簡易檢索 / 詳目顯示

研究生: 吳茗航
Wu, Ming-Hang
論文名稱: 應用於W-band之低雜訊放大器
Low-Noise Amplifiers for W-Band Applications
指導教授: 徐碩鴻
Hsu, Shuo-Hung
陳新
Chen, Hsin
口試委員: 朱大舜
邱煥凱
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 59
中文關鍵詞: 低雜訊放大器W頻段pi 型變壓器T 型變壓器耦合共振腔
外文關鍵詞: LNA, W-band, pi transformer, T transformer, coulped resonator
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於此論文中,主要將探討二個針對W頻段通訊系統應用低雜訊放大器之設計、模擬與量測。
    在W-band 之無源毫米波(PMMW)頻段,我們提出一個實作在90nm CMOS製程使用 型變壓器和 T 型變壓器技術的94GHz低雜訊法大器(94GHz LNA with and T transformers),藉由使用型變壓器技術雜訊將會被有效地抑制,同時輸入端的阻抗頻寬也會增加。另外 型變壓器技術被使用以便於減少來自閘極電感之串聯電阻的損耗,提昇了此低雜訊放大器的性能。這個低雜訊放大器完成了15.8dB的功率增益、6.8dB的雜訊指數以及適中的35mW功耗。另一個為了防撞雷達及無源毫米波之W 頻段應用的低雜訊放大器(擁有耦合共振腔的W 頻段低雜訊放大器)也被實作在90nm製程。比較先前研究皆以T型匹配網路設計W頻帶低雜訊放大器,本研究提出耦合共振腔之新型匹配網路提供了寬的負載(loading)以便於得到寬的頻寬。另外, 型變壓器技術被採用以便於改善此低雜訊放大器的整體雜訊性能,並且也在輸出端使用T-coil技術去改善輸出端頻寬。這個低雜訊放大器在45mW的功率消耗下完成了11. 87dB的功率增益、7.1dB的雜訊指數。應該被強調的是此低雜訊放大器展現了從77.5GHz到101.5GHz之高達24GHz 3dB頻寬。另外在此論文中的兩個放大器皆使用了MMIN(最小的雜訊)技術去最佳化兩個電路的特性,並且採用了搭配基底耦合共地面波導匹配網路(GCPW-PGS) 讓兩個電路的信號損失及基底損耗降到最小。


    In this thesis, two low-noise amplifiers for W-band (75-110GHz) applications are discussed regarding their design, simulation, and measurement.
    For the passive millimeter wave imaging (PMMW) at W-band, we propose a 94GHz LNA with and T transformers implemented in 90-nm CMOS process. By utilizing the  transformer technique, the noise can be effectively suppressed; also, the input matching bandwidth can be enhanced as well. In addition, the T transformer technique is employed to reduce the loss from the series resistor in gate inductor, enhancing the performance of the LNA. The LNA achieves the power gain of 15.8dB, a minimum noise figure of 6.8 dB and moderate power consumption of 35 mW. Another LNA, a W-band LNA with coupled resonators, is also implemented in 90-nm CMOS process for W-band applications such as anti-collision radar and passive imaging. Compared with previous studies, mostly using the T matching network for W-band LNA design, this LNA proposes new coupled resonator matching network to obtain a wide 3dB bandwidth due to the provided wideband loading. Furthermore, the  transformer technique is adopted to improve the overall noise performance of the LNA. The LNA achieves the power gain of 11.87dB, a minimum noise figure of 7.1 dB under a power consumption of 45 mW. It should be emphasized that the LNA obtains a very wide 3dB-bandwidth up to 24 GHz from 77.5GHz to 101.5GHz. In addition, both amplifiers use the minimum noise measure MMIN technique to optimize their performance and adopt grounded-coplanar waveguide (GCPW) structure with PGS for their minimizing signal and substrate loss.

    ACKNOWLEDGEMENT ii ABSTRACT iii 摘要 iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 A 94-GHz Low-Noise Amplifier with p and T Transformers 4 2.1 Determination of Transistor Geometry 4 2.2 Design of GCPW Line with Patterned Ground Shield 6 2.3 The Conventional p Matching Network 9 2.3.1 Bandwidth Analysis 9 2.3.3 Noise Analysis 12 2.4 The Proposed p Transformer Matching Network 16 2.4.1 Bandwidth Analysis 16 2.4.2 Noise Analysis 19 2.5 The Proposed T Transformer Matching Network 26 2.6 The Proposed 94GHz LNA with p and T transformers 28 2.6.1 Circuit Topology 28 2.6.2 p Transformer Design 29 2.7 Simulation and Experimental Results 31 2.8 Summary 37 Chapter 3 A W-Band Low Noise Amplifier with Coupled Resonators 38 3.1 Coupled Resonator 38 3.1.1 Coupled Resonator in VCO Design 38 3.1.2 Coupled Resonator in LNA Design 40 3.2 T-Coil Peaking Matching Network 45 3.3 The Proposed 94GHz LNA with coupled resonators 46 3.3.1 Device Size 46 3.3.2 Circuit Topology 46 3.4 Simulation and Experimental Results 47 3.5 Summary and Comparison 53 Chapter 4 Conclusion and Future Work 55 4.1 Conclusion 55 4.2 Future Work 56 References 57

    [1] A.Y.-K. Chen, Y. Baeyens, Young-Kai Chen, and Jenshan Lin, “A low-power linear SiGe BiCMOS low-noise amplifier for millimeter-wave active imaging,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.103-105, 2010.
    [2] R. Reuter and Yi Yin, “A 77 GHz (W-band) SiGe LNA with a 6.2 dB noise figure and gain adjustable to 33 dB,” Bipolar/BiCMOS Circuits and Technology Meeting, pp.1-4, 2006.
    [3] L. Gilreath, V. Jam, and P. Heydan, “A W-band LNA in 0.18-m SiGe BiCMOS,” 2010 IEEE International Symposium on Circuits and Systems (ISCAS 2010) , pp.753-756, 2010.
    [4] M. Fahimnia, M.R. Nezhad-Ahamadi, B. Biglarbeigian, S. Safavi-Naieni, M. Mohammad-Taheri, and Y. Wang, “A 77 GHz low noise amplifier using low-cost 0.13m CMOS technology,” Microsystems and Nanoelectronics Research Conference, pp.73-75, 2009.
    [5] L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microwave Magazine, vol. 4, pp. 39-50, Sep. 2003
    [6] L. Gilreath et al., “A 94-GHz Passive imaging receiver using a balanced LNA with embedded Dicke switch,”IEEE RFIC, May 2010, pp. 79–82.
    [7] B. Heydari, M. Bohsali, E. Adabi, and A.M. Niknejad, “Millimeter-wave devices and circuit blocks up to 104 GHz in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, 2007.
    [8] Yu-Sian Jiang, Zuo-Min Tsai, Jeng-Han Tsai, Hsien-Te Chen and Huei Wang, “ A 86 to 108 GHz Amplifier in 90 nm CMOS ,“ Microwave and Wireless Components Letters, vol. 18, pp. 124-126, 2008
    [9] R. Reuter and Yi Yin, “A SiGe BiCMOS LNA for 94GHz band applications,” Bipolar/BiCMOS Circuits and Technology Meeting, pp.188-191, 2010
    [10] J. W. May, and G. M. Rebeiz, “High-performance W-Band SiGe RFICs for passive millimeter-wave imaging,” IEEE Radio Frequency Integrated Circuits Symposium, RFIC 2009, pp. 437-440, June 2009
    [11] Dan Sandström, Mikko Varonen, Mikko Kärkkäinen, and Kari A. I. Halonen, Member, IEEE, “W-Band CMOS Amplifiers Achieving +10 dBm Saturated Output Power and 7.5 dB NF,” IEEE J. of Solid-State Circuits, vol. 44, NO. 12, December 2009
    [12] Berke Cetinoneri, Student Member, IEEE, Yusuf A. Atesal, Student Member, IEEE, Andy Fung, Member, IEEE, and Gabriel M. Rebeiz, Fellow, IEEE, “W-Band Amplifiers With 6-dB Noise Figure andMilliwatt-Level 170–200-GHz Doublers in 45-nm CMOS,” IEEE Trans. Microw. Theory Tech., Vol. 60, No. 3, March 2012.
    [13] J. W. May, and G. M. Rebeiz, “A W-Band SiGe 1.5V LNA for Imaging Applications, ” IEEE Radio Frequency Integrated Circuits Symposium, RFIC pp. 241-244, 2008
    [14] J. Jin and S. Hsu, “A 40-Gb/s transimpedance amplifier in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1449-1457, June,2008
    [15] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-m CMOS,” IEEE J. Solid- State Circuits, vol. 40, no. 9, pp. 1901–1908, Sep. 2005
    [16] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May 1998.
    [17] W. Cho and S. Hsu, “An ultra-low-power 24 GHz low-noise amplifier using 0.13 m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 681-683, 2010.
    [18] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
    [19] To-Po Wang and Huei Wang, “A Broadband 4263-GHz Amplifier Using 0.13-μm CMOS Technology,” IEEE MTT-S International Microw. Symp., pp.1779-1782, 2007.
    [20] D.K. Shaeffer and T.H. Lee, “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, 1997.
    [21] Shekhar, S. Walling, J.S., Allstot, D.J., “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-State Circuits, vol. 41, pp. 2424-2439, 2006.
    [22] A. Meaamar, Chirn Chye Boon, Kiat Seng Yeo, and Manh Anh Do, “A wideband low power low-noise amplifier in CMOS technology,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp.773-782, 2010.
    [23] A. Bevilacqua, F. P. Pavan, C. Sandner, A. Gerosa, and A. Neviani, “Transformer-based dual-mode voltage-controlled oscillators,” IEEE Trans. Circuits Syst. II, pp. 293–297, Apr. 2007.
    [24] Mohamed El-Nozahi, Student Member, IEEE, Edgar Sánchez-Sinencio, Fellow, IEEE, and Kamran Entesari, Member, IEEE “A Millimeter-Wave (23–32GHz) Wideband BiCMOS Low-Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp.289-299,Feb. 2010
    [25] M. A. T. Sanduleanu, G. Zhang, and J. R. Long, “31-34GHz low noise amplifier with on-chip microstrip lines and inter-stage matching in 90-nm baseline CMOS,” in Proc. IEEE RFIC Symposium, pp. 143–145, June 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE