 420, Jan. 14, 2014.
[74] M. Shrivastava, et al., “High voltage semiconductor devices,” U.S. Patent 8 664 720, Mar. 4, 2014.
[75] M. Shrivastava, et al., “High voltage semiconductor devices,” U.S. Patent 9 455 275, Sep. 27, 2016.
[76] A. Yoo, Y. Onish, E. Xu, and W. T. Ng, “A low-voltage lateral SJ-FINFET with deep-trench p-drift region,” IEEE Electron Device Lett., vol. 30, no. 8, pp. 858–860, Aug. 2009.
[77] Y. Onishi, H. Wang, H. P. E. Xu, W. T. Ng, R. Wu, and J. K. O. Sin, “SJ-FINFET: A new low voltage lateral superjunction MOSFET,” in Proc. IEEE ISPSD, 2008, pp. 111–114.