簡易檢索 / 詳目顯示

研究生: 阮于珊
Juan, Yu Shan
論文名稱: 基於半導體雷射非線性動態產生之可調式超寬頻與高頻微波信號及其應用之研究
Photonic Generations of Tunable Ultra Broadband and High Frequency Microwave Signals and Their Applications Based on Nonlinear Dynamics of Semiconductor Lasers
指導教授: 林凡異
Lin, Fan Yi
口試委員: 謝文峰
鄭克勇
黃勝廣
陳浩夫
馮開明
黃承彬
林凡異
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 110
中文關鍵詞: 周期性光脈衝注入雙光注入鎖頻電梳單邊帶相位雜訊超寬頻訊號通過光纖傳輸
外文關鍵詞: repetitive optical injection, dual-beam optical injection, frequency-locked, microwave frequency comb, single-sideband phase noise, (ultra-wideband (UWB) -over-fiber
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要內容為實驗證實利用半導體雷射非線性動態可產生可調式超寬頻及高頻微波信號,與其於微波光電之應用。在本論文中,我們提出及研究周期性光脈衝注入 (repetitive optical injection) 及雙光注入 (dual-beam optical injection) 之新式光注入結構,發現其系統具有低系統複雜度、高可靠度、高穩定性、及低雜訊干擾等特色。再者,亦發現利用新式光注入架構可產生之微波信號具有極寬頻、高度穩定、及極窄頻線寬等優點。

    基於光電回饋系統之非線性動態,藉由準確調整回饋強度及延遲時間,周期性連續光脈衝信號可以自發性產生於主雷射之輸出端。將其應用於周期性脈衝光注入系統中,藉由調整注入派衝光之周期及脈衝強度,發現相較於等幅 (cw) 光注入系統更豐富的非線性動態,其中最重要的莫過於鎖頻態 (frequency-locked state),基於光注入產生之頻寬增益效應,於振幅擾動限制±5 dB情況下可產生超寬頻 (20 GHz) 之電梳 (microwave frequency comb),可更進一步應用於微波光電之途。

    為進一步分析產生之寬頻電梳特性,於頻域上,我們量測並比較每個梳線之單邊帶相位雜訊 (single-sideband phase noise);於時域上,測得29 ps 之脈衝寬度及18.7 ps之定時抖動 (rms timing jitter)。發現產生之寬頻電梳具有高度的穩定性及低雜訊干擾,非常適合進一步之應用。另外,我們亦實驗論證利用產生之寬頻電梳於頻率轉換 (frequency conversion)、通訊廣播 (broadcasting)、及任意通道選擇 (arbitrary channel selection) 具有良好的系統效能及轉換效率。

    實驗上我們亦研究透過光脈衝注入系統產生之超寬頻訊號通過光纖傳輸 (ultra-wideband (UWB) -over-fiber)之可能性,利用2公里長之光纖及一對寬頻天線驗證後,發現超寬頻訊號通過光纖傳輸 (ultra-wideband (UWB) -over-fiber)之可行性。並得知產生之超寬頻訊號具有極寬頻寬,具有93%之部分頻寬 (fractional bandwidth),其遠遠超過Federal Communications Commission (FCC) 所設之規範。

    再者,在無任何外在頻率穩定機制情況下,利用鎖相雙光注入系統可產生約120 GHz 之高頻可調式微波訊號。為比較與其他機制所產生之微波訊號如單光注入 (single-beam injection)、光混合 (optical mixing)、非鎖相雙光注入 (unlocked dual-beam injection),這些系統所產生之光譜及頻譜均被仔細比較並討論。我們發現鎖相雙光注入所產生之微波訊號具有較寬之可調性及較低之功率擾動。

    在本論文中,我們亦將所產生之超寬頻及高頻微波訊號與市面上量產產品及其他利用方法產生之訊號作比較,發現我們所提出的系統具有窄線寬、低雜訊、高穩定性、較寬可調範圍、及低系統複雜度之優勢。


    Photonic generations of both tunable ultra broadband and high frequency microwave signals and their applications utilizing nonlinear laser dynamics are investigated experimentally. New injection schemes including optical pulse injection and dual-beam injection are proposed and studied, which can generate microwave signals with very broad bandwidths and high frequencies. The proposed systems have the advantages of compactness, low power consumption, high reliability, less system complexity, good spectral purity, and high stability.

    Nonlinear dynamics of semiconductor lasers under optical pulse injection in a hybrid system are investigated and studied for ultra broadband microwave generation. By varying the delay time, regular pulsing states with different pulsing frequencies are generated from a master laser subject to optoelectronic feedback. After injecting a pulse train optically into the slave laser, the microwave frequency combs with bandwidths greater than 20 GHz within a ±5-dB amplitude variation and very low phase noise are obtained benefiting by the bandwidth enhancement effect through optical injection.

    To analyze their stabilities and spectral purities, single-sideband (SSB) phase noise of each microwave frequency comb line is measured. At an offset frequency of 200 kHz, a single sideband phase noise of -60 dBc/kHz (-90 dBc/Hz estimated) in the 1st harmonic is measured while a noise suppression relative to the injected regular pulsing state of the master laser of more than 25 dB in the 17th harmonic is achieved. A pulsewidth of 29 ps and a rms timing jitter of 5.7 ps are obtained in the time domain for the microwave frequency comb generated. Furthermore, utilizing the microwave frequency comb generated, frequency conversion, broadcasting, and arbitrary channel selection are demonstrated experimentally.

    Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser is also realized. The UWB signals generated are fully in compliant with the Federal Communications Commission (FCC) mask for indoor radiation, while a large fractional bandwidth of 93\% is achieved. To show the feasibility of the UWB-over-fiber with the proposed scheme, the quality of the UWB signals transmitted through a 2 km single-mode fiber and a pair of broadband horn antenna are examined.

    Moreover, utilizing a dual-beam optical injection scheme, photonic generation of broadly tunable microwave signals of around 120 GHz is also investigated without the need for a microwave reference source. Optical and power spectra of the microwave signals generated with the dual-beam optical injection scheme are compared with those generated with the optical mixing, the single-beam injection, and the unlocked dual-beam injection schemes. The signal generated with the dual-beam injection scheme shows better tunability and less power fluctuation.

    As have been demonstrated in this study, compared to commercial products and microwave signals generated by conventional means using laser dynamics, the proposed schemes have the advantages of narrow linewidths, low SSB phase noise, good spectral purity, widely tunable range, and less system complexity in generating ultra broadband and high frequency microwave signals.

    1 Introduction 1.1 Introduction 1.2 Outline of Dissertation 2 Nonlinear Physics of Semiconductor Lasers under Different Perturbation Schemes 6 2.1 Optical Injection Scheme 2.2 Optoelectronic Feedback Scheme 3 Nonlinear Dynamics of Semiconductor Lasers Subject to Optical Pulse Injection 3.1 Introduction 3.2 Experimental Setup 3.3 Dynamic Characteristics of Optical Pulse Injection Scheme 3.4 Characteristics of the Frequency-Locked States Generated by a Semiconductor Laser under Periodical Optical Injection . 3.5 Conclusions 4 Ultra Broadband Microwave Frequency Combs Generated by an Optical Pulse-Injected Semiconductor Laser 4.1 Introduction 4.2 Broadband Microwave Frequency Generation 4.3 Characteristics of Microwave Frequency Combs Generated 4.4 Characteristics of Microwave Frequency Combs Generated by Applying an Additional Sine Modulation 4.5 Qualification of Spectral Purity in Microwave Frequency Combs 5 Microwave Photonics Application in Broadcasting, Frequency Conversion,and Channel Selection 5.1 Broadcasting 5.2 Frequency Multiplication and Division in a DC-Offset Optical Pulse Injected Semiconductor Laser 5.2.1 Schematic Setup and Simulation Model 5.2.2 Frequency Conversion 5.2.3 Conclusion 5.3 Arbitrary Channel Selection 5.3.1 Introduction 5.3.2 Experimental Setup 5.3.3 Channel Selection Under Different Schemes 5.3.4 Linear Tunability of Channel Selection System 5.3.5 SSB Phase Noise in Channel Selection System 5.3.6 Suppression Ratio in Channel Selection System 5.3.7 Conclusions 6 Demonstration of Ultra-Wideband (UWB) Over Fiber Based on Optical Pulse-Injected Semiconductor Laser 6.1 Introduction 6.2 Experimental Setup 6.3 UWB Signal Generation by Optical Pulse Injection Scheme 6.4 UWB-Over-Fiber Demonstration 6.5 Conclusions 7 High Frequency Microwave Signal Generated by Dual-Beam Injection 7.1 Introduction 7.2 Experimental Setup 7.3 High Frequency Microwave Frequency Generation by Optical Dualbeam Injection in a Stable-Locked Semiconductor Laser 7.4 Conclusion 8 Conclusions 8.1 Summary 8.2 Future Research

    [1] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by
    external optical injection in semiconductor lasers,” Quantum Semiclass. Opt., vol.
    9, pp. 765-784, 1997.
    [2] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Perioddoubling
    cascades and chaos in a semiconductor laser with optical injection,” Phys.
    Rev. A, vol.51, pp. 4181-4185, 1995.
    [3] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, P. M. Alsing, “Period-doubling
    route to chaos in a semiconductor laser subject to optical injection,” Appl. Phys.
    Lett., Vol. 64, pp. 3539-3541, 1994.
    [4] S. K. Hwang, J. M. Liu, “Dynamical characteristics of an optically injected semiconductor
    laser,” Opt. Comm., vol. 183, pp. 195-205, 2000.
    [5] V. Kovanis, A. Gavrielides, T. B. Simpson, and J. M. Liu, “Instabilities and chaos in
    optically injected semiconductor lasers,” Appl. Phys. Lett., vol. 67, pp. 2780-2782,
    1995.
    [6] Y. C. Chen, H. G. Winful, and J. M. Liu, “Subharmonic bifurcations and irregular
    pulsing behavior of modulated semiconductor lasers,” Appl. Phys. Lett., vol. 47, pp.
    208-210, 1985.
    [7] J. M∅rk, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical
    feedback: theory and experiment,” IEEE J. Quantum Electron., vol. 28, pp. 93-108,
    1992.
    [8] S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos in a
    semiconductor laser with delayed opto-electronic feedback,” IEEE J. of Quantum
    Electron., vol. 37, pp. 329-336, 2001.
    [9] F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed
    negative optoelectronic feedback,” IEEE J. Quantum Electron., vol. 39, pp. 562-568,
    2003.
    [10] F. Mogensen, H. Olesen, and G. X. Jacobsen, “FM noise suppression and linewidth
    reduction in an injection-locked semicondcutor-laser,” Electron. Lett., vol. 21, pp.
    696-697, 1985.
    [11] K. Inoue and K. Oda, “Noise suppression in wavelength conversion using a lightinjected
    laser-diode,” IEEE Photonics Technol. Lett., vol. 7, pp. 500-501, 1995.
    [12] A. Takada and W. Imajuku, “Linewidth narrowing and optical phase control of
    mode-locked semiconductor ring laser employing optical injection locking,” IEEE
    Photonics Technol. Lett., vol. 9, pp. 1328-1330, 1997.
    [13] J. Wang, M. K. Haldar, L. Li, and FVC Mendis, “Enhancement of modulation
    bandwidth of laser diodes by injection locking,” IEEE Photonics Technol. Lett., vol.
    8, pp. 34-36, 1996.
    [14] X. J. Meng, T. Chau, and M. C. Wu, “Experimental demonstration of modulation
    bandwidth enhancement in distributed feedback lasers with external light injection,”
    Electron. Lett., vol. 34, pp. 2031-2032, 1998.
    [15] F. Y. Lin and J. M. Liu, “Harmonic frequency locking in a semiconductor laser with
    delayed negative optoelectronic feedback,” Appl. Phys. Lett., vol. 81, pp. 3128-3120,
    2002.
    [16] F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected
    semiconductor laser subject to optoelectronic feedback,” Optic. Commun., vol. 221,
    pp. 173-180, 2003.
    [17] S. Eriksson and A. M. Lindberg, “Periodic oscillation within the chaotic region in a
    semiconductor laser subjected to external optical injection,” Opt. Lett., vol. 26, pp.
    142-144, 2001.
    [18] T. Mukai and K. Otsuka, “New route to optical chaos: successive-subharmonicoscillation
    cascade in a semiconductor laser coupled to an external cavity,” Phys.
    Rev. Lett., vol 55, pp. 1711-1714, 1985.
    [19] S. C. Chan, R. Diaz, and J. M. Liu, “Novel photonic application of nonlinear semiconductor
    laser dynamics,” Opt. and Quantum Electron. vol 40, pp. 83-95, 2008.
    [20] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-
    Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, “Chaos-based communications
    at high bit rates using commercial fibre-optic links,” Nature. vol. 438, pp.
    343-346, 2005.
    [21] T. Yoshino, M. Nara, S. Mnatzakanian, B. S. Lee, and T. C. Strand, “Laser diode
    feedback interferometer for stabilization and displacement measurements,” Appl.
    Opt. vol. 26, pp. 892-897, 1987.
    [22] S. K. Hwang, H. F. Chen, and C. T. Lin, “All-optical frequency conversion using
    nonlinear dynamics of semiconductor lasers,” Opt. Lett. vol. 34, pp. 812-814, 2009.
    [23] F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. of Sel. Top. Quantum Electron.
    vol. 10, pp. 991-997, 2004.
    [24] F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J.
    Quantum Electron. vol. 40, pp. 815-820, 2004.
    [25] W. W. Chow and S. Wieczorek, “Using chaos for remote sensing of laser radiation,”
    Opt. Exp. vol. 17, pp. 7491-7504, 2009.
    [26] S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, “Photonics microwave generation
    and transmission using direct modulation of stably injection-locked semiconducotr
    laser,” Opt. Comm. vol. 284, pp. 3581-3589, 2011.
    [27] S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation
    using semiconductor laser dynamics,” IEEE J. Sel. Topics Quantum Electron., vol.
    10, no. 5, pp.1025 -1032 2004.
    [28] S. K. Hwang , J. M. Liu, and J. K. White, “Characteristics of period-one oscillations
    in semiconductor lasers subject to optical injection,” IEEE J. Sel. Topics Quantum
    Electron., vol. 10, no. 5, pp.974 -981 2004.
    [29] S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled
    dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron.,
    vol. 42, pp. 699-705, 2006.
    [30] S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion
    using an optically injected semiconductor laser,” Opt. Lett., vol. 31, pp. 2254-2256,
    2006.
    [31] S. C. Chan, G. Q. Xia, and J. M. Liu, “Optical generation of a precise microwave
    frequency comb by harmonic frequency locking,” Opt. Lett., vol. 32, pp. 1917-1919,
    2007.
    [32] S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave
    transmission using an optically injected semiconductor laser,” Opt. Exp.,
    vol. 15, pp. 14921-14935, 2007.
    [33] C. C. Cui , X. L. Fu, and S. C. Chan, “Double-locked semiconductor laser for radioover-
    fiber uplink transmission,” Opt. Lett., vol. 34, pp. 3821-3823, 2009.
    [34] X. Q. Qi, J. M. Liu, X. P. Zhang, and L. Xie, “Fiber dispersion and nonlinearity
    influences on transmissions of AM and FM data modulation signals in radio-overfiber
    system,” IEEE J. Quantum Electron., vol. 46, pp. 1170-1177, 2010.
    [35] S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave
    generation,” IEEE J. Quantum Electron., vol. 46, pp. 421-428, 2010.
    [36] J. Yao, “Microwave photonics,” J. Lightwave Technol., vol. 27, pp. 314-335, 2009.
    [37] P. Bouyer, T. L. Gustavson, K. G. Haritos, and M. A. Kasevich, “Microwave signal
    generation with optical injection locking,” Opt. Lett., vol. 27, pp. 1502-1504, 1996.
    [38] J. J. OReilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation
    of very narrowlinewidth millimeterwave signals,” Electron. Lett., vol. 28, pp. 2309-
    2311, 1992.
    [39] U. Gliese, T. N. Nielsen, S. Norskov, and K. E. Stubkjaer, “Multifunctional fiberoptic
    microwave links based on remote heterodyne detection,” IEEE Trans. Microw.
    Theory Tech., vol. 46, pp. 458-468, 1998.
    [40] L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation
    with injection locked laser diodes,” Electron. Lett., vol. 19, pp. 491-493,
    1983.
    [41] U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren,
    and B. Broberg, “A wide-band heterodyne optical phase-locked loop for generation
    of 3-18 GHz microwave carriers,” IEEE Photon. Technol. Lett., vol. 4, pp. 936V938,
    1992.
    [42] A. C. Bordonaalli, C. Walton, and A. J. Seeds, “High-performance phase locking
    of wide linewidth semiconductor lasers by combined use of optical injection locking
    and optical phase-lock loop,” J. Lightwave Technol., vol. 17, pp. 328-342, 1999.
    [43] J. J. OReilly and P. M. Lane, “Fiber-supported optical generation and delivery of
    60 GHz signals,” Electron. Lett., vol. 30, pp. 1329-1330, 1994.
    [44] P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, and B. N. Ellison,
    “High-purity millimeter-wave photonic local oscillator generation and delivery,” in
    Proc. Int. Microw. Photonics Topical Meeting, pp. 189-192, 2003.
    [45] S. Wieczorek, B. Krauskopf, and D. Lenstra, “A unifying view of bifurcations in a
    semiconductor laser subject to optical injection,” Opt. Comm., vol. 172, pp. 279-295,
    1999.
    [46] Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals
    utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J., vol.
    3, pp. 644-650, 2011
    [47] F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor
    lasers under repetitive optical pulse injection,” IEEE J. of Sel. Top. Quantum
    Electron., vol. 15, pp. 604-611, 2009.
    [48] Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor
    laser subject to optical pulse injection from an optoelectronic feedback
    laser,” Opt. Lett., vol. 34, pp. 1636-1638, 2009.
    [49] Y. S. Juan and F. Y. Lin, “Ultra broadband microwave frequency combs generated by
    an optical pulse-injected semiconductor laser,” Opt. Exp., vol. 17, pp. 18596-18605,
    2009.
    [50] Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiber based
    on optical pulse-injected semiconductor laser,” Opt. Exp., vol. 18, pp. 9664-9670,
    2010.
    [51] Y. S. Juan and F. Y. Lin, “Demonstration of arbitrary channel selection utilizing
    a pulse-injected semiconductor laser with a phase-locked loop,” Opt. Exp., vol. 19,
    pp. 1057-1064, 2011.
    [52] J. Sacher, D. Baums, P. Panknin, W. Erlasser, and E. O. Gobel, “Intensity instabilities
    of semiconductor lasers under current modulation, external light injection, and
    delayed feedback,” Phys. Rev. A, vol. 45, pp. 1893-1905, 1992.
    [53] B. Tromborg and J. Mork, “Nonlinear injection locking dynamics and the onset of
    coherence collapse in external cavity lasers,” IEEE J. Quantum Electron., vol. 26,
    pp. 642-654, 1990.
    [54] J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth,
    noise, and stability of a semiconductor laser subject to strong injection locking,”
    IEEE Photonics Technol. Lett., vol. 9, pp. 1325-1327, 1997.
    [55] V. Annovazzi-Lodi, S. Donati, and A. Scire, “Synchronization of chaotic injected
    laser systems and its application to optical cryptography,” IEEE J. Quantum Electron.,
    vol. 32, pp. 953-959, 1996.
    [56] V. Annovazzi-Lodi, S. Donati, and M. Manna, “Chaos and locking in a semiconductor
    laser due to external injection,” IEEE J. Quantum Electron., vol. 26, pp.
    1537-1541, 1990.
    [57] S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor
    lasers subjected to external optical injection,” J. of Opt. B-Quantum and Semiclassical
    Opt., vol. 4, pp. 149-154, 2002.
    [58] R. Diaz, S.C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,”
    Opt. Lett., vol. 24, pp. 3600-3602, 2006.
    [59] F. Y. Lin and M. C.Tsai, “Chaotic communication in radio-over-fiber transmission
    based on optoelectronic feedback semiconductor lasers,” Opt. Exp., vol. 15, pp. 302-
    311, 2007.
    [60] X. Y. Wang and J. G. Wang, “Synchronization and anti-synchronization of chaotic
    systems based on linear separation and applications in security communication,”
    Modern Phys. Lett. B, vol. 21, pp. 1545-1553, 2007.
    [61] T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected
    semiconductor laser,” Opt. Comm. vol. 242, pp. 613-622, 2004.
    [62] B. Krauskopf, S. Wieczorek, and D. Lenstra, “Different types of chaos in an optically
    injected semiconductor laser,” Appl. Phys. Lett., vol. 77, pp. 1611-1613, 2000.
    [63] N. M. Al-Hosiny, I. D. Henning, and M. J. Adams, “Tailoring enhanced chaos in
    optically injected semiconductor lasers,” Opt. Comm. vol. 269, pp. 166-173, 2007.
    [64] G. R. Lin, C. L. Pan, and K. C. Yu, “Dynamic chirp control of all-optical formatconverted
    pulsed data from a multi-wavelength inverse-optical-comb injected semiconductor
    optical amplifier,” Opt. Exp., vol. 15, pp. 13330-13339, 2007.
    [65] A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High frequency broad-band
    signal generation using a semiconductor laser with a chaotic optical injection,” IEEE
    J. Quantum Electron., vol. 39, pp. 1462-1467, 2003.
    [66] D. J. Hunkin, G. R. Hill, and W. A. Stallard, “Frequency-locking of external cavity
    semiconductor-laser using an optical comb generator,” Opt. Lett., vol. 73, pp. 388-
    390, 1986.
    [67] T. C. Chung, R. W. Tkach, and A. R. Chraplyvy, “Performance of a frequencylocked
    1.3 um DFB laser under 50 Mbit/s FSK modulation,” Quantum Lett., vol.
    24, pp. 1159-1160, 1988.
    [68] V. Annovazzi-Lodi, G. Aromataris, and M. Benedetti, “All-optical wavelength conversion
    of a chaos masked signal,” IEEE Photonics Technol. Lett., vol. 19, pp. 1783-
    1785, 2007.
    [69] D. Norte and A. E. Willner, “Demonstration of an all-optical data format transparent
    WDM-to-TDM network node with extinction ratio enhancement for reconfigurable
    WDM networks,” IEEE Photonics Technol. Lett., vol. 8, pp. 715-717, 1996.
    [70] A. Hohl and A. Gavrielides, “Bifurcation cascade in a semiconductor laser subject
    to optical feedback,” Phys. Rev. Lett., vol. 82, pp. 1148-1151, 1999.
    [71] S. C. Chan, R. Diaz, and J. M. Liu, “Novel photonic application of nonlinear semiconductor
    laser dynamics,” Optical and Quantum Electron., vol. 40, pp. 83-95, 2008.
    [72] P. Del’Haye, A. Schiliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg,
    “Optical frequency comb generation from a monolithic microresonator,”
    Nature, vol. 450, pp. 1214-1217, 2007.
    [73] H. Y. Ryu, H. S. Moon, and H. S. Suh, “Optical frequency comb generator based on
    actively mode-locked fiber ring laser using an acousto-optic modulator with injectionseeding,”
    Opt. Exp., vol. 15, pp. 11396-11401, 2007.
    [74] C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinear broadened
    phase-modulated continuous-wave laser frequency combs characterized using DPSK
    decoding,” Opt. Exp., vol. 16, pp. 2520-2527, 2008.
    [75] S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zerofrequency
    error, tunable optical comb generator for DWDM applications,” IEEE
    Photon. Technol. Lett., vol. 11, pp. 551-553, 1999.
    [76] S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical
    comb generation by phase-only modulation of continuous-wave light,” IEEE Photon.
    Technol. Lett., vol. 20, pp. 36-38, 2008.
    [77] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband
    noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol.
    Lett., vol. 1, pp. 95-96, 1995.
    [78] For example, Picosecond Pulse Labs model 7112 comb generator.
    [79] N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor
    injection lasers,” IEEE J. Quantum Electron., vol. 22, pp. 642-650, 1986.
    [80] From http://www.eu.anritsu.com/files/11410-00344.pdf
    [81] T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator using a
    LiNbO3 phase modulator for self-oscillating frequency comb generation,” Opt. Lett.,
    vol. 31, pp. 811-813, 2006.
    [82] T. Kuri, K. Kitayama, and Y. Takahashi, “60-GHz-band full-duplex radio-on-fiber
    system using two-RF-port electroabsorption transceiver,” IEEE Photon. Technol.
    Lett., vol. 12, pp. 419-421, 2000.
    [83] J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,”
    J. of Light. Technol., vol. 24, pp. 201-229, 2006.
    [84] P. I. Mak, S. P. U, and R. P. Martins, “Two-step channel selection-a novel technique
    for reconfigurable multistandard transceiver front-ends,” IEEE Tran. on Cir. and
    Sys., vol. 52, pp. 1302-1315, 2005.
    [85] Y. Yan, S. R. Blais, and J. Yai, “Tunable photonic microwave badnpass filter with
    negative coefficients implemented using an optical phase modulator and chirped fiber
    Bragg gratings,” J. of Light. Technol., vol. 25, pp. 3283-3288, 2007.
    [86] X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,”
    Elec. Lett., vol. 45, pp. 361-362, 2009.
    [87] M. Delgado-Pinar, J. Mora, A. D´ıez, and M. V. Andr´es, “Tunable and reconfigurable
    microwave filter by use of a Bragg-grating-based acousto-optic superlattice
    modulator,” Opt. Lett., vol. 30, pp. 8-10, 2005.
    [88] J. Wang and J. Yao, “A tunable photonic microwave nothch filter based on all-optic
    mixing,” IEEE Photon. Technol. Lett., vol. 18, pp. 382-384, 2006.
    [89] D. Pastor, B, Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave
    photonic filter for noise and interference suppression in UMTS base stations,”
    Elec. Lett., vol. 40, pp. 997-999, 2004.
    [90] G. D. Kim and S. S. Lee, “Photonic microwave channel selective filter incorporating
    a thermooptic switch based on tunable ring resonators,” IEEE Photon. Technol.
    Lett., vol. 19, pp. 1008-1010, 2007.
    [91] Z. Wang, K. S. Chiang , and Q. Liu, “Microwave photonic filter based on circulating
    a cladding mode in a fiber ring resonator,” Opt. Lett., vol. 35, pp. 769-771, 2010.
    [92] W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, “Subgigahertz channel filtering
    by optical heterodyne detection using a single axial mode from an injection-locked
    passively mode-locked semiconducotr laser,” IEEE Photon. Technol. Lett., vol. 16,
    pp. 1945-1947, 2004.
    [93] A. Ieace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an
    electronically active eaveguide embedded Bragg grating,” Opt. Comm., vol. 221, pp.
    313-316, 2003.
    [94] N. Kashima and M. Watanabe, “Transient properties of side-mode injection locking
    in an FPLD,” J. of Light. Technol., vol. 24, pp. 1523-1533, 2006.
    [95] S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor
    lasers subjected to external optical injection,” J. Opt. B-Quantum and Semiclassical
    Opt., vol. 4, pp. 149-154, 2002.
    [96] S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using
    an optically injected semiconductor laser,” IEEE J. Quantum Electron., vol. 41, pp.
    1142-1147, 2005.
    [97] D. Porcine, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential
    and challenges ahead,” IEEE Comm. Mag., vol. 41, pp. 66-74, 2003.
    [98] Federal Communications Commission, “Revision of part 15 of the commissions rules
    regarding ultra-wideband transmission systems,” 2002.
    [99] Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse
    generation based on cross-gain modulation in a semiconductor optical amplifier,”
    Opt. Lett., vol. 31, pp. 3083-3085, 2006.
    [100] J. Li, Y. Liang, and K. K. Y. Wong, “Millimeter-wave UWB signal generation
    via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon.
    Technol. Lett., vol. 21, pp. 1172-1174, 2009.
    [101] F. Zeng and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution
    over optical fiber,” IEEE Photon. Technol. Lett., vol. 31, pp. 823-825,
    2006.
    [102] Q. Wang and J. Yao, “UWB doublet generation using nonlinearly biased electrooptic
    intensity modulator,” Electron. Lett., vol. 42, pp. 1304-1305, 2006.
    [103] M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator
    using an N tap microwave photonic filter and phase inversion adaptable to different
    pulse modulation formats,” Opt. Exp., vol. 17, pp. 5023-5032, 2009.
    [104] J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using
    sum-frequency generation in a PPLN waveguide,” Opt. Exp., vol. 17, pp. 3521-3530,
    2009.
    [105] M. Abtahi, M. Mirshafiei, J. Magne, L. A. Rusch, and S. LaRochelle, “Ultrawideband
    waveform generator based on optical pulse-shaping and FBG tuning,” J.
    Lightwave Technol., vol. 20, pp. 135-137, 2008.
    [106] X. Yu, T. B. Gibbon, M. Pawlik, S. Blaaberg, and I. T. Monroy, “A photonic ultrawideband
    pulse generator based on relaxation oscillations of a semiconductor laser,”
    Opt. Exp., vol. 17, pp. 9680-9687, 2009.
    [107] E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu,
    “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Exp. vol. 16, pp. 6609-
    6618, 2008.
    [108] J. B. Jensen, R. Rodes, A. Caballero, X. Yu, T. B. Gibbon, and I. T. Monroy, “4
    Gbps impulse radio (IR) ultra-wideband (UWB) transmission over 100 meters multi
    mode fiber with 4 meters wireless transmission,” Opt. Exp., vol. 17, pp. 16898-16903,
    2009.
    [109] X. Chen, Z. Deng, and J. P. Yao, “Photonic generation of microwave signal using
    a dual-wavelength single-longitudinalmode fiber ring laser,” IEEE Trans. Microw.
    Theory Tech., vol. 54, pp. 804-809, 2006.
    [110] D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinalmode
    erbium-doped fibre laser based on fibre Bragg grating pair and its application
    in microwave signal generation,” Electron. Lett., vol. 44, pp. 459-461, 2008.
    [111] H. H. Lin, C. H. Lin, and F. Y. Lin, “Four-wave mixing analysis of quantum dot
    and quantum well lasers,” Proc. SPIE, vol. 7933, pp. 79331K-1-79331K-9, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE